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Adipose tissue plays a central role in the control of energy
balance as well as in the maintenance of metabolic
homeostasis. It was not until recently that the first evidences
of the role of heat shock protein (Hsp) 90 and high molecular
weight immunophilin FKBP51 have been described in the
process of adipocyte differentiation. Recent reports describe
their role in the regulation of PPARg, a key transcription factor
in the control of adipogenesis and the maintenance of the
adipocyte phenotype. In addition, novel roles have been
uncovered for FKBP51 in the organization of the architecture
of the nucleus through its participation in the reorganization
of the nuclear lamina. Therefore, the aim of this review is to
integrate and discuss the recent advances in the field, with
special emphasis on the roles of Hsp90 and FKBP51 in the
process of adipocyte differentiation.

Introduction

There is no doubt that adipose tissue plays a central role not
only in the regulation of energy balance and lipid homeostasis
but also in the homeostasis of whole body metabolism through
the release of active molecules, generically called adipokines that
signal to key organs such as the brain, liver, skeletal muscle, and
the immune system.1-3 Therefore, the adipose tissue is not just a
mere deposit of lipids but an active endocrine organ. Different
aspects of adipose tissue functions appear to be modulated by the
location of the adipose depot (visceral vs. subcutaneous vs. bone
marrow);4,5 by the size of the average adipocyte in the tissue;6 by
cross-talks between adipocytes and other cell types present in this
tissue, such as macrophages;7,8 as well as by adipocyte metabo-
lism of glucose9 and corticosteroids.10-12 In obese individuals,

the secretion of adipokines is deregulated13 and adipose tissue is
generally hypertrophic and infiltrated by a higher number of
macrophages compared to normal tissue,7 events that correlate
with measures of adiposity and insulin resistance,14-16 and the
establishment of a state of chronic inflammation.13 However, a
very recent report shows that up to a certain level, proinflamma-
tory signaling is necessary in the adipocyte for the adequate
remodeling and expansion of the adipose tissue.17 Conversely,
lipodystrophy, a disorder characterized by selective total or partial
loss of body fat, is also accompanied by similar metabolic conse-
quences as seen in obesity, including insulin resistance, dyslipide-
mia, hepatic and myocellular steatosis, and increased risk for
diabetes and atherosclerosis,18,19 reinforcing the notion that adi-
pose tissue plays a key role in the control of whole body metabo-
lism homeostasis.

Great effort has been done to uncover the factors that control
not only adipogenesis but also those that exert control in the
function of the adipose cell itself. It is well established that gluco-
corticoids and mineralocorticoids are key regulators not only of
fat distribution, but also of adipocyte differentiation,20-24 the
induction of lipogenic genes and lypolisis in adipocytes25,26 and
are potent inhibitors of adipose tissue inflammatory response.27

Corticosteroids exert their action by binding to their receptors,
the glucocorticoid- and mineralocorticoid receptor (GR and
MR, respectively) that are present in the cytoplasm (Fig. 1C).
For proper steroid hormone action, GR and MR need to be part
of a heterocomplex with the 90-kDa and 70-kDa heat shock pro-
teins, Hsp90 and Hsp70, respectively, the acidic protein p23,
and a protein that belongs to the conserved and large family
known as immunophilins (IMMs).28,29 Among the members of
the IMMs family, FK506 binding protein (FKBP)52, FKBP51,
Cyclophilin (CyP) 40, and 3 IMM-like proteins, protein phos-
phatase 5 (PP5), hepatitis virus B X-associated protein 2 /AhR-
associated protein 9 (XAP2/ARA9), and WAF-1/CIP1 stabilizing
protein (WISp) 39 have been recovered to date in steroid recep-
tor�Hsp90 complexes.28,30 A great body of evidence sustains the

*Correspondence to: Graciela Piwien-Pilipuk; Email: gpiwien@conicet.gov.ar
Submitted: 02/05/2015; Revised: 04/30/2015; Accepted: 05/01/2015
http://dx.doi.org/10.1080/21623945.2015.1049401

www.tandfonline.com 239Adipocyte

Adipocyte 4:4, 239--247; October/November/December 2015; © 2015 Taylor & Francis Group, LLC
REVIEW



role of glucocorticoids and mineralocorticoids actions through
their binding to GR and MR in adipose tissue biology.11,12 How-
ever, it was not until recently that studies started to appear dem-
onstrating the role of the chaperones and co-chaperones of the
nuclear receptors (NRs) in the process of adipogenesis, and the
aim of this review is to discuss these new findings.

Hsp90 participates in the control of PPARg
Hsp90 accounts for 1–2% of the total soluble proteins in rest-

ing cells, »6–7% in cancer cells and up to 10% in stressed
cells.31–33 There are 2 major cytoplasmic isoforms, Hsp90a
(inducible form) and Hsp90b (constitutive form); Hsp90N,
which is associated with cellular transformation; and Hsp90 ana-
logs that include Grp94 (94-kDa glucose-regulated protein) in
the endoplasmic reticulum and Hsp75/TRAP1 (tumor necrosis
factor-associated protein1) in the mitochondrial matrix.34,35

Genome analysis revealed that the human Hsp90 family includes
17 genes34,36. In most cells, Hsp90a expression is lower com-
pared to Hsp90b, and its inducible transcription is tightly regu-
lated by the 5�upstream promoter sequences containing several
heat shock elements (HSE).34 The heat shock responsive tran-
scription factor HSF binds to HSE to control Hsp90 expres-
sion.34,37 In addition, members of the signal transducers and
activators of transcription family, STAT1 and STAT3, in com-
plex with HSF1 also participate in the control of the heat shock
induction of Hsp90a gene transcription.38 In regard to adipo-
genesis, we have recently shown that no change is observed in the
protein expression level of Hsp90 during the differentiation of
3T3-L1 preadipocytes.39 It remains to be explored whether there
are differences in the expression of the different Hsp90s during
adipogenesis and whether they are deregulated in obesity due to
the functional importance of this chaperone in response to cell
stress.

Hsp90 is a molecular chaperone that associates with numerous
substrate proteins called “clients” in order to modulate their fold-
ing and function, among them protein kinases and transcription
factors, including GR and MR already mentioned.40-42 In this
manner, Hsp90 controls metastable proteins that are regulatory
hubs in biological networks. Peroxisome proliferator-activated
receptors (PPARs) are members of the NR superfamily of ligand-
dependent transcription factors. Three subtypes of this receptor
have been found, PPARa, -b/d and -g, controlling target genes
involved in cell growth, differentiation and apoptosis in a variety
of cells. Of these NRs, PPARg has been proven to be a master
regulator of adipogenesis.43,44 PPARg as well as PPARb/d inter-
act with Hsp90, albeit to a lesser extent than PPARa.45 Hsp90
inhibition by geldanamycin leads to the increase of PPARa and
–b/d transcriptional capacity, being proposed that Hsp90 is a
repressor of both transcription factors.45 PPARa�Hsp90 com-
plexes interact with XAP2, and XAP2 appears to function as a
repressor based on the observation that expression of XAP2
inhibits PPARa transcriptional capacity in reporter gene assays.46

As already mentioned, PPARg is an Hsp90 client protein.45,47

Inhibition of Hsp90 by treatment of 3T3-L1 cells with geldana-
mycin or its analogs at early time points of the adipogenic process
has been shown to prevent the cells from differentiating

properly.47,48 In fact, disruption of the PPARg�Hsp90 complex
by geldanamycin targets PPARg to degradation by the protea-
some, being thus proposed that the anti-adipogenic effect of gel-
danamycin may result from the destabilization of PPARg
(Fig. 1D).47 Since Hsp90 is indispensable for proper GR and
MR function, inhibition of Hsp90 also inhibits proper adipogen-
esis by interfering with GR and MR actions.48 Hsp90 is essential
for a wide spectrum of cellular processes such as protein folding,
protein degradation, and signal transduction cascades,40,49 hav-
ing been recently shown that Hsp90 also participates in the main-
tenance of RNA polymerase II pausing, function required for
adequate gene expression when cells have to respond to environ-
mental stimuli.50 Therefore, the blockade of the adipogenic pro-
gram upon Hsp90 inhibition could be the resultant of a wider
disruption of signaling pathways as well as nuclear events depen-
dent on Hsp90 surveillance that need to be further explored.

High molecular weight immunophilins in adipocyte
differentiation

IMMs comprise a family of proteins classified by their ability
to bind immunosuppressant drugs in which cyclophilins bind
cyclosporine A, whereas FKBPs bind FK506. The high molecular
weight IMMs FKBP51 and FKBP52 do not play a role in immu-
nosuppression, but rather have been related to steroid receptor
regulation.51 The FKBPs are modular proteins that possess
FKBP12-like peptidyL-prolyl isomerase (PPIase) domains 1 and
2 (FK1 and FK2) and a tetratricopeptide repeat motif (TPR).
The FK1 domain is required for the binding of the immunosup-
pressive drug FK506, it confers PPIase activity, and it is also the
primary domain required for steroid hormone receptor regula-
tion.51–53 The FK2 domain links the FK1 with the TPR domain,
lacks detectable PPIase activity and is required in FKBP51 but
not in FKBP52 for their interaction with the progesterone recep-
tor heterocomplexes.54 The TPR domain contains sequences of
34 amino acids repeated in tandem through which FKBPs inter-
act with Hsp90. FKBP51 and FKBP52 share 60% identity and
70% similarity; however the former has been so far mainly
reported to be a negative regulator of steroid hormone receptors
while the latter is a positive one.51,53,55-58 When differentiation
of 3T3-L1 preadipocytes is induced, it was reported that
FKBP51 had a transient expression at very early time points (day
1 up to day 4 of differentiation) and then its expression decreased
to undetectable protein levels.59 More recent studies demonstrate
that FKBP51 and FKBP52 exhibit opposite changes in their level
of expression during the process of adipocyte differentiation.
FKBP51 expression progressively increases whereas FKBP52
decreases as adipogenesis proceeds.39,60 The differences observed
between these studies may possibly depend on the development
of highly sensitive and specific antibodies now available for the
study of these IMMs. Importantly, the changes in level of expres-
sion of both IMMs during 3T3-L1 preadipocyte differentiation
are in agreement with the high expression of FKBP51 and low
levels of FKBP52 in white adipose tissue (J.T. and GPP unpub-
lished results, and61. The organization of the Fkbp51 and Fkbp52
genes has been described, showing that hormone regulatory ele-
ments lie within intronic sequences distal to the promoter.62-64
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Expression of FKBP51 is strongly enhanced by glucocorti-
coids,65-67 progestins,68,69 and androgens,70,71 while FKBP52
mRNA increases in response to estrogen and heat stress.72,73 It
remains to be further explored how their expression is modulated
in the adipose tissue, and whether they are differentially expressed
in pathophysiological conditions like metabolic syndrome or
obesity.

FKBP51 shuttles from mitochondria to the nucleus
in a PKA-dependent manner at the onset of adipocyte
differentiation

FKBP51 is present in the cytoplasm and mitochondria,74 and
upon oxidative stress the mitochondrial fraction of this IMM
rapidly translocates to the nucleus protecting cells from apopto-
sis.74 When 3T3-L1 preadipocytes are induced to differentiate,
FKBP51 also rapidly and transiently translocates from mitochon-
dria to the nucleus.39 Adipogenesis is controlled by many signal-
ing pathways that coordinately modulate the sequential
activation of transcription factors required for cells to differenti-
ate.75 We found that IBMX (3-isobutyl-1-methylxanthine), a
phosphodiesterase inhibitor that increases intracellular cAMP,
and to a lesser extent DEXA, are responsible for the rapid relocal-
ization of mitochondrial FKBP51 to the nucleus (Fig. 1B).39

Several reports have shown that the second messenger cAMP is
associated with immediate events of adipogenesis by the classic
PKA signaling pathway, as well as by the non-classical pathway
of the exchange proteins activated by cAMP (EPAC), which
function as guanine nucleotide exchange factor for the Ras-like
small GTPases Rap1 and Rap2.76-79 FKBP51 nuclear transloca-
tion depends on PKA but not on EPAC pathway activation,
demonstrating a differential role of PKA and EPAC/Rap during
adipogenesis.39

FKBP51 interacts with PKA-ca as shown by immunoprecipi-
tation assays, and when PKA signaling is blocked dramatic
changes in the electrophoretic pattern of migration of FKBP51
are observed, supporting the notion that FKBP51 is a PKA sub-
strate.39 By using NetPhosk 1.0, we found that Serine 312
located in the TPR domain of FKBP51, is a candidate PKA
phospho-acceptor site. The TPR domain confers to the IMM the
ability to bind Hsp90 through the EEVD motif present in the
extreme C terminus of the chaperone. FKBP51 localization in
mitochondria depends on TPR integrity, since FKBP51 TPR-
deficient mutants are constitutively nuclear.74 Therefore, changes
in phosphorylation of Serine 312 present in the TPR domain of
FKBP51 may possibly regulate its interaction with Hsp90 and
consequently its subcellular localization, possibility that is under

Figure 1. Model of Hsp90 and FKBP51 functions in adipogenesis. The adipogenic media contains insulin, 3-isobutyl-1-methylxanthine (IBMX), dexameth-
asone (DEXA), and is supplemented with fetal bovine serum that contains aldosterone (ALDO) among many other hormones. (A) Insulin activates many
signaling pathways, among them Akt that phosphorylates GATA2 and FOXO-1 and -2, transcription factors that are excluded from the nucleus. (B) IBMX
increases cAMP level leading to PKA activation that triggers the translocation of FKBP51 from mitochondria to the nucleus, possibly upon changes in its
phosphorylation status. FKBP51 interacts with lamin B in the NL (nuclear lamina) modulating NL reorganization at the onset of adipogenesis. In addition,
FKBP51 regulates GR-, MR- and PPARg-target genes, and possibly other genes. (C) Upon DEXA and ALDO binding to GR and/or MR, FKBP51 is exchanged
for FKBP52 facilitating the retrograde movement of the NRs toward the nucleus where they bind to target genes and control their expression. (D) Hsp90
protects PPARg from degradation. Gelda: geldanamycin, an Hsp90 inhibitor; NE: nuclear envelope.
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current investigation. Interestingly, when the interaction of
FKBP51 with Hsp90 is disrupted by Hsp90 inhibitors such as
radicicol, FKBP51 is no longer in mitochondria and concentrates
in the nucleus.74 As mentioned already, geldanamycin and radici-
col inhibit 3T3-L1 preadipocytes differentiation;47,48 therefore it
is possible that the Hsp90 inhibitors not only affect PPARg, GR
and MR function, but they may also alter the dynamic mito-
chondrial-nuclear shuttling of FKBP51 at the onset of the differ-
entiation process required for adipogenesis to proceed, resulting
in the inhibition of adipogenesis.

During the past few years, several studies revealed a dramatic
and dynamic modulation of the chromatin landscape during the
first hours of adipocyte differentiation.80-84 These changes coin-
cide with cooperative binding of early adipogenic transcription
factors, including GR, to enhancers and promoters of many
genes.82,83 However, genes such as PPARg are not transcription-
ally activated until later in adipogenesis, and it has been proposed
that the activation of additional factors and/or signals is required
for their later activation.83 It can be speculated that, in spite of
chromatin relaxation and the increased binding of transcription
factors at the early stages of adipogenesis, gene expression is kept
controlled by factors that restrain the transcriptional capacity of
complexes already bound to those sites. When adipogenesis is
triggered, FKBP51 translocates to the nucleus and its interaction
with GR progressively increases, rendering a GR less transcrip-
tionally active.39 It is possible that the presence of FKBP51 in
the nucleus at the onset of adipogenesis may be critical for the
control not only of GR but also for MR. It has recently been
shown FKBP51 impairs both the nuclear translocation rate of
NF-kB and its transcriptional activity.58 Interestingly, NF-kB
subunits p65 (RelA), p68 (RelB) and IkB increase their level of
expression during the process of adipocyte differentiation.85 It
was reported that endotoxin sensitivity of the classical NF-kB
pathway is substantially delayed and attenuated despite increased
overall inflammatory response in adipocytes.85 Thus, we hypoth-
esize that FKBP51, whose level of expression increases as adipo-
genesis proceeds, may also modulate NF-kB pathway in mature
adipocytes. Future studies will demonstrate the existence of other
transcription factors that need to be repressed or activated by
nuclear FKBP51, at a step of the adipogenic program in which
high level of chromatin remodeling takes place and transcription
needs to be kept controlled.

Role of FKBP51 in the control of PPARg
It has been recently demonstrated that FKBP51 interacts with

over-expressed PPARg in COS7 cells, and reporter gene assays
shows that FKBP51 is a positive regulator of this NR.60 PPARg
like other NRs can be regulated by changes in its phosphorylation
status. MAPK ERK1/2, and JNK are able to phosphorylate
PPARg at Serine 112 reducing its transcriptional capacity.86-88

Furthermore, inhibition of p38MAPK increases PPARg expres-
sion and its transcriptional activity.89 GR is also a substrate of
p38MAPK, post-translational modification that increases GR
transcriptional capacity.90 Then, MAPK–dependent phosphory-
lation of PPARg and GR has opposite effects on the transcrip-
tional capacities of these NRs: PPARg transactivation decreases

while GR transactivation increases. FKBP51 is a scaffold protein
for the interaction between the protein kinase Akt and the PH
domain leucine-rich repeat protein phosphatase (PHLPP) that
specifically dephosphorylates the hydrophobic motif of Akt (Ser-
ine 473 in Akt1), thus inhibiting the kinase activity
(Fig. 1A).91 Stechschulte et al. showed that in mouse embryonic
fibroblasts null for FKBP51 (MEF-51KO) elevated Akt activity
leads to increased activation of p38MAPK that is able to phos-
phorylate GR and PPARg, promoting transcriptional activation
of the former and inhibition of the latter.60 Moreover, they show
that knock down of FKBP51 in 3T3-L1 preadipocytes makes
cells resistant to differentiation and MEF-51KO have impaired
differentiation.60 The authors proposed a model, in which
FKBP51 restrains Akt activation by scaffolding PHLPP, favoring
the inactive state of p38MAPK that prevents PPARg phosphory-
lation and keeps this NR in a transcriptionally active state to
induce the expression of the adipogenic genes.60 While the role
of p38MAPK in adipogenesis is still rather controversial,89,92-94

several lines of evidence demonstrate that Akt is required for
proper adipogenesis. Akt is a key component of insulin signaling
and is required for PPARg expression.75,95 Over-expression of
constitutively active Akt induces spontaneous differentiation of
3T3-L1 preadipocytes,96 and mice null for Akt1 and Akt2 have
impaired adipogenesis.95 Akt is responsible for phosphorylation
and nuclear exclusion of anti-adipogenic factors such as the fork-
head proteins FOXO-197 and FOXO-2,98 and the transcription
factor GATA2.99 Therefore, proper activation of Akt is required
for normal adipogenesis and it could be speculated that Akt inhi-
bition by the FKBP51-PHLPP could have a negative effect on
this process. In line with this possibility, Toneatto et al. showed
that knock down of FKBP51 favors the process of adipogenesis
and its overexpression blocks 3T3-L1 preadipocyte differentia-
tion, based on the fact that this IMM also restrains the adipo-
genic potential of GR,39 and possibly the pro-adipogenic action
of MR. It is possible that the discrepancies between these studies
could result, in part, from differences in the protocol of adipo-
genesis used in each case, as well as differences in the level of
expression of FKBP51 (knock out vs. knock down), thus more
research work is required to shed light on this conundrum.

FKBP51 and the nuclear lamina reorganization at the onset
of adipogenesis

The nucleus is organized in highly dynamic nuclear compart-
ments which correspond to the nuclear lamina that lies below the
nuclear envelope, the nuclear matrix or nucleoskeleton, the chro-
mosome territories that comprise the volume of the nucleus in
interphase occupied by each chromosome, the interchromatin
domain, and nuclear bodies that include the nucleolus, spliceo-
somes or nuclear speckles, paraspeckles, the Cajal bodies, the pro-
myelocytic (PML) bodies, and transcription factories, among
others.100-103 A great body of evidence demonstrates that
dynamic changes in the nuclear compartments take place during
the process of cell differentiation, including adipogenesis.104-107

It has been shown that the repositioning of genes from repressive
to transcriptionally favorable nuclear compartments and
vice versa plays a key role for their proper expression or
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repression.108-115 In other words, we need to understand how the
architecture of the nucleus is delineated to uncover how the cell
modifies the pattern of gene expression required for the acquisi-
tion and maintenance of the final phenotype.

The nuclear lamina (NL) is a filamentous protein mesh-work
that lines the nucleoplasmic surface of the nuclear envelope (NE)
interacting with inner nuclear membrane proteins and the
nuclear pores116,117 (reviewed in118,119.) It consists of a poly-
meric assembly of lamins, members of the type V intermediate
filament protein family120 that correspond to the A-type (LA and
LC) and the B-type lamins (LB1 and LB2), respectively. LA and
LC are derived from a single gene by alternative splicing and are
expressed only in differentiated cells. The NL is thought to pro-
vide a structural framework for the NE contributing to the size,
shape and mechanical stability of the nucleus. It also provides
anchoring site for interphase chromosomes at the nuclear periph-
ery, and plays important roles in DNA replication and repair,
RNA polymerase II transcription, and the epigenetic control of
chromatin remodeling.121,122 The functional importance of the
NL is demonstrated by the fact mutations in the lamin A/C
(LMNA) gene or in the FACE-1 gene that affects the correct post-
translational processing of prelamin A are responsible for a group
of genetic diseases known as laminopathies.122-124 It has been
proposed that mutations that affect lamins might disrupt their
binding to yet unidentified tissue-specific partner proteins to gen-
erate pathology in a particular tissue (reviewed in125.) Laminopa-
thies affecting the adipose tissue are characterized by
lipodystrophies with selective and variable loss of adipose tissue,
accompanied by metabolic complications including insulin resis-
tance, type 2 diabetes, hypertriglyceridemia, and liver steatosis.
These laminopathies include Dunnigan-type familial partial lipo-
dystrophy and partial lipodystrophy with mandibuloacral dyspla-
sia, both associated with mutations in LMNA gene; congenital
generalized lipodystrophy, also known as Berardinelli-Seip syn-
drome; and some cases of Barraquer-Simons syndrome with
acquired partial lipodystrophy associated with mutations in
lamin B2.126 Lipodystrophy can also be acquired, as occurs with
the lipodystrophy associated with the use of anti-viral drugs in
patients infected with human immunodeficiency virus.127

Analysis of the expression level of lamin A and the NE trans-
membrane protein emerin at the onset of differentiation of
3T3F442A preadipocytes showed that while lamin A expression
progressively decreases, emerin expression increases.128 Emerin
participates in the control of b-catenin129 whose sustained activa-
tion inhibits the process of adipogenesis.130 Increased expression
of emerin could control the efficient redistribution of b-catenin
from the nucleus to the cytoplasm facilitating its proteasomal deg-
radation and consequently allowing the process of adipocyte dif-
ferentiation to proceed.128 Interestingly, it was demonstrated that
the NL is fragmented at the early stages of adipogenesis, event that
is accompanied by the loss not only of lamin A, but also C, B1,
and emerin at the nuclear rim.131 Later on upon maturation of the
adipose cell (day 18 post-induction of adipogenesis) lamins A, C
and B1 increase at the nuclear rim independently of the low levels
of lamins A/C protein.131 In contrast, lamin B2 remained con-
stant at the NL throughout the process of adipogenesis.131 Since

the NL participates in the control of many aspects of nuclear
events as already described, it was proposed that the decreased
presence of most lamin subtypes at the nuclear rim and the frag-
mentation of the NL results in enhanced plasticity of the nucleus
as adipogenesis proceeds.131 FKBP51 translocates from mito-
chondria to the nucleus at the onset of adipogenesis and, not only
co-localizes with lamin B in the fragmented pattern of the lamina,
but also interacts with lamin B.39 Interestingly, PKA-ca also trans-
locates to the nucleus, and concentrates in the NL possibly
through its interaction with FKBP51.39 Several phosphorylation
sites, including those for the cyclin B1-(CCNB1)-CDC2 com-
plex, PKC and PKA are important in nuclear lamina disassem-
bly.132,133 Therefore, we propose that enrichment of PKA-ca in
the NL may facilitate its reorganization by phosphorylation of
lamins during the process of adipogenesis. It can be speculated
that the accumulation of PKA-ca in the NL may be also involved
in the control of gene expression at the onset of adipogenesis possi-
bly by regulating the phosphorylation of transcription factors
enriched in this nuclear compartment as shown for the control of
AP-1 transcriptional activity upon the sequestration of c-fos in the
NL in an ERK1/2 dependent manner.134

FKBP51 and FKBP51 knock out animal models
To uncover the functional importance of these IMM, knock-

out mice were generated.51 Fkbp51-deficient mice were initially
observed to display no overt phenotype, but these mice are less
vulnerable to the detrimental effects of stress.135-137 Interestingly,
Fkbp51 knockout mice showed reduced body weight compared
to wild type littermates; however, upon expose to chronic stress,
these animals exhibited a significant increase in body weight,137

results that suggest that the process of adipogenesis might not be
impaired in the absence of FKBP51. It has been recently reported
by Balsevich et al. a differential spatial pattern of Fkbp51 gene
induction in different areas of the brain dependent on either diet
or stress conditions. In mice exposed to high-fat diet, Fkbp51 is
induced in the ventromedial hypothalamic nuclei, in accordance
with the hypothalamus being involved in the control of energy
balance.138 In contrast, under conditions of chronic stress, the
expression of this IMM increases in the hippocampus, area of the
brain involved in the response to stress.138 Inasmuch as environ-
mental stress is another risk factor for the development of obe-
sity,139 future studies are needed to uncover the role of FKBP51
in different areas of the brain, whether this IMM plays a role in
the control of appetite and energy balance, and whether FKBP51
is implicated in the relationship between control of energy, meta-
bolic homeostasis and stress response. On the other hand,
Fkbp52-deficient male mice display phenotypes related to partial
androgen insensitivity syndrome.140,141 Heterozygous Fkbp52-
deficient mice show increased susceptibility to high fat-diet-
induced hyperglycemia and hyperinsulinemia that correlates with
reduced insulin clearance, hepatic steatosis and glucocorticoid
resistance.61 Fkbp51-Fkbp52 double knockout results in embry-
onic lethality,51 indicating that these IMMs have some physio-
logical functional redundancies that need to be uncovered by
tissue-specific conditional double knockouts.
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Final remarks
Undoubtedly during the last decade, great progress has been

accomplished in the understanding of the complex biology of the
adipose tissue, the pathophysiology of obesity and its role in met-
abolic syndrome. However, many aspects of the physiology of
the adipocyte need to be explored further in depth, including
how chaperones, such as Hsp90 and Hsp70, and co-chaperones,
such as FKBP51 and FKBP52, may directly or indirectly coordi-
nate the action of signaling pathways and transcription factor
complexes function. Their study will not only enrich our basic
knowledge but also will possibly be crucial for the design of new
therapeutic strategies for the treatment of obesity, lipodystrophies
and metabolic problems associated with these pathologies.
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