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Campus de l’École Polytechnique, 91127 Palaiseau Cedex, France
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Università Sapienza, Piazzale Aldo Moro 2, Roma, Italy
(Received 9 September 2011; published 4 January 2012)

We investigate the effect of mass imbalance in binary Fermi mixtures loaded in optical lattices. Using dynamical
mean-field theory, we study the transition from a fluid to a Mott insulator driven by the repulsive interactions.
For almost every value of the parameters we find that the light species with smaller bare mass is more affected by
correlations than the heavy one, so that their effective masses become closer than their bare masses before a Mott
transition occurs. The strength of the critical repulsion decreases monotonically as the mass imbalance grows so
that the minimum is realized when one of the species is localized. The evolution of the spectral functions testifies
that a continuous loss of coherence and a destruction of the Fermi liquid occur as the imbalance grows. The
two species display distinct properties and experimentally observable deviations from the behavior of a balanced
Fermi mixture.
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I. INTRODUCTION

The ability to trap ultracold atomic gases and load them
in optical lattices has led to the tantalizing possibility to
create in a laboratory almost ideal realizations of popular
condensed-matter models and to observe their remarkable
properties [1]. One after the other, the cold atoms’ route
has met many fascinating milestones such as the observation
of the superfluid to Mott-insulator transition in a system
of bosons on a lattice [2], the direct imaging of the Fermi
surface in a degenerate Fermi gas [3], and the demonstration
of superfluidity in an interacting Fermi gas [4–8]. One of
the frontiers of this research [9,10] is the realization of the
Mott-insulating limit for fermions in optical lattices [11,12].

The most outstanding feature of this field is the amazing
degree of control and tunability. While in solid-state models
such as, e.g., the Hubbard model should be viewed only as
approximate low-energy effective pictures with parameters
hard to estimate and control, optical lattices allow one to
tune the interaction strength and other relevant parameters
by simply changing the experimental setup. A well-known
example is the possibility to control the value of the interatomic
interactions by means of a magnetic field exploiting Fano-
Feschbach resonances. This allows one to not only study the
evolution of the physics as a function of the “standard” control
parameters (such as the interaction or the particle density), but
also to introduce new parameters which can strongly affect
known phenomena or lead to entirely new quantum phases.

Binary mixtures of fermionic atoms with different masses
(e.g., 6Li, 40K) introduce one of such additional parameters,
namely, the difference between the hopping amplitudes of
the two kinds of fermions. If the two fermionic species hop
with a different probability amplitude or, in more colloquial
words, move at different velocities, familiar phenomena for
equal-mass binary mixtures (which mimic spin-1/2 electrons

in solids) can be modified and new physics may take place.
The phase diagram at zero temperature has been worked
out in the one-dimensional case [13] for repulsive and
attractive interactions and for attractive interactions in the
three-dimensional case [14]. In both cases the focus has
been on the broken-symmetry phases (superfluid, charge- and
spin-ordered states), while this work is devoted to the so-called
Mott transition, a transition from a fluid to an insulator driven
by the local repulsion on a lattice populated by as many
fermions as there are lattice sites (half-filled model).

The problem of two kinds of carriers with different
hoppings is also reminiscent of solid-state systems in which
two or more bands with different bandwidths are involved
in the conduction. In this situation, the possibility of an
orbital-selective Mott transition, in which only one (or a
few) band becomes insulating because of the electron-electron
interaction, while another (or others) maintains a metallic
behavior [15–23] has been lively debated.

In this work, we will investigate the fate of such two-
component imbalanced mixtures when the repulsive local
interaction is switched on and gradually increased. Our knowl-
edge about the limiting cases of a completely balanced mixture
(the well-known Hubbard model) and the limit in which one
species is completely localized (i.e., it has zero hopping),
described by the so-called Falicov-Kimball model, already
suggests that the evolution between these two situations will
be far from trivial.

In the balanced case, the mechanism leading to the Mott
transition has been elucidated by means of the dynamical
mean-field theory (DMFT), the same method we use in this
work. Within this approach, when the correlation strength
is increased, the motion of the fermions gradually becomes
more difficult, and the effective hopping is reduced. When the
correlation reaches a critical value in which the hopping is
renormalized to zero, the system becomes a Mott insulator.
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For interactions smaller than the critical value the system
is always a Fermi liquid, a normal fluid with well-defined
long-lived excitations at low energy, like standard metals in
solid-state physics. In the Falicov-Kimball model [24] one of
the fermionic species is not mobile. As a result, the mobile
species too has a nonstandard behavior and, even before the
Mott transition occurs at large interactions, it does not behave
like a normal Fermi liquid. Therefore the evolution between
the two limits should determine a destruction of the Fermi
liquid induced not only by the interaction, but also by the mass
imbalance.

The paper is organized as follows: In Sec. II, we present
the model and we introduce the dynamical mean- field theory
method. In Sec. III, we present the results for the quasiparticle
renormalization and the phase diagram. In Sec. IV, we study
the spectral functions for weak and strong couplings, while
Sec. V is dedicated to concluding remarks.

II. MODEL AND METHODS

We consider two-component fermionic mixtures loaded in
a three-dimensional optical lattice, allowing the two species
to have different masses, or, more generally, different hopping
amplitudes. We will henceforth refer to the two species as
“light” and “heavy.” Under the conditions discussed, e.g.,
in Refs. [1,25,26], fermionic mixtures in optical lattices are
described by a Hubbard model in which the lattice sites
correspond to the minima of the optical potential:

H = −
∑

〈i,j〉,α
tα(c†iαcjα + H.c.) + U

∑
i

ni�nih. (1)

The index α refers to the light (�) and heavy (h) fermionic
species (t� > th). The existence of interspecies Feschbach
resonances between 6Li and 40K has been demonstrated by
Refs. [27,28], and allows for both an attractive or repulsive
interaction with a tunable strength, as assumed in Eq. (1).

In the following, we consider the case in which the number
of fermions equals the number of lattice sites (half-filling) with
a repulsive interaction. Under this condition, a Mott transition
is possible as a function of U . Our focus will be to characterize
how the Mott transition occurs for different values of the
mass imbalance ratio which we define as ζ = (t� − th)/(t� +
th), a quantity which goes from 0 (balanced system) to 1
(Falicov-Kimball limit). We also define an average hopping
t = 1

2 (t� + th).
We focus on fluid states without considering the anti-

ferromagnetic instability which is expected to occur at low
temperatures. Even if our solutions will not be representative
of the actual ground state of the model, they will properly
describe the system at the finite temperatures at which the
experiments can be carried out. We notice in passing that
the results for the attractive model can be obtained directly
by using a particle-hole transformation [14]. Here the Mott
transition is mapped onto a pairing transition in which a
Fermi liquid becomes an insulating state formed by localized
“pairs” [29–31].

As mentioned above, we use DMFT, one of the most
popular modern theoretical approaches designed to treat
correlated fermions on a lattice. One of the main advantages
of DMFT over other approaches is that it does not require any

assumptions on the values of the coupling terms appearing
in the Hamiltonian, and indeed becomes exact both in the
small and in the strong interaction limit for any value of the
imbalance ζ .

A practical implementation of DMFT requires the self-
consistent solution of a quantum impurity model, i.e., a
model of a single-interacting site coupled to a bath that
allows for quantum fluctuations on the correlated site. In
the mean-field spirit the site is representative of any site of
the original lattice. This correspondence is implemented via
a self-consistency condition which contains the information
about the original lattice. More precisely the hybridization
with the bath is parametrized by a frequency-dependent
“Weiss field” Ĝ−1

α (iω) = iω + μ − �α(iω), where �α(iω)
is the hybridization function. The general form of the self-
consistency equation (we write it for simplicity for the normal
fluid phase, but its generalization to the broken-symmetry
phases is straightforward) is

Gα(iω) =
∫

dε
Nα(ε)

iω + μα − ε − �α(iω)
+ �α(iω), (2)

where �α(iω) = G−1
α (iω) − G−1

α (iω) is the local self-energy
and Nα(ε) is the noninteracting density of states.

In this work we use a semicircular density of states Nα(ε) =
1√

2πDα

√
D2

α − ε2 with half-bandwidth Dα , for which Eq. (2)
is greatly simplified and becomes

Gα(iω) = iω + μα − D2
α

4
Gα(iω). (3)

The above density of states has been shown to satisfactorily
reproduce results in three spatial dimensions with the half-
bandwidth related to the nearest-neighbor hopping in three
dimensions by the relation Dα = 6tα . We can obviously define
an average half-bandwidth D = 1

2 (D� + Dh), and observe that
the definition of ζ can be reexpressed in terms of Dα as ζ =
(D� − Dh)/(D� + Dh). For more details on DMFT, we refer
to Ref. [32].

III. MASS RENORMALIZATION

In very general terms, the main effect of the interparticle
interaction U is to reduce the mobility of the fermions. This
phenomenon, which eventually leads to the Mott localization,
is measured by the effective mass of the carriers m∗. Within
DMFT, m∗ is the inverse of the quasiparticle weight defined
by Z−1

α = (1 − d Re[�α(ω)]/dω|ω=0). For a noninteracting
system Zα = 1, while the localization is associated to a
vanishing Zα corresponding to an infinite effective mass. A
small value of Zα is the signature of a highly correlated
quantum fluid. Here, because the two species have different
bare masses and hoppings, a different renormalization is
expected and the outcome is not obvious.

In the case of two different bands in a solid, both carrying up
and down electrons, it is natural that the heavy band, which has
a smaller t is more affected by the interaction than the light
one. Therefore the former will be more renormalized than
the latter, and the ratio between the renormalized hoppings
(Z�t�)/(Zhth) will be larger than that of the bare hoppings
t�/th. This opens the way to a possible orbital-selective Mott
transition in which the renormalized heavy-band hopping goes

013606-2



MOTT TRANSITION OF FERMIONIC MIXTURES WITH . . . PHYSICAL REVIEW A 85, 013606 (2012)

to zero, while the light one remains metallic. The actual
realization of the transition depends on several factors, but the
qualitative behavior of the renormalization factors universally
follows the above expectations [15,17–19].

In principle this effect (heavy fermions being more sensitive
to the correlations) can take place also in our two-component
mixture, but another effect competes with it. When the system
is at half-filling (or close) and the correlation is strong, we
essentially have one fermion on each lattice site, even in the
itinerant state just before a Mott transition. In this situation,
in order to move one light fermion, we are bound to move it
on a site which is already populated by a heavy one (Pauli
principles forbid having two fermions of the same species
on the same site) and then move the heavy one on the site
previously occupied by the moved light fermion. This means
that, in order to move the light fermions, we are forced to
move the heavy ones as well. When we are in this regime,
we expect the renormalization factors Zα to compensate the
hopping imbalance. In other words we expect Z� < Zh, in
contrast with the case of two bands in a solid. Even more
simply, close to the Mott transition, the motion of each carrier
is correlated to that of any other, and there is no energy gain in
having one species moving faster than the other. Our DMFT
analysis will prove that this latter effect is the dominant one.

A. Linearized DMFT

Before presenting the full numerical solution of DMFT
and discussing the quasiparticle properties in detail, we show
analytical results for the critical interaction Uc obtained using
a further approximation which has proved reliable in the
balanced Hubbard model, the linearized DMFT approximation
(LDMFT) [33]. This method approximates the DMFT Weiss
field with a single-pole function and it is expected to be
accurate close to the Mott transition. For details on this
approximation, we refer the reader to the original paper
[33]. Let us summarize here the main results for the mass-
imbalanced case. Within l-DMFT the hybridization function
is simply given by

�α(ω) = V 2
α

ω
, (4)

where Vα is the hybridization between the approximate bath
and the impurity. Close to the critical U = Uc for the Mott
transition we can approximate the quasiparticle weights to
second order in Vα/Uc:

Z� = (
16V�Vh + 16V 2

h + 4V 2
�

)
/U 2

c , (5)

Zh = (
16VhV� + 16V 2

� + 4V 2
h

)
/U 2

c . (6)

For a semicircular DOS the DMFT self-consistency condition
for each species implies [33]

V 2
α = D2

α

4
Zα. (7)

Equations (5)–(7) lead to a quartic equation for V�/Vh:(
D�

Dh

)2(
V�

Vh

+ 2

)2

= 4

(
V�

Vh

)2(
V�

Vh

+ 1

2

)2

, (8)
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FIG. 1. (Color online) Phase diagram of the Mott-insulator–fluid
transition.

which has a single physically relevant solution,

V� = Vh

4

[
D�

Dh

− 1 +
√

1 + 14
D�

Dh

+
(

D�

Dh

)2]
, (9)

implying, using Eq. (7),

Z�

Zh

=D2
h

D2
�

{
1

4

[
D�

Dh

−1+
√

1 + 14
D�

Dh

+
(

D�

Dh

)2]}2

. (10)

Replacing V� from Eq. (9) in Eq. (7) and using D� = D(1 +
ζ ), Dh = D(1 − ζ ), where D = 1/2(D� + Dh) is the average
bandwidth, we obtain the following expression for the critical
interaction:

Uc(ζ ) = D

√
−3ζ 2 + 2

√
4 − 3ζ 2 + 5. (11)

Uc is a monotonically decreasing function of ζ which
continuously connects the result for species of identical mass
Uc(0) = 3D to Uc(1) = 2D, which is the result for the Falicov-
Kimball limit in which one of the species is localized. At fixed
average hopping t , the larger the difference in the bare mass,
the easier it is to localize the system. The l-DMFT result for
the critical interaction as a function of ζ is shown in Fig. 1 as
a dashed line.

B. Full DMFT calculations

We now turn to the full DMFT solution. We use two dif-
ferent impurity solvers: the numerical renormalization group
(NRG) [34], which is particularly accurate for low-energy
features, and the exact diagonalization (ED) [37], an unbiased
method which, however, introduces some approximation to
the spectra being represented as a sum of discrete poles (here
we approximated the bath with seven discrete levels). Both
methods work at zero temperature. In the NRG calculations we
set the discretization parameter 
 = 2 and we keep 500 states
at each NRG iteration. The spectral densities are computed
following Refs. [35,36]. In the ED solution we discretize the
bath using a total number of levels Ns = 9 having verified that
this number is sufficient to obtain converged results.

Figure 2 shows the quasiparticle weight of both species
for two different mass imbalances ζ = 0.4,0.8. The very
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FIG. 2. (Color online) Quasiparticle weight Zα at the Fermi level
as a function of the interaction strength U/D for ζ = (t� − th)/(t� +
th) = 0.4 (upper panel) and 0.8 (lower panel).

good agreement between ED and NRG represents a nontrivial
test for the accuracy of our calculations. Both for the small
imbalance and the strong imbalance cases we find that the
light fermions are more renormalized (i.e., they have a smaller
Z) compared to their heavy partners, even if the effect is
much more pronounced for ζ = 0.8. Our solution therefore
shows that the second physical effect that we described above
prevails already for moderately imbalanced mixtures: When
two species with different mobility are mixed, the interactions
tend to balance their properties. It is, however, important to
underline that the reduction of Z� does not perfectly balance
the renormalized hoppings and the effect is far from being
trivial [as already suggested by Eq. (10)].

Repeating the calculations for different values of ζ we
constructed the phase diagram for the Mott transition from
a fluid to an insulator in the (U,ζ ) plane, which we report in
Fig. 1 together with the analytical formula (11) from l-DMFT.
The numerical result obtained with full DMFT (ED and NRG
give indistinguishable results) are slightly above the l-DMFT
predictions, but follow a very similar behavior, which bridges
between the value for the balanced model U � 3D and that
of the Falicov-Kimball model U = 2D. As we will discuss in
the following, the metallic region below Uc is always a Fermi
liquid except for the Falicov-Kimball limit ζ = 1, where the
Fermi-liquid picture breaks down. Nonetheless, moving along

the ζ axis, there is a continuous reduction of the coherence of
the metallic phase.

IV. SPECTRAL FUNCTIONS

In the previous section we have analyzed how the ef-
fective mass of the two species of fermions evolves as a
function of U and we have drawn a phase diagram in the
imbalance-correlation plane which highlights how the fluid
state turns into a Mott insulator. We now extend our analysis
to the spectral functions, which contain information about the
excitation spectrum for each species. This is a key quantity to
characterize the nature of the itinerant states and the approach
to the insulating state. In particular, we can identify if the
system presents long-lived low-energy excitations and the
characteristic energy scale below which the fermionic motion
is coherent despite the interaction between the species. Most
interestingly, spectral functions are experimentally accessible
in trapped cold atomic systems [38] via radio spectroscopy [39]
or Raman spectroscopy [40,41].

We have therefore computed Aα(ω) = −1/π Im Gα(ω +
i0+) within DMFT using NRG as impurity solver [35,36].
Indeed, this method allows for an arbitrarily fine resolution at
low frequency, where the most interesting physics will take
place. We will show that for all values of ζ the system is
a normal Fermi liquid for U < Uc(ζ ), even if the coherence
energy scale can be very small and, more interestingly, highly
species dependent. Due to the momentum independence of the
self-energy within DMFT, a Fermi-liquid behavior implies that
the spectral function at ω = 0 is pinned to its noninteracting
value [32]. For our model at half-filling, this implies Aα(0) =
2/(πDα) for both species. For this reason, we always plot
1/2πDαAα(ω), a quantity which goes to one for ω = 0 when
the system is a Fermi liquid.

A. Weak-coupling regime

We start our analysis from the weak-coupling regime,
choosing U = 0.5D for the sake of definiteness. For small
values of the imbalance, the system is expected to behave like a
standard Fermi liquid with slightly different renormalizations
for the two species. On the other hand, the large-imbalance
limit can provide nonstandard physics even when the correla-
tion strength is moderate. Therefore we only focus on relatively
large values of ζ from 0.8 to 0.9998.

In the Falicov-Kimball limit corresponding to ζ = 1, the
heavy fermions are frozen in the lattice, whereas the light
fermions can move. This case can be mapped onto a well-
known solid-state problem, the absorption of x-rays in a metal,
for which we refer to Refs. [42,43]. Within this mapping, the
properties of the heavy fermionic species correspond to the
core level of the metal, whose spectral function has a distinctive
power-law behavior at low frequency [44]:

Ah(ω) ∝ |ω|(α−1). (12)

Our DMFT results show that this result still holds over a
given frequency range at finite values of the imbalance and
weak values of the interaction. The accuracy of NRG-DMFT
calculations in the evaluation of the power-law behavior has
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FIG. 3. (Color online) Spectral functions of the heavy fermions
for U = 0.5D and ζ = 0.8,0.98,0.998,0.9998. The ω axis is renor-
malized by Dh and the spectral functions Ah are multiplied by
1/2πDh. The inset shows the same quantities as a function of ω/D.

been demonstrated, e.g., in Ref. [42], through a comparison
with exact results.

Figure 3 shows the spectral functions of the heavy species
for different hopping imbalances ζ = 0.8,0.98,0.998,0.9998.
In this figure, we have rescaled both axes in order to have a
suitable comparison between spectral functions corresponding
to different ζ . The energy ω is renormalized by Dh, while the
spectral density Ah(ω) is multiplied by a factor 1/2πDh. In
our rescaled units, all these spectral functions have a similar
behavior. Starting from high energy, they first enter a region
where they all have the same power-law behavior at an energy
which is larger, the larger ζ . Fitting our data for all ζ gives
the same numerical value for the power-law exponent α − 1 =
−0.94 and we have that Ah = 0.0137(ω/D)−0.94. This value is
remarkably consistent with the exponent found in the Falicov-
Kimball model αFK − 1 = −0.9375. At a lower energy scale
ωp ∼ Dh the spectra eventually deviate from this power-law
behavior and construct a low-energy peak. The reason for this
peak is that the heavy fermions are not completely localized.
At an energy scale smaller than ωp (which corresponds to their
kinetic energy) the heavy fermions behave like well-defined
mobile quasiparticles. Indeed, at ω = 0, the spectral functions
go to the same finite value Ah(ω = 0) = 2/(πDh), which is
the typical result for a Fermi liquid within DMFT.

We now turn to the light species. Figure 4 shows the
spectral functions of the light species for the considered
values of ζ . In order to obtain a suitable comparison, we
again rescale the energy by D�. We remark that, interestingly,
the spectral functions of the light species Al(ω) also have
different behaviors corresponding to the same energy scales
we discussed for the heavy species. In the energy regime
ω > ωp ∼ Dh, all spectral functions collapse onto the same
curve. At these energies, the spectral function of the light
species behaves as if the heavy particles had an infinite mass
and follows the behavior expected for a Falicov-Kimball
system. Hence, all Al(ω) have the same behavior when we
renormalize the energy scale by the hopping parameter. By
contrast, at low energy (ω < ωp), the finite mass of the heavy
particles becomes apparent and the spectral function develops
a peak structure. If we rescale the energy ω by the hopping
of the heavy fermions Dh, the low-energy part of the different
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FIG. 4. (Color online) Spectral functions of the light species for
different values of the mass imbalance ζ = 0.8,0.98,0.998,0.9998.
The energy ω is renormalized by D� and the spectral density Al(ω) is
multiplied by a factor 1/2πD�. The inset shows the very-low energy
part rescaling the energy axis by Dh instead of D� in order to show
the effect of the heavy species on the light one.

spectra again collapse on a single curve which can be nicely
fitted by a Lorentzian (see the inset of Fig. 4). This implies
that the width of these Lorentzian peaks is proportional to
(1 − ζ ) ∝ Dh. This result can be understood as follows: At
low energy, the nature of the correlations between heavy and
light species changes. While at high energies the interaction
between species destroys the coherence of the light species and
generate a cascade of particle-hole excitations in the spectrum
of the heavy species, at low energies they generate a new
Fermi liquid with a renormalized mass for both light and heavy
species. This shows that the typical energy scale ωp ∝ (1 − ζ )
introduced above is also the scale at which the nature of the
correlations between the two species changes.

B. Strongly correlated regime

We now consider the strong-coupling regime with interac-
tion strength U = 2D. We choose this value because it is below
the Mott transition point for any value of ζ < 1, but is also
coincides with the limiting value of Uc in the Falicov-Kimball
limit ζ = 1. Therefore we will always be in a liquid state,
even if increasing ζ will drive the system close to a Mott
transition (see Fig. 1). In order to investigate how the effect
of correlations increases when ζ gets bigger, we span a wide
range of ζ from small to very large imbalance.

Figures 5 and 6 present the spectral densities of the heavy
fermions and light fermions for different values of the mass
imbalance ζ = 0.2,0.4,0.8.0.98,0.99. In order to check the
Fermi-liquid property, we multiply Aα(ω) by 1/2πDα . Again,
the spectral functions behave as a normal Fermi liquid with
1/2πDαAα(0) = 1 for every value of ζ . Unlike the weak-
interaction limit, for large values of U the behavior of these
spectral functions strongly depends on the hopping imbalance
ζ . At high energy ω ∼ U , the physics of both species is
dominated by the interaction that induces the formation of
Hubbard bands with incoherent excitations around ω ± U/2.

The evolution of the light species as a function of ζ shows
the typical approach to a Mott transition, even if the driving
parameter is not the interaction. We are, in fact, moving along a
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horizontal line pointing toward the Mott transition at ζ = 1 in
the phase diagram of Fig. 1. For small ζ = 0.2 a sizable peak
around ω = 0 lives between the Hubbard bands at ω = ±U/2.
When increasing ζ , this peak shrinks (its width is proportional
to Z�t�) and the spectral weight is transferred to the Hubbard
bands. Very close to ζ = 1 the peak becomes narrow and
eventually vanishes in the limit ζ = 1. The main qualitative
difference with respect to the Mott transition obtained in the
balanced model as a function of the interaction strength is that
in the present case there is no separation between the metallic
peak and the Hubbard bands, and the gap opens continuously
at the metal-insulator transition. We remind one that in the
balanced model a precursor of the Mott gap opens already in
the metallic phase, so that the metallic peak is separated from
the Hubbard bands and the gap at the transition point is already
finite. The continuous opening of the gap when ζ increases is,
however, not surprising because in the limit ζ = 1 one has to
recover the Falicov-Kimball model which shows a continuous
opening of the gap at the metal-insulator transition.

An even richer evolution is shown by the heavy species,
in which Mott and Falicov-Kimball physics are entangled.
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FIG. 6. (Color online) Spectral functions of the heavy species for
U = 2D and ζ = 0.2,0.4,0.8,0.98,0.99. All spectral functions are
multiplied by 1/2πDh. In the inset, the same quantities are plotted
on a log-log scale.

At small hopping imbalance (ζ = 0.2), Ah(ω) has the typical
shape of a highly correlated Fermi liquid with a peak at zero
energy flanked by the Hubbard bands. Close to the ζ = 1
limit, the behavior of Ah(ω) resembles that of the non-Fermi
liquid found in the Falicov-Kimball model, except at very
low energies. There, the Fermi-liquid behavior is recovered in
the same way as we discussed in the weak-coupling regime
(compare the insets of Figs. 6 and 3). For large ζ , we
again obtain a power-law behavior in the intermediate-energy
regime. However, at variance with the weak-coupling regime,
the exponent is strongly dependent on ζ . As shown in the
inset of Fig. 6, α decreases when ζ tends to 1. Moreover,
the characteristic energy ωp∗ which determines the return to
Fermi-liquid behavior is no longer a linear function of (1 − ζ ).
We obtain ωp∗ about 10−2D for (1 − ζ ) = 2 × 10−1, 10−4D

for (1 − ζ ) = 2 × 10−2 and 10−8D for (1 − ζ ) = 2 × 10−3.
The scale below which the system behaves as a coherent Fermi
liquid is therefore much smaller than in the weak-interaction
limit. Such a reduction of the coherence scale for the heavy
species can be understood in terms of the Mott physics. When
ζ approaches 1, the system is closer to the Mott transition,
hence the quasiparticle weight Zh is strongly reduced. This
implies that the width of the quasiparticle part ωp∗ must be
proportional to ZhDh, much smaller than Dh. Only at weak
coupling, when Zh is close to 1 and weakly ζ dependent (i.e.,
the mass renormalization effect is negligible), do we obtain
ωp ∼ Dh.

We have shown that the interactions (Mott physics) have
an influence on the power-law behavior of the spectra.
Conversely, at high energy, the power-law behavior of the
spectral function has consequences for the details of the Mott
transition. Indeed, the Hubbard bands in the spectral functions
of the heavy species are not exactly located at ±U/2, as in
the case of light fermions or in the balanced Hubbard model.
For small values of ζ = 0.2,0.4, the power-law behavior is
less pronounced and the Hubbard bands are close to ±U/2.
But for a high hopping asymmetry ζ > 0.8, the power-law
behavior becomes dominant and transfers spectral weight to
low energies. Consequently, the Hubbard bands are pushed
closer to the Fermi level, as shown in Fig. 5.

V. CONCLUSION

We have studied the Mott transition of mixtures of
fermionic species with different masses in a cubic optical
lattice with repulsive on-site interaction. We have shown
the dependence of the critical value of the interaction
Uc for the Mott transition on the hopping imbalance ζ

both via analytical and numerical techniques. Our first re-
sult concerns the mass renormalization observed for both
components in the mixture when they enter the strong-
interaction regime. Interestingly, the light species is more
renormalized than the heavy one, so that the effective
masses induced by the interaction are closer than the bare
masses. The two species tend to move at the same velocity
before a Mott transition localizes them simultaneously. Note
that an experimental study on the effective masses of a
Fermi gas with density imbalance has been reported in
Ref. [46].
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Our second main result is a thorough characterization of the
spectral properties of light and heavy fermions as a function
of the interaction strength and of the hopping imbalance. Here
we observe a variety of deviation from the standard behavior
of correlated Fermi gases which range from heavy fermion
behavior to a power-law dependence on the frequency.

The experimental test of our predictions can be performed
by conventional and successful techniques in the ultracold
atom field such as the radio spectroscopy [39] or the Raman
spectroscopy [40,41].

However, the experimental detection of the highly inco-
herent state we predict is not simple, at least with present
experimental setup. Let us consider for example the behavior
of the heavy species for sizable U shown in Fig. 6. Here the
system is, in principle, a Fermi liquid at zero temperature for
every value of ζ , but, especially at large values of ζ , the Fermi-
liquid behavior is associated with a very narrow quasiparticle
peak which is expected to be rapidly washed out at finite
temperature exceeding the small coherence temperature scale.
Therefore the experimental detection of this peak is very hard
in the present experimental situation, where the temperature
is hardly lower than a sizable fraction of the Fermi energy
T/TF � 0.15.

However, the fingerprints of our anomalous state can be
observed even when the temperature washes out the narrow
coherent peak since the spectral function will be completely
different from a standard Fermi liquid. In particular, the
spectral function will show a dip at zero energy corresponding
to an incipient localization of the carriers even if the system is
not fully gapped, a feature which can be reasonably observed

in present experiments. A further obstacle to the detection of
the incoherent metallic state comes from the competition with
the antiferromagnetic state. At low temperature the system
is expected to antiferromagnetically order at least in bipartite
lattice without frustration. Nevertheless, the physics associated
to the Mott localization of the fermions can still be observed at
finite temperatures above the Néel temperature, as it has been
demonstrated in the field of solid state, where, for example,
the finite temperature properties of V2O3 have been shown to
follow the behavior predicted by DMFT once the temperature
exceeds the Néel temperature [45].

We finally note that an ideal candidate for an experimental
check, the 6Li/40K mixture, has been realized with well-
controllable interspecies Feschbach resonance [38]. A simple
numerical estimate shows that the hopping imbalance ζ can
be varied over a large range by changing the lattice depth
V0/ER (ζ 	 1 at small V0/ER and ζ � 0.9 for V0/ER � 15),
realizing the regimes of ζ where we identified the most striking
anomalies both in the quasiparticle renormalization and in the
spectral properties.
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Nature (London) 415, 39 (2002).
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