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Inspired by some recent molecular dynamics (MD) simulations and ex-
periments on suspended graphene nanoribbons, we study a simplified model
where the atoms are disposed in a rectangular lattice coupled by near-
est neighbor interactions which are quadratic in the interatomic distance.
The system has a mechanical strain, and the border atoms are coupled
to Langevin thermal baths. Atom masses vary linearly in the longitudi-
nal direction, modelling an isotope or doping distribution. This asymmetry
and tension modify thermal properties. Although the atomic interaction is
quadratic, the potential is anharmonic in the coordinates. By direct MD
simulations and solving Fokker-Planck equations at low temperatures, we
can better understand the role of anharmonicities in thermal rectification.
We observe an increasing thermal current with an increasing applied me-
chanical tension. The temperatures and thermal currents vary along the
transverse direction. This effect can be useful to establish which parts of
the system are more sensitive to thermal damage. We also study thermal
rectification as a function of strain and system size.

Introduction and motivation

Efficient energy consumption is one of the biggest challenges for modern
societies. Moreover, miniaturization of electronic devices together with
their increasing computing capabilities, make that heat production per sur-
face/volume unit tend to increase constantly. New technologies are necessary
for efficient heat transport. At nanometric scales and for low-dimensional
systems Fouriers law is not fullfilled, and new phenomena arise. Among them
thermal rectification would make possible to build thermal diodes, being low
dimensional systems the best candidates (e. g. atomic chains, graphene)
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[1, 2, 3]. In particular, graphene nanoribbons (GNR) are promising candi-
dates in nanoelectronics. However, at the chip-level integrated circuits, the
power density highly increased, becoming vital the thermal managment to
ensure stable operation of any practical graphene-based device [4, 5]

Thermal conductance can be modified by defects, impurities, shapes,
geometries, mechanical strains, asymmetries, etc. It is known that it is nec-
essary to have an asymmetry on the system to achieve heat rectification [6].
Thus, systems with mass gradients due to dopping concentrations, deposi-
tion of heavy molecules or a variable width are candidates to present this
phenomena [1, 7, 8, 9].

On the other hand, thermal conductance of 2D systems, as GNRs, is
remarkably affected by tensile strain. Moreover, mechanical tension is rela-
tively easy to control experimentally at nanoscale, being a good candidate
to tune the phononic heat transport in a system [10, 11, 12, 13].

From this motivation we present a simple model for a 2D system to
better understand heat transport and the possibility of thermal rectification
in a layered-device with variable widths subject to a mechanical longitudinal
tension.

The model

The system is composed of a rectangular array of N = Nx × Ny particles.
They are identified by an index i = (ix, iy). We consider a linear mass
gradient along the x direction, with mi = ML−(ix−1)(ML−MR)/(Nx−1),
being ML and MR the masses of the left and right columns respectively
(see Fig. 1). The particles interact isotropically to nearest neighbors by
potentials that only depend on their relative distance r = |Ri −Rj|, as:

Figure 1: Schematic of the system. Particles bordered by dash-dot lines are
coupled to Langevin thermal baths.
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v(r) =
1

2
k(r − l0)2 (1)

The particles on the left (ix = 1) and right (ix = Nx) borders also
interact by the same potential with two substracts that can be thought as a
left (ix = 0) and right (ix = Nx + 1) columns of fixed particles. Therefore,
there are (Nx+1)Ny interactions or bonds in the x-direction, and Nx(Ny−1)
bonds in the y-direction that contributes to the total potential

V ({Ri}) =

Nx∑
ix=0

Ny∑
iy=1

v(|R(ix+1,iy)−R(ix,iy)|)+
Nx∑
ix=1

Ny−1∑
iy=1

v(|R(ix,iy+1)−R(ix,iy)|)

(2)
that only depends on the positions.

The natural equilibrium position of the particles is a rectangular array
with lattice constants (ax, ay) = (l0, l0). However, if the distance Lx between
the fixed rows is bigger than (Nx+1)l0, there will be a tension in the system
along the x-direction that we parametrize by a change in the lattice constant
ax > l0. We are specially interested on the effects of tension on the thermal
properties of the system because it is an external parameter that can be
easily controlled. The bottom (iy = 1) and top (iy = Ny) rows do not
interact with any external substrate or reservoir, therefore there could not
be any tension in the y-direction, being ay = l0 for all cases. The equilibrium
position of the particles is R0i = (axix, ay(iy − 1)). We characterize the
motion of the particles by the displacement with respect to their equilibrium
position ri = Ri−R0i. Moreover, the particles on the left and right columns
are coupled to two thermal reservoirs respectively. We consider a Langevin
interaction by a viscous term proportional to velocity, and a decorrelated
random force acting on the particles in contact with the reservoirs. The
equation of motion for each particle is

mi
d2ri
dt2

= −∂V
∂ri
− γi

dri
dt

+ fi(t) (3)

where γi = 1 for ix = 1 or ix = Nx, and zero otherwise. The random forces
have the correlations 〈fi,µ(t)fj,ν(t′)〉 = 2γi kBTi δi,j δµ,ν δ(t − t′), where Ti
is TL and TR for ix = 1 and ix = Nx, the temperatures of the left and right
reservoirs, respectively, or zero otherwise. Indices µ and ν run over x and y
directions.

For a given realization of the random forces, equations of motion are in-
tegrated from some initial condition. After some time, position and velocity
of the particles attain a stationary regime where their statistical behavior
is constant. Averaging a given realization over time, we are mainly inter-
ested on the following quantities: i) Mean quadratic velocities: they define
a kinetic site temperature kBTi = 1

2mi(〈v2
i,x〉 + 〈v2

i,y〉), even if the system is
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not in thermodynamical equilibrium; ii) Heat current: for two interacting
particles i and j, energy flows at a rate given by Ji,j = 〈Fi,j ·(vi+vj)〉, where
Fi,j is the force that i does on j. The enegy current could be different for
each bond, being the only conserved quantity the total current through any
transversal section of the system; iii) Time correlations: for any component
of position or velocity of particle i over time Qi(t), we are interested on
its autocorrelation CQi

(τ) = 〈Qi(t)Qi(t + τ)〉. This function contains very
useful information about characteristic time scales of the system, how long
time averages should be done to be significant, and to estimate the statis-
tical errors of averaged quantities; iv) Spatial correlations 〈Qi(t)Qj(t)〉: the
motion of particle i will be in general correlated with the motion of particle
j. It is expected that neighbor particles will have stronger correlation than
distant particles. A correlation lenght arises, depending on parameters of
the system and thermal baths.

Fokker-Planck equations - Harmonic approximation

Expanding interatomic potential (1) for two neighboring particles, it has
the form v(r) = 1

2k(r2 − 2rl0 + l20). The term on r2 is fully quadratic on
the components of ri and rj. The problem arises with the second term
proportional to r,

r = |Rj −Ri| = |(R0j −R0i) + (rj − ri)| = |a + ∆r|

where, for simplification, a is the vector joining the equilibrium positions of
the particles, and ∆r the relative displacement between them. We see that
this term is not linear on the components of ri or rj

r =
√

(a + ∆r) · (a + ∆r) =
√
a2 + 2 a ·∆r + |∆r|2 = a

√
1 + 2 â · δ + δ · δ

due to the square root. In the last equality we have used a = |a|, â = a/a,
and δ = ∆r/a. Taking into account that the proposed model is valid for
small displacements, we can make an expansion considering |∆r| � a, or
equivalently |δ| � 1. Collecting terms of the same order in δ we arrive to

r = a

{
1 + â · δ +

1

2

[
δ2 − (â · δ)2

]
+

1

2

[
(â · δ)3 − (â · δ)δ2

]
+O(δ4)

}
We see explicitely in this expansion that the potential energy is not quadratic
on the coordinates. Nevertheless, for very low temperatures, where displace-
ments are small respect to the lattice constants, we can neglect the cubic
and higher order terms. Making this approximation for all bonds in x and
y direction, after collecting terms, we arrive to a quadratic approximation
for the total potential energy of the system
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V ({ri}) ≈ (Nx + 1)Nyv0 +

Nx∑
ix=1

Ny∑
iy=1

[
k x2

(ix,iy) + (k⊥ + αiyk)y2
(ix,iy)

]

−
Nx−1∑
ix=1

Ny∑
iy=1

[
k x(ix,iy)x(ix+1,iy) + k⊥y(ix,iy)y(ix+1,iy)

]
−

Nx∑
ix=1

Ny−1∑
iy=1

k y(ix,iy)y(ix,iy+1) (4)

where v0 = 1
2k(ax − l0)2, k⊥ = k(1− l0/ax), and αiy = 1/2 for iy = 1, Ny or

1 otherwhise. In this harmonic approximation, the directions x and y are
completely decoupled. The dependence on the tension comes through the
transversal spring constant k⊥.

For every particle, we have two degrees of freedom, so the system has
M = 2N total number of degrees of freedom. If we call this coordinates as
{qn}, we can rewrite the equations of motion as

q̇n =
1

mn
pn (5)

ṗn = −
M∑
m=1

Knmqm −
γn
mn

pn + fn(t) (6)

where pn = mnq̇n are the momenta, and

Knm =
∂2V

∂qn∂qm

are elements of a force matrix. This is a set of stochastic linear equations,
the so called Fokker-Planck (FP) equations, that can be exactly integrated
for a given realization of the random forces {fn(t)}. We explain in more
detail the general solution following [14].

By defining 2M -dimensional vectors X = (q1, . . . , qM ; p1, . . . , pM ) and
F(t) = (0, . . . , 0; f1(t), . . . , fM (t)) we can further simplify the notation

Ẋ = −AX + F(t) (7)

The matrix A have the structure

A =

(
0 −M−1

K G

)
(8)

with K the force matrix, and the diagonal matrices Mnm = δnmmn and
Gnm = δnmγn/mn. This matrix A can be diagonalized, obtaining 2M
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complex eigenvalues λi, that come in complex conjugate pairs. Their real
part is always positive. The eigenvectors are also complex, and arranging
them as columns we obtain the diagonalizing unitary matrix U, which fulfills
AU = UA′, where A′ is a diagonal matrix with the eigenvalues as elements.
Transforming and defining X′ = U−1X, and F′(t) = U−1F(t), the matricial
equation (7) transforms to

Ẋ′ = −A′X′ + F′(t)

Now the FP equations are decoupled, although each component of F′(t) is
a linear combination of all components fn(t).

ẋ′i = −λix′i + f ′i(t)

For a given realization of the random forces, and some initial condition,
each equation can be integrated, obtaining

x′i(t) = e−λitx′i(0) + e−λit
∫ t

0
eλitf ′i(t

′)dt′

Taking the solutions for each x′i, and using that X(t) = UX′(t), we finally
obtain the solutions for positions qn and momenta pn. For sufficiently long
times, the term proportional to the initial condition will vanish, provided
that

t� τmax =
1

min(Re(λi))
.

Now we are interested in the statistichal behavior of the system, partic-
ularly in the stationary regime. With these solutions, one can compute the
mean values doing averages over the ensemble of random forces, which are
necessary to estimate time and spatial correlations, currents per bond and
site temperatures.

Taking into account the correlations of the random forces, that depends
mostly on bath temperatures, and after some calculations, the time and spa-
tial correlations of all dynamical variables can be computed. First we define
the diagonal matrix Dkl = 2γkkBTkδkl, where Tk corresponds to the temper-
ature for the moment component which are coupled to a thermal bath, or
zero otherwise. Then transforming this matrix as D′ = U−1D (U−1)T , and
defining a new matrix

Hmn(τ) =
D′mne−λnτ

λm + λn
(9)

the general correlation function is

〈xi(t)xj(t+ τ)〉 = (UHUT )ij (10)
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We plot on Figs. 2 and 3 the time correlation functions computed by
FP equations. We observe that particles coupled to a heat bath, or near
to it, decorralates in shorter times, as expected due to the random forces.
Particles in the middle of the system have longer correlation times. The
frequencies on these functions are related to normal modes weakly coupled
to the heat baths. We observe that for times of the order of 200, most
of these functions decay significantly, except for the velocity in y direction.
Anyway, the rapid and non periodic fluctuations make difficult to predict on
average the behavior for long times. From these time correlation functions
we conclude that the system can attain a stationary regime at times of the
order of 500, and measurements of dynamical variables separated by this
time scale can be considered independent.

0 5 0 1 0 0 1 5 0 2 0 0
- 0 , 5
0 , 0
0 , 5
1 , 0

 x 1 , 1    x 4 , 1    x 8 , 1

0 5 0 1 0 0 1 5 0 2 0 0
- 0 , 5
0 , 0
0 , 5
1 , 0

τ

 y 1 , 3    y 4 , 3    y 8 , 3

Figure 2: Normalized time autocorrelation function for x (up) and y (down)
positions of some selected particles. For all figures ML = 1.6, MR = 0.4,
spring constant k = 1, and natural length l0 = 1. (Nx, Ny) = (9, 5), TL =
1.5 · 10−4, TR = 5 · 10−5, ax = 1.25. See final discussion for units.
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0 5 0 1 0 0 1 5 0 2 0 0
- 0 , 5
0 , 0
0 , 5
1 , 0  v x  ( 1 , 1 )   v x  ( 4 , 1 )    v x  ( 8 , 1 )

0 5 0 1 0 0 1 5 0 2 0 0
- 0 , 5
0 , 0
0 , 5
1 , 0

τ

 v y  ( 1 , 3 )    v y  ( 4 , 3 )    v y  ( 8 , 3 )

Figure 3: Normalized time autocorrelation function for x (up) and y (down)
velocities of some selected particles, same values as Fig. 2.

Numerical results

For the full potential FP equations are difficult to solve. The only way
to compute correlations, temperature profiles and heat currents in the sta-
tionary state is to perform a direct numerical integration of the equations
of motion, as in molecular dynamics (MD) computations, using a Runge-
Kutta stochastic integrator. At very low temperatures, where non-linear
terms are negligeable, FP results coincide with MD within the statistical
error. At intermediate temperatures we first compare the time correlation
functions computed by both methods and we observe only minor differences.
In general the functions decays faster for MD, meaning that non-linear terms
induce more decorrelation. Nevertheless, we can take the correlation times
from FP results as a good upper estimation for all temperature regimes.

Spatial correlation functions for the displacements are show in Fig. 4.
The x position of a given particle is correlated with other particles on the
same row, while it is almost decorralated with particles in a different row
because the coupling is only through higher order terms in the potential
(in FP calculations it is strictly zero). On the other hand, the y position
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of a given particle is strongly correlated with all other particles. Therefore
the correlation length is of the order of the system size for the studied
parameters. The spatial correlation of velocities in both directions strongly
decays even for two neighboring particles.

5
1 0

1 5
2 0

2 5

24681 01 2

0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

i y

i x

5
1 0

1 5
2 0

2 5

24681 01 2

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

i y

i x

Figure 4: Normalized spatial correlation function for x (left) and y (right)
position of the (ix, iy) = (12, 6) particle. (Nx, Ny) = (25, 12), TL = 1.5·10−4,
TR = 5 · 10−5, ax = 1.25.

Averaging the kinetic energy of each particle we compute temperature
profiles, seeing an example in Fig. 5. There is an expected temperature
decay in x direction from the hot to the cold bath, although it is not uniform.
There are also some fluctuations in the transversal y direction, even at very
low temperatures. This is produced by the asymmetry of particles on the top
and bottom rows, which are coupled to 3 neighbors, compared to particles
on the bulk rows with 4 neighbors.

The heat currents are computed for every bond. For bonds in y direction,
average currents are of the same order of statistical errors, and we can induce
that they are almost zero, which is the result given by FP equations. On
x direction, the average current is the same for every bond in a given iy
row. On the other hand, the currents on each row are slightly different,
depending on strain and other parameters. We finally compute an average
heat current per row through the system summing up the currents of all
rows J , and dividing by Ny. We show on Fig. 6 this quantity as a function
of the temperature bias ∆T = TL − TR, for a fixed value of an average
bath temperature T0 = (TL + TR)/2. We show both results for positive and
negative bias, which produce positive and negative heat currents. In both
cases the behavior is linear on ∆T (allowing us to later define a conductance).
However, slopes are different depending the sign of ∆T . This comes from
the mass gradient that stablishes an asymmetry on the system, and by the
non-linear part of the potential. This effect is not observed in the harmonic
approximation used to solve FP equations. The asymmetry in the heat
transmition is called thermal rectification, and it could be a very useful
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5

5 , 0 x 1 0 - 7

1 , 0 x 1 0 - 6

1 , 5 x 1 0 - 6

i x
i y

 

T

Figure 5: Kinetic temperature profile. (Nx, Ny) = (9, 5), TL = 1.5 · 10−6,
TR = 5 · 10−7, ax = 1.2

property.
To study the heat current and thermal rectification as a function of

strain ax, we plot in Fig. 7 the conductance per row C = J/(Ny∆T ), for
both signs of the temperature bias. We observe an increasing current as
strain is increased, although the thermal rectification seems to decrease as
both curves approach.

As a funtion of system width Ny, the conductance quickly achieves a
constant value, being compatible with Fourier law, where heat current is
proportional to transversal area. In Fig. 8 we plot the conductance per
row as a function of system length Nx. FP calculations give a decreas-
ing conductance although it achieves a constant value, which is the result
for ordered harmonic crystals, breaking the classical Fourier law. For MD
computations we observe a smaller conductance with respect to FP, and
it decreases faster with system size. We observe that thermal rectification
increases with length, at least for this small system regime, which can be a
very useful effect to build a thermal diode. Whether or not this tendency
continues in the thermodynamical limit Nx → ∞ can not be infered from
these simulations and it is beyond the scope of the present work.
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0 , 0 2 , 0 x 1 0 - 4 4 , 0 x 1 0 - 4 6 , 0 x 1 0 - 4 8 , 0 x 1 0 - 4
0 , 0

5 , 0 x 1 0 - 5

1 , 0 x 1 0 - 4
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2 , 0 x 1 0 - 4

| ∆T |

 | J - |  /  N y
 J +  /  N y

a x = 1 . 0  ,  T 0 =  0 . 0 0 0 5

Figure 6: Total current per row J/Ny as a function of ∆T . (Nx, Ny) =
(25, 12), T0 = 5 · 10−4, ax = 1.0.

Conclusion and discussion

We studied thermal properties of a 2D atomic model with mass gradient
under tension. Although it is a simple theoretical model, we can make some
relations with graphene, a real 2D atomic system, at least for some orders
of magnitude. For thermal and mechanical properties, graphene models
use the effective classical Tersoff-Brenner potential. The interaction along
carbon-carbon direction can be approximated by a quadratic potential with
constant kr = 652 nN/nm and equilibrium distance a0=0.1421 nm [12].
Taking into account the carbon mass m0, we obtain time and temperature
scales τ0 =

√
m0/kr= 5.5 fs , and T0 = kra

2
0/kB ≈ 106 K.

Autocorrelation functions in our model would suggest a time scale from
3 to 6 ps for loss of information, at least for systems of length up to 30
atoms. Characteristic frequencies can be related to those of normal modes
weakly coupled to thermal baths.

Room temperature of around 300 K corresponds to dimensionless pa-
rameter T ≈ 3 · 10−4. From some experimental works [13], it is known that
suspended graphene could be stable up to 2600 K. In our model, this tem-
perature correspond to T ≈ 2.7 ·10−3, where the mean particle displacement
becomes of the order of lattice constant. In this case quadratic approxima-
tion for the atomic interaction and nearest neighbor approximation would
not be valid anymore. A typical thermal current per atomic chain, as in Fig.
6, would correspond to 2.5 ·10−3 W. We observed an increasing conductance
with uniaxial strain, contrary to MD computations for AGNR(armchair)
graphene[11]. However, as in our model, an increase of conductance was
obtained for ZGNR(zigzag) graphene nanoribbons at small strain and room
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Figure 7: Average conductance per row as a function of strain. (Nx, Ny) =
(25, 12), T0 = 5 · 10−4.

temperature, due to an increased of the phonon velocity of some modes in
the low and high frequencies for small strains.

We observed thermal rectification in a model with an interatomic po-
tential quadratic on the distance, although as a two dimensional model, the
potential is non-linear in the coordinates. Also the mass gradient, which
makes the system asymmetric, is essential for the thermal rectification. The
effect could be even stronger incorporating cubic and quartic terms in the in-
teratomic potentials (Fermi-Pasta-Ulam models), directional terms (strongly
present in carbon-carbon interaction), and flexural modes.
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