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Sweetening the hallmarks of cancer: Galectins as
multifunctional mediators of tumor progression
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Hanahan and Weinberg have proposed 10 organizing principles that enable growth and metastatic dissemination of cancer
cells. These distinctive and complementary capabilities, defined as the “hallmarks of cancer,” include the ability of tumor cells
and their microenvironment to sustain proliferative signaling, evade growth suppressors, resist cell death, promote
replicative immortality, induce angiogenesis, support invasion and metastasis, reprogram energy metabolism, induce genomic
instability and inflammation, and trigger evasion of immune responses. These common features are hierarchically regulated
through different mechanisms, including those involving glycosylation-dependent programs that influence the biological and
clinical impact of each hallmark. Galectins, an evolutionarily conserved family of glycan-binding proteins, have broad influence
in tumor progression by rewiring intracellular and extracellular circuits either in cancer or stromal cells, including immune cells,
endothelial cells, and fibroblasts. In this review, we dissect the role of galectins in shaping cellular circuitries governing each
hallmark of tumors, illustrating relevant examples and highlighting novel opportunities for treating human cancer.

Introduction
The hallmarks of cancer, first introduced in 2000 and later
updated in 2011 (Hanahan and Weinberg, 2000; 2011), have
proved seminal in our understanding of cancer’s common
traits, aiding in rational drug development and combinations
to treat cancer. Each hallmark constitutes a well-established
process that a normal cell should undergo to enable tumor
growth, survival, invasion, and metastasis. They represent a
broad range of features regulated by a plethora of genetic,
epigenetic, and posttranslational modifications, including
phosphorylation, sumoylation, and glycosylation, which to-
gether contribute to tumorigenesis and tumor progression
(Hanahan and Weinberg, 2011).

In the postgenomic era, a major paradigm shift emerged in-
volving the identification of relevant glycosylation changes oc-
curring during tumor progression (Pinho and Reis, 2015). These
involve modifications in terminal sialylation, fucosylation,
O-glycan truncation, and N- and O-linked glycan branching
(Cagnoni et al., 2016). These changes have provided unique
signatures that are being capitalized for the discovery of clinical
biomarkers and the design of new therapeutic strategies. The
information encrypted by the glycome is deciphered by different
families of glycan-binding proteins or lectins, including sialic
acid–binding Ig-like lectins (siglecs), C-type lectin receptors, and

galectins (Rabinovich and Toscano, 2009). Among them, ga-
lectins gained considerable interest, given both their various
roles in cancer progression and their prognostic and therapeutic
implications (Liu and Rabinovich, 2005). Recently, galectins
have attracted particular attention as tumor and stromal cells
express large amounts of these proteins, which control the
magnitude and nature of antitumor responses by sensing gly-
cosylation changes in immune cells (Méndez-Huergo et al.,
2017). Based on their structure, galectins are classified into three
different families: (a) “prototype” galectins (Gal1, Gal2, Gal5,
Gal7, Gal10, Gal11, Gal13, Gal14, and Gal15), which display one
carbohydrate-recognition domain (CRD) that can dimerize; (b)
“tandem-repeat” galectins (Gal4, Gal6, Gal8, Gal9, and Gal12),
which contain two homologous CRDs in tandem; and (c) the
chimera-type Gal3, which uniquely displays a CRD connected to
a nonlectin N-terminal region responsible for oligomerization
(Méndez-Huergo et al., 2017). This review discusses the role of
galectins as “on-and-off” switchers of different hallmarks of
cancer, illustrating relevant examples of their contribution to
tumor progression (Fig. 1).

Sustaining proliferative signaling
A distinctive feature of cancer cells is their ability to maintain
uncontrolled cell proliferation (Hanahan and Weinberg, 2011).
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Glycan modifications, as a result of transcriptional or epigenetic
regulation of glycan-modifying enzymes (Munkley and Elliott,
2016), as well as altered expression of glycan-binding pro-
teins (Liu and Rabinovich, 2005), may influence proliferative
signaling.

Mutations of the RAS gene are one of the most common traits
in human cancer. The HRAS, KRAS, and NRAS proteins are
constitutively active in cancer cells, promoting continuous
proliferation in a variety of tumors (Sanchez-Vega et al., 2018).
Both Gal1 and Gal3 can interact with oncogenic RAS proteins on
the cell surface, inducing RAS membrane anchorage and acti-
vation and influencing tumor cell proliferation (Paz et al., 2001;
Elad-Sfadia et al., 2004). Interestingly, in lung cancer, Gal1
interacts with RAS, promoting tumor progression and chemo-
resistance by up-regulating p38, ERK, and cyclooxygenase-2

(Chung et al., 2012) pathways. On the other hand, evidence in-
dicates that Gal3 promotes tumorigenesis, at least in part, by
sustaining KRAS activation. Transfection of Gal3 cDNA into
pancreatic ductal adenocarcinoma cells induced augmented RAS
activation and amplified downstream signaling events (Song
et al., 2012). Moreover, in breast cancer, Gal3 directly activates
KRAS, favoring a molecular switch from NRAS to KRAS
(Shalom-Feuerstein et al., 2005). Also, in anaplastic thyroid
carcinoma, Gal3 serves as a reliable marker of aggressiveness
and a scaffold of KRAS protein. In fact, a novel drug combi-
nation using the RAS inhibitor salirasib and a modified citrus
pectin, which attenuates Gal3 activity, highlights the relevance
of KRAS and Gal3 as potential synergistic targets for treating
those tumors (Menachem et al., 2015). Unlike Gal1, which
augments Ras activation of ERK1/2 at the expense of PI3-K,

Figure 1. Role of individual galectins in the hallmarks of cancer. This adapted figure from Hanahan andWeinberg’s iconic review “The hallmarks of cancer:
The next generation” (Hanahan andWeinberg, 2011) depicts the impact of different galectin family members on different cancer hallmarks. Galectins can either
promote (green) or impair (red) different cellular and molecular processes leading to tumor growth and progression. Most work has focused on the role of
galectins on selected cancer hallmarks such as avoiding immune responses, promoting angiogenesis, and sustaining proliferative signaling, while their influence
on other hallmarks has only been partially explored. Fig. 1 is adapted with permission from Cell.
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Gal3/KRAS–guanosine triphosphate interactions attenuate ERK
signaling (Elad-Sfadia et al., 2004), highlighting distinct effects
of these lectins during oncogenesis. Further molecular analysis
revealed a crucial role of Gal3 in KRAS dependence. Through
direct association to integrin αvβ3, Gal3 favors KRAS addiction by
enabling multiple functions of KRAS in anchorage-independent
cells, including the formation of macropinosomes that promote
nutrient uptake and control redox balance in lung and pancreatic
patient-derived tumor xenografts (Seguin et al., 2017). Addi-
tionally, a tumor-promoting effect involving Gal3 and Wnt/
β-catenin–dependent pathway has been described in squamous
cell tongue carcinoma (Wang et al., 2013), implying the activity
of this lectin in multiple signaling pathways.

In contrast to the stimulatory roles of Gal1 and Gal3, Gal7
showed a marked suppressive effect on tumor cell proliferation.
Ectopic expression or addition of exogenous Gal7 to human co-
lon cancer cells (Ueda et al., 2004) or neuroblastoma cells
(Kopitz et al., 2003) markedly reduced tumor cell proliferation.
Mechanistically, Gal7 controlled cell proliferation and differen-
tiation through the modulation of JNK–miR-203–p63 signaling
(Chen et al., 2016). Accordingly, in a malignant peripheral nerve
sheath tumor, RAS inhibition by salirasib led to reduced Gal1
expression and dramatically increased Gal7 protein, further
decreasing RAS activation in tumor cells and rendering them
sensitive to apoptosis (Barkan et al., 2013). Interestingly, ga-
lectins may also influence cancer cell proliferation by disabling
senescence circuitries. This is the case of Gal3, which promotes
gastric tumorigenesis by inhibiting premature senescence
(Kim et al., 2014). Finally, Gal9 has been reported as a powerful
antiproliferative signal on CD138+ multiple myeloma cells
(Kobayashi et al., 2010).

Thus, individual members of the galectin family may serve
as positive or negative rheostat signals that control tumor
cell proliferation by controlling oncogenic signaling or tumor
senescence.

Evading growth suppressors
Signals arising from the tumor microenvironment (TME) may
also favor tumor growth by promoting the inactivation of tumor
suppressors, thus limiting their capacity to halt cell cycle pro-
gression (Hanahan and Weinberg, 2011). A dozen of tumor
suppressors have been identified so far, with TP53 and retino-
blastoma (Rb) being the prototype molecules of this group.
These proteins operate as central nodes within complementary
circuits that govern the decisions of cells to proliferate or acti-
vate senescence and apoptotic programs.

The Rb protein senses the complexity of extracellular factors
and conveys this information to the nucleus, where the cell cycle
proceeds or is halted until the conditions are optimal. TP53, on
the contrary, senses the stress and other nutritional parameters
from inside the cell. If those conditions are suboptimal or ex-
cessive genome damage is detected, the cell cycle is halted
to preserve cell homeostasis or integrity. In human colorectal
cancer cells, Gal7 was first identified as an apoptotic/
p53-induced gene (PIG1; Polyak et al., 1997). In epidermal ker-
atinocytes, Gal7 expression rapidly increases in response to
UVB-induced apoptosis (Bernerd et al., 1999), preventing further

damage. Accordingly, Gal7 was proposed as a proapoptotic
protein in several cancer cells, including cervical and colon
cancer (Ueda et al., 2004). The proapoptotic activity of Gal7,
however, was not associated with its ability to interact with
glycoconjugates but instead relied on its intracellular function
via activation of the JNK pathway and mitochondrial cyto-
chrome c release (Kuwabara et al., 2002). As expected, chemo-
resistant human urothelial tumors express lower levels of Gal7
compared with normal urothelium. Moreover, transfection with
the Gal7 gene (LGALS7) sensitized p53-mutated bladder cancer
cells to chemotherapy with cis-diamminedichloroplatinum
(Matsui et al., 2007). Interestingly, mice lacking Gal7 showed
unique defects in the maintenance of epidermal homeostasis in
response to injury or environmental challenges (Gendronneau
et al., 2008).

The mechanisms underlying Gal7 silencing during oncogen-
esis include methylation of CpG islands in the LGALS7 gene and
hypermethylation at a region of the exon 2 that is predicted to be
a TP53-binding region (Kim et al., 2013a). These shreds of evi-
dence suggest that, when the promoter is inaccessible to TP53
binding (e.g., by methylation), Gal7 expression is silenced. In
addition to its intracellular action, which mainly resides within
the cytoplasmic compartment, secreted Gal7 interacts with
specific glycan residues on the cell surface, mediating extracel-
lular effects. Notably, in neuroblastoma cells Gal7 exerted anti-
proliferative effects that were dependent on the presence of a
permissive glycan profile (i.e., presence of N-acetyl-lactosamine
residues) in glycolipids of target cells (Kopitz et al., 2003).
Likewise, in head and neck squamous cell carcinoma, hypo-
pharyngeal squamous cell carcinoma, and ovarian serous cyst-
adenocarcinoma, Gal7 expression negatively correlated with
disease recurrence (Saussez et al., 2006; Labrie et al., 2014).
Nevertheless, the role of Gal7 in cancer appears to be contro-
versial, and some pieces of evidence indicate that Gal7 may also
behave as a tumor promoter even when it was originally dis-
covered as a p53-inducible gene. In mice, the development of
thymic lymphoma was accelerated when Gal7 was overex-
pressed, and this effect was accompanied by the expression of
prometastatic genes, including metalloproteinases (MMPs), that
influenced the aggressive behavior of these tumors (Demers
et al., 2005). Likewise, in breast cancer, Gal7 also exhibited a
tumor-promoting behavior (Demers et al., 2010). Based on these
findings, Campion and colleagues (Campion et al., 2013) sought
to explore possible molecular mechanisms that could explain
Gal7’s paradoxical effects. In silico analysis of the human LGALS7
promoter revealed the presence of a putative TP53-binding site
and several NF-κB–binding sites in the 59 proximal region,
suggesting that both transcription factors may control Gal7 ex-
pression. Gain-of-function experiments revealed expression of
both WT and mutant TP53 in breast cancer lines MCF-7 and
MDA-MB-231, which increased NF-κB activity and up-regulated
Gal7 expression. On the contrary, in the p53-null MDA-MB-453
cell line, which exhibited high NF-κB activity, Gal7 was not
detectable, indicating that a functional NF-κB–TP53 complex is
required to transactivate the LGALS7 promoter. Also in breast
cancer, a reciprocal regulation between Gal7 and TP53 was
proposed as Gal7 was able to impede TP53 translocation from the
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cytosol to the nucleus, thus counteracting induction of the an-
tiproliferative protein p21 (Grosset et al., 2014). The TP53 status
dependency of Gal7 expression in ovarian cancer appears to be
even more restricted. Ovarian cancer cells (OVCAR-3) that
harbored a p53R248Q mutation expressed Gal7, while cells with a
WT p53 or cells with a p53-null genotype did not express this
lectin (Labrie et al., 2014).

On the other hand, Gal3 was shown to be transcriptionally
repressed by TP53 (Cecchinelli et al., 2006; Raimond et al., 1995),
and this was required for TP53-induced apoptosis. Sequencing
analysis revealed that the Gal3 gene (LGALS3) harbors several
consensus regulatory sequences for TP53 binding. When this
intronic sequence was inserted in a reporter plasmid, only
WT and not mutant p53 down-regulated luciferase activity
(Raimond et al., 1995), suggesting that once p53 is mutated, its
ability to repress Gal3 is impaired, explaining increased Gal3
expression in p53-mutant tumors (Stiasny et al., 2017). In con-
trast, in human thyroid tumors, a positive correlation has been
found between p53 mutations and Gal3 expression. Those tu-
mors that exhibited the most frequent mutation (p53R273H) and
those with p53-null phenotype showed marked up-regulation of
Gal3, which conferred chemoresistance to these cells (Lavra
et al., 2009). In this regard, TP53-induced apoptosis required
phosphorylation of the serine 46 that interacted with cor-
egulator homeodomain-interacting protein kinase 2 (HIPK2),
specifically involved in the proapoptotic functions of this pro-
tein. HIPK2 cooperates with TP53, mediating transcriptional
repression of Gal3. Loss of HIPK2 underlined Gal3 over-
expression in well-differentiated thyroid carcinoma, which
paradoxically is a p53-sufficient tumor (Lavra et al., 2011). Ac-
cordingly, a functional cross-talk among MYCN, TP53, HIPK2,
and Gal3 has been reported in experimental neuroblastoma
(Veschi et al., 2012).

Convincing evidence of a functional association between Gal1
and TP53 are scarce. Proteomic analysis of glioblastoma cell lines
revealed the down-regulation of Gal1 byWT p53 (Puchades et al.,
2007); conversely knocking down Gal1 in U87 glioblastoma cells
altered expression of cell cycle genes, including p21waf/cip1 and
p53 (Camby et al., 2005). On the other hand, Gal3 knockdown in
human prostate cancer cells led to a cell cycle arrest at the G1
phase, up-regulation of nuclear p21, and hypophosphorylation of
Rb (Wang et al., 2009). Thus, galectins may contribute to eva-
sion of growth suppressors via direct or indirect mechanisms.
This effect appears to be critically dependent on the target cell
type involved, as well as the severity of stress and/or genomic
damage.

Avoiding immune destruction
A critical cancer hallmark relies on the ability of tumor cells to
create immunosuppressive microenvironments, thus avoiding
immune destruction (Rabinovich et al., 2007). Understanding
these immune evasive programs has been instrumental for the
design and successful implementation of cancer immunothera-
peutic modalities, particularly those targeting the cytotoxic
T-lymphocyte–associated protein 4 (CTLA-4) and the pro-
grammed death-1 (PD-1)/programmed death ligand-1 (PD-L1)
immune checkpoint pathways (Gubin and Schreiber, 2015; Ribas

and Wolchok 2018). Galectins are key players in this process by
thwarting antitumor immunity through several mechanisms,
including promotion of T cell apoptosis, inhibition of T cell ac-
tivation, induction of anti-inflammatory T helper type 2 (Th2)
responses, expansion of Foxp3+ regulatory T (T reg) cells, in-
duction of tolerogenic dendritic cells (DCs), inhibition of natural
killer (NK) cell function, and polarization of macrophages to-
ward an M2 phenotype (Rabinovich and Toscano, 2009;
Méndez-Huergo et al., 2017). In a melanoma model, targeting
Gal1 enhanced tumor rejection by enhancing Th1 and CTL re-
sponses, suggesting that Gal1 contributes to tumor-immune
privilege (Rubinstein et al., 2004). Accordingly, in tumor
specimens from head and neck squamous cell carcinoma pa-
tients, Gal1 overexpression inversely correlated with the num-
ber of infiltrating T cells and was an independent prognostic
factor for shorter overall survival (Le et al., 2005). Moreover, in
neuroblastoma, Gal1 acted as an immunosuppressive factor that
compromised T cell and DC functions (Soldati et al., 2012).
Likewise, Gal1 secreted by human pancreatic stellate cells (PSCs)
induced T cell apoptosis and contributed to Th2 cytokine po-
larization, fostering immune privilege in the pancreatic TME
(Tang et al., 2012; Orozco et al., 2018). Remarkably, genetic de-
letion of the Gal1 gene (Lgals1) in a Kras-driven model of pan-
creatic ductal adenocarcinoma (Ela-KrasG12Vp53−/−) led to a
significant increase in mice survival and reduced metastasis
through mechanisms involving greater T cell infiltration
(Orozco et al., 2018). Mechanistically, Gal1 exerts selective in-
hibitory effects on Th1 and Th17 cells due to differential glyco-
sylation of cell surface receptors on these T cell subsets (Toscano
et al., 2007), thus providing a rational explanation for Gal1-
polarized T cell responses. In this regard, Th2 cells were pro-
tected from Gal1 action by exposing a glycan shield composed of
α2,6-linked sialic acid (Toscano et al., 2007). Supporting these
findings, Reed-Sternberg cells in classical Hodgkin lymphoma
express high amounts of Gal1 through mechanisms involving
activation of the AP-1 transcription factor, favoring a Th2-
dominant immunosuppressive microenvironment (Juszczynski
et al., 2007). Moreover, in a breast cancer model, Gal1 promotes
the expansion of Foxp3+ T reg cells within the TME, draining
lymph nodes, and lung metastases (Dalotto-Moreno et al., 2013).
In addition, this lectin favors differentiation of tolerogenic DCs
characterized by high CD45RB expression, STAT-3 phosphoryl-
ation, and secretion of IL-27 and IL-10; this effect accelerated
tumor growth in the B16 melanoma model (Ilarregui et al.,
2009). Of note, Gal1 is a key mediator of tumor-educated DCs
controlled by the SATB-1 transcription factor (Tesone et al.,
2016). On the other hand, blockade of Gal1 expression in gli-
oma cells augmented NK cell–mediated cytotoxicity promoting
tumor eradication (Baker et al., 2014), suggesting multiple in-
hibitory effects of this lectin on different innate and adaptive
immune cells. In this regard, Gal1 induced deactivation of mac-
rophages and microglia through O-glycosylation–dependent
mechanisms targeting CD45 phosphatase activity (Correa
et al., 2003; Barrionuevo et al., 2007; Starossom et al., 2012).
Targeting glioma-derived Gal1 decreased the number of brain-
infiltrating macrophages (Verschuere et al., 2014), highlight-
ing a central role for myeloid cells as key targets of the
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immunoregulatory activity of this lectin. In this regard, granu-
locytic myeloid-derived suppressor cells as well as γδ-T cells
accelerated malignant progression via secretion of Gal1 in
models of ovary cancer (Rutkowski et al., 2015; Rabinovich and
Conejo-Garcı́a, 2016), suggesting different sources of this lectin
in the TME. Interestingly, antibody-mediated Gal1 blockade or
manipulation of the N-glycosylation machinery promoted influx
and activation of tumor-specific CD8+ T cells (Croci et al., 2014).
More recently, Gal1 has been implicated in T cell exclusion in the
TME of head and neck squamous carcinoma (Nambiar et al.,
2019).

On the other hand, tumoral Gal3 promoted CTL dysfunction
and impaired IFN-γ secretion by forming glycan-dependent
lattices that distanced TCR from CD8 molecules (Demotte
et al., 2008). This effect was abrogated by GCS-100, a galectin-
inhibitory polysaccharide (Demotte et al., 2010). More recent
studies showed that tumor-secreted Gal3 traps both glycosylated
IFN-γ and extracellular matrix glycoproteins, thus preventing
the formation of IFN-γ–induced chemokine gradients required
for T cell infiltration (Gordon-Alonso et al., 2017). This effect
could be critical in dictating T cell exclusion in immunologically
desert tumors. Furthermore, Gal3 has been proposed to function
as a LAG-3 extracellular ligand promoting CD8 T cell dysfunction
and limiting the expansion of plasmacytoid DCs (Kouo et al.,
2015). Interestingly, anti–CTLA-4 therapy elicited the presence
of circulating anti-Gal3 antibodies in patients with metastatic
melanoma (Wu et al., 2018), highlighting the clinical relevance
of this lectin in resistance to immunotherapy. Moreover, tumor-
derived Gal3 reduces the affinity of MHC class I–related chain A
for NKG2D (Tsuboi et al., 2011) and serves as a soluble inhibitory
ligand for human NKp30 (Wang et al., 2014), suggesting an
additional role for this lectin in limiting NK cell attack.

Finally, Gal9, a tandem-repeat member of the galectin family,
promotes immune escape through T cell immunoglobulin and
mucin domain-containing 3 (TIM-3)–dependent or independent
pathways (Sakuishi et al., 2011). Whereas Gal9 impairs NK
cell cytotoxicity through association with TIM-3 in acute
myeloid leukemia (Gonçalves Silva et al., 2017), this lectin pro-
motes immune tolerance in pancreatic cancer via a TIM-
3–independent pathway involving ligation of Dectin-1, a C-type
lectin receptor on macrophages (Daley et al., 2017). Additionally,
Gal9 promotes differentiation of CD11b+Ly-6G+ regulatory
myeloid-derived suppressor cells through interactionwith TIM-3
(Dardalhon et al., 2010) but enhances the stability and function
of T reg cells through association with CD44 (Wu et al., 2014). In
addition, a dynamic Gal3–N-glycan lattice enhances the T cell
activation threshold (Demetriou et al., 2001), reinforcing the
immune inhibitory activity of these multivalent signaling com-
plexes. Hence, through binding to distinct glycosylated re-
ceptors on immune cells, individual members of the galectin
family, particularly Gal1, Gal3, and Gal9 may dampen antitumor
immunity by influencing lymphoid and myeloid programs.
Thus, targeting specific galectins and their glycosylated ligands,
either alone or in combination with other antitumor strategies,
emerges as a potential immunotherapeutic modality, warranting
the development of preclinical and clinical trials (Chou et al.,
2018). Moreover, these lectins could function as possible

clinical biomarkers. Supporting this notion, recent studies
showed that Gal3 expression may predict response to immune
checkpoint blockers in non-small cell lung carcinoma settings
(Capalbo et al., 2019).

Enabling replicative telomerase
A critical feature of cancer cells is their capacity to overcome
normal senescence resulting from telomeres shortening. Telo-
merase activation is a critical step in carcinogenesis, occurring
in >90% of cancers (Harley et al., 1994). Since transcriptional
reactivation of the human telomerase reverse transcription
(hTERT) gene is a major mechanism of cancer-specific telome-
rase activation, suppression of hTERT expression emerges as a
robust approach for cancer therapy (Jäger and Walter, 2016).
Although evidence of the role of galectins in this cancer hall-
mark is limited, knocking down Gal3 decreased expression of
hTERT in gastric cancer cells, inducing cellular senescence. Of
note, Gal3 has been proposed to physically interact with hTERT
through its N-terminal domain, regulating its telomeric activity
during gastric tumorigenesis (La et al., 2016). Moreover, a pos-
sible link has been described between Gal1 and hTERT in mul-
tiple myeloma cells (Panero et al., 2014). Further studies are
warranted to explore the possible association of galectins and
telomeres during the tumorigenic process.

Tumor-promoting inflammation
Tumor-associated inflammatory responses involve secretion of
multiple pro-inflammatory cytokines, chemokines, and growth
factors that promote epithelial cell proliferation, fibroblast re-
cruitment, and neovascularization (Arnold et al., 2015). Chronic
inflammation may thus contribute to tumor development and
progression, helping incipient lesions to acquire cancer hall-
marks capabilities (Coussens et al., 2013). Different galectin
family members may help tip the balance of an inflammatory
response, altering tissue homeostasis. Epithelial-derived Gal4
amplifies IL-6-dependent inflammatory responses, thus influ-
encing mucosal homeostasis (Hokama et al., 2004). In addition,
Gal4 can stimulate memory CD4+ T cell expansion under par-
ticular inflammatory conditions via interaction with immature
core 1-expressing O-glycans, generated as a result of down-
regulation of the core-2 β1,6-N-acetylglucosaminyltransferase
1 (Nishida et al., 2012), thus counteracting tumor progression.
Accordingly, this lectin functions as a potent tumor suppressor
of human colorectal cancer (Satelli et al., 2011). Inhibition of Gal4
expression promoted cancer cell proliferation via activation of
IL-6/NF-κB/STAT-3 signaling (Kim et al., 2013b). Thus, Gal4
recalibrates the TME in the gut through regulation of cancer-
associated inflammatory responses modulating both immune
and epithelial compartments. Interestingly, in a model of
chronic liver inflammation leading to hepatocellular carcinoma,
lack of Gal1 increased liver injury, inflammation, and fibrosis, at
early age. Moreover, aged knockout mice displayed earlier
hepatocarcinogenesis and increased tumor growth. The mech-
anisms underlying these effects revealed modulation of pro-
oncogenic cytokines, including osteopontin, Ntrk2 (TrkB)
and S100A4 as critical targets of Gal1 activity (Potikha et al.,
2019). Conversely, in ovary cancer models Gal1 contributes to
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tumor-promoting inflammation linking TLR5-dependent IL-6
production and distant tumor progression (Rutkowski et al.,
2015). Interestingly, augmented Gal2, Gal4, and Gal8 in sera
from cancer patients enhanced the circulation of G-CSF, IL-6,
and MCP-1, suggesting a cross-talk among galectins, pro-
inflammatory cytokines, and chemokines (Chen et al., 2014).

Through secretion of growth factors and cytokines, cancer-
associated fibroblasts (CAFs) have a critical role in tumor
development and progression (Kalluri, 2016). Recent studies re-
vealed that Gal1 released by human PSCs caused the progression of
preneoplastic pancreatic lesions. PSC-derived Gal1 promoted cy-
clin D–dependent epithelial cell proliferation as well as expression
of tissue remodeling proteases and proangiogenic factors (Orozco
et al., 2018). Moreover, this lectin triggered Hedgehog pathway
signaling in pancreatic ductal adenocarcinoma–associated fibro-
blasts (Mart́ınez-Bosch et al., 2014).

On the other hand, Gal3 has been proposed to be a key pro-
inflammatory mediator during the initial steps of the metastatic
cascade, linking inflammation and endothelium permeability.
Mechanistically, Gal3 stimulates secretion of IL-6 and G-CSF,
leading to up-regulated expression of metastasis-associated ad-
hesion molecules, including integrin αVβ1, vascular cell adhesion
molecule-1, and E-selectin (Chen et al., 2013). Moreover, Gal9
binds to CD206 on macrophages and stimulates the release of
fibroblast growth factor 2 and MCP-1, thus supporting tumor
growth (Enninga et al., 2018). Thus, galectins may serve as
critical mediators of tumor-promoting inflammation acting both
at the initial stages of tumor development and during the met-
astatic cascade.

Activating invasion and metastasis
Metastasis is the result of a multistage sequence of limiting
events called the metastatic cascade, meaning that if one step
is blocked, the whole process is compromised. This process
involves invasion of tumor cells to the surrounding tissue, in-
travasation, survival in the circulation, extravasation, and col-
onization of targeted organs. The success of each step, during
early or late dissemination, relies on a multiplicity of factors
hierarchically regulated at the transcriptional and posttrans-
criptional levels (Hanahan and Weinberg, 2011). Particularly
interesting are emergingmechanisms leading to early tumor cell
dissemination, dormancy, and tissue colonization as determi-
nant factors of metastasis (Sosa et al., 2014). Galectins signifi-
cantly impact this hallmark by regulating metastasis-related
events. In fact, Gal3 was early identified as a metastasis-related
protein involved in tumor invasion (Bresalier et al., 1998). In
clinical settings, Gal1, Gal3, and Gal4 levels were found to be
considerably higher in sera from patients with metastatic dis-
ease than in patients with localized tumors and healthy in-
dividuals (Iurisci et al., 2000), suggesting the utility of these
lectins as possible biomarkers of disseminated disease. Inter-
estingly, elevated Gal3 expression was associated with increased
anchorage-independent growth, homotypic and heterotypic
aggregation, and target organ colonization (Nangia-Makker
et al., 2012). In fact, Gal3 released by tumor cells regulates in-
vasion and motility by weakening interactions between cell
adhesionmolecules present on the surface of malignant cells and

N-glycosylated proteins within the extracellular matrix, in-
cluding laminin and fibronectin (Nangia-Makker et al., 2008).
In this sense, this lectin promotes adhesion of breast cancer cells
to the endothelium by interacting with cancer-associated
Thomsen-Friedenreich galactose β-1,3-N-acetylgalactosamine
2 antigen expressed on MUC1 (Yu et al., 2007), thus favoring
intravasation and extravasation processes. On the other hand,
tumor-derived Gal3 associates with the N-glycosylated ligand
CD146 expressed on endothelial cells (ECs; Colomb et al.,
2017) and induces the release of metastasis-promoting pro-
inflammatory cytokines (Chen et al., 2013). Notably, the activ-
ity of Gal3 at metastatic sites is regulated by the glycan profile of
tumor cells. Tumor cells with low expression of α-N-acetylga-
lactosaminide α-2,6-sialyltransferase 2 show enhanced binding
of soluble Gal3, which promotes homotypic and heterotypic
aggregation, facilitating emboli formation and metastasis
(Murugaesu et al., 2014). Moreover, in renal cell carcinoma, Gal3
augments stemness and progression via up-regulation of the
CXCR2 chemokine (Huang et al., 2018), whereas in lung cancer,
Gal3 contributes to metastatic niche formation through binding
to Thomsen-Friedenreich antigen on metastatic tumor cells
(Reticker-Flynn and Bhatia, 2015).

Gal1 also promotes homotypic and heterotypic aggregation
(Lotan et al., 1994; Tinari et al., 2001) by interacting with lam-
inin and fibronectin (van den Brûle et al., 2003) and delineates
the metastatic potential of several human tumors (Liu and
Rabinovich, 2005). Interestingly, stromal cell expression of
Gal1 is up-regulated in invasive breast carcinoma as compared
with in situ carcinoma, showing a positive correlation with T
(related to tumor size) or TNM (dissemination to nodes or
metastatic sites) progression stages (Jung et al., 2007). More-
over, Gal1 expression in CAFs correlated with enhanced regional
lymph node breast cancer metastasis (Folgueira et al., 2013).
Investigation of the mechanisms underlying Gal1 promotion of
tumor invasion in oral squamous cell carcinoma (OSCC) re-
vealed the ability of this lectin to up-regulate MMP-2 andMMP-
9 and reorganize actin cytoskeleton via activation of Cdc42, a
small GTPase member of the Rho family, thus increasing the
number and length of filopodia on tumor cells. Targeting this
lectin in CAFs inhibited OSCC invasion andmetastasis (Wu et al.,
2009). Accordingly, Gal1 expression in cancer-associated stroma
significantly correlated with poor prognosis in OSCC (Chiang
et al., 2008). Further, in gastric cancer, high Gal1 expression
in CAFs facilitated cancer cell migration and invasion by
up-regulating β1-integrin expression (He et al., 2014) and in-
ducing epithelial-to-mesenchymal transition (EMT) via non-
canonical activation of the Hedgehog pathway (Chong et al.,
2016). Likewise, in hepatocellular carcinoma, Gal1 facilitated
the transition from epithelial morphology toward a fibroblastic
phenotype by up-regulating mesenchymal markers and down-
regulating E-cadherin expression (Bacigalupo et al., 2015).
Moreover, in human pancreatic cancer, Gal1 acts as a major
metastasis driver by triggering EMT via NF-κB transcriptional
regulation and inducing significant overexpression of invasion-
and migration-associated genes, including MMP1, S100A7, and
ankyrin-3 (Tang et al., 2017; Orozco et al., 2018). Moreover, Gal1
silencing significantly inhibited migration and invasion of
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metastatic castration-resistant prostate cancer through sup-
pression of androgen receptor and Akt signaling (Shih et al.,
2018), thus emphasizing the prometastatic activity of this lec-
tin through diverse partially overlapping mechanisms. In this
regard, Gal1 has been identified as a key effector of tropomyosin
receptor kinase–mediated invasiveness and migration in neu-
roblastoma (Cimmino et al., 2009). Finally, in human prostate
cancer xenografts, Gal4 binding to receptor tyrosine kinases
activated expression of phospho-ERK, phospho-Akt, and Twist
and lowered expression of E-cadherin, thus facilitating EMT
(Tsai et al., 2016). Thus, galectin–glycan interactions may con-
trol invasion, dissemination, and colonization programs broadly
influencing the choreography of metastasis-related players, in-
cluding signaling pathways, transcription factors, chemokines,
and cell adhesion molecules.

Inducing angiogenesis
Angiogenesis, the growth of new blood vessels out of preexisting
ones, is an essential requirement in the development and pro-
gression of cancer. Genetic and pharmacological inhibition of
vascular signaling pathways have provided critical evidence that
abnormal angiogenesis is a hallmark of cancer (Ferrara and
Kerbel, 2005; Potente et al., 2011). Galectins play essential
roles at different steps of the angiogenic cascade (Thijssen et al.,
2013). Both tumors and stromal cells can stimulate aberrant
angiogenesis by secreting Gal1 (Thijssen et al., 2006, 2010; Croci
et al., 2012; Laderach et al., 2013). Uptake of Gal1 by ECs promote
HRAS signaling to the RAF/mitogen-activated protein kinase/
ERK cascade and stimulate EC proliferation and migration
(Thijssen et al., 2010). Moreover, interactions between Gal1 and
specific N-glycans couple tumor hypoxia to neovascularization in
Kaposi sarcoma through hypoxia-inducible factor–independent,
NF-κB–dependent mechanisms (Croci et al., 2012).

Gal3 also promotes angiogenesis by modulating vascular
endothelial growth factor (VEGF) and basic fibroblast growth
factor signaling through binding to complex N-glycans on in-
tegrin αvβ3 (Markowska et al., 2010). This effect appears to be
dependent on the Notch ligand JAG1 (Dos Santos et al., 2017).
Finally, whereas Gal8 induces angiogenesis through binding to
activated leukocyte cell adhesion molecule (CD166) on ECs
(Delgado et al., 2011), different Gal9 isoforms selectively control
vascularization through still-unknown mechanisms (Aanhane
et al., 2018).

In the past decade, the first generation of antiangiogenic
drugs has been validated in clinical settings, showing improved
progression-free survival and, in some cases, overall survival in
patients with different tumor types. Tyrosine kinase inhibitors,
as well as specific monoclonal antibodies, disrupt angiogenesis
through inhibition of VEGF and their cognate receptors (Ferrara
and Kerbel, 2005). Although preclinical and clinical studies
revealed satisfactory outcomes in tumor growth inhibition, anti-
VEGF therapy has shown limited efficacy. Several tumors
develop resistance through the activation of compensatory
pathways that contribute to tumor angiogenesis. Through rec-
ognition of complex N-glycans on VEGFR2, Gal1 activates a
glycosylation-dependent compensatory mechanism that pre-
serves angiogenesis in response to VEGF blockade (Croci et al.,

2014). Gal1 triggers VEGF-like signaling, including phosphoryl-
ation of VEGFR2, ERK1/2, and Akt in ECs. Vessels within anti-
VEGF–sensitive tumors exhibited high levels of α2,6-linked
sialic acid, which prevented Gal1 binding and compensatory
angiogenesis. In contrast, anti-VEGF–refractory tumors secreted
Gal1 in response to hypoxia, and their associated vasculature
displayed glycosylation patterns that were permissive for Gal1–
EC interactions. Interruption of β1-6GlcNAc branching on ECs or
silencing of tumor-derived Gal1 converted refractory into anti-
VEGF–sensitive tumors, whereas elimination of α2,6-linked si-
alic acid conferred resistance to anti-VEGF. Disruption of the
Gal1–N-glycan axis promoted vascular remodeling, immune cell
influx, and tumor growth inhibition, thereby increasing the
efficacy of anti-VEGF treatment (Croci et al., 2014). Thus,
glycosylation-dependent galectin-driven mechanisms control
blood vessel formation through VEGF-dependent or indepen-
dent mechanisms involving distinct glycosylated receptors and
signaling pathways.

Acquiring genome instability
Cells may acquire random mutations and chromosomal re-
arrangements that contribute to tumor development and pro-
gression. Specific mutant genotypes confer a selective advantage
on tumor subclones, enabling their outgrowth and eventual
dominance in a local tissue environment (Hanahan and
Weinberg, 2011). The role of genome maintenance machinery
is to detect and resolve DNA defects, ensuring low rates of
spontaneous mutations during each cell generation (Lane, 1992).
Interaction of Gal3 with BARD1, the main partner of breast and
ovarian cancer susceptibility gene product BRCA1, has been
documented, suggesting involvement of these proteins in the
DNA damage repair machinery. Knocking down Gal3 increased
resistance to DNA damage in HeLa cells, leading to the identi-
fication of a set of four Gal3 partners associated with DNA
damage repair, namely PARP1, HSP90AB1, CDC5L, and PRPF19
(Carvalho et al., 2014). Likewise, a comparative analysis con-
sidering microsatellite stability in clinical specimens of colon
cancer revealed enrichment of Gal3 in microsatellite-stable
compared with microsatellite-unstable tumors (Gebert et al.,
2012). Although much remains to be learned, intracellular ga-
lectins may serve as a link between genomic instability and
tumorigenesis.

Developing resistance to cell death
Cancer cells acquire the ability to escape death triggered by cell
surface receptors, soluble factors, immune effector cells, and
anticancer therapies, thus facilitating tumor progression
(Hanahan and Weinberg, 2011). Galectins may interact with
different components of the extrinsic and intrinsic apoptotic
machineries, thus influencing tumor cell fate (Lichtenstein and
Rabinovich, 2013).

Pioneer work demonstrated a significant intracellular role
for Gal3 in conferring resistance to apoptosis induced by anti-
Fas antibody, staurosporine, and cisplatin. Strikingly, Gal3 was
found to have significant sequence similarity with Bcl-2, a well-
characterized antiapoptotic gene (Yang et al., 1996; Akahani
et al., 1997). Further studies showed that Gal3 represses
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apoptotic signals by associating with Fas/CD95, thus increasing
tumor cell survival (Fukumori et al., 2004). When Gal3 is
overexpressed in bladder carcinoma cells, it promotes Akt
phosphorylation and confers resistance to tumor necrosis
factor–related apoptosis-inducing ligand–induced apoptosis.
Moreover, this lectin protects tumor cells from apoptosis by
enhancing cell adhesion properties (Matarrese et al., 2000), and
its phosphorylation is critical to control tumor survival (Yoshii
et al., 2002). This effect confers cell death resistance in a variety
of cancers, including diffuse large B cell lymphoma (DLBC;
Hoyer et al., 2004) and breast adenocarcinoma (Matarrese et al.,
2000). Although these prosurvival effects involve mostly an
intracellular activity of this lectin, Clark et al. (2012) identified
an anti-apoptotic function of Gal3 through binding to specific

O-glycans on CD45 at the surface of DLBC. Moreover, targeting
Gal1 expression in glioblastoma increased sensitivity to chemo-
therapeutic agents (Le Mercier et al., 2008), particularly,
temozolomide both in vitro and in vivo. Likewise, silencing Gal1
in melanoma sensitized cells to the proautophagic effects of te-
mozolomide (Mathieu et al., 2007). In this regard, Gal1 conferred
chemoresistance in hepatocellular carcinoma by regulating the
autophagic machinery (Su et al., 2016). However, in contrast to
Gal3 and Gal1, Gal7 showed clear proapoptotic activity against
several cancer cell types (Barkan et al., 2013; Ueda et al., 2004;
Higareda-Almaraz et al., 2016; Kuwabara et al., 2002). Accord-
ingly, Gal7 sensitized tumor cells to cisplatin treatment by pro-
moting the accumulation of intracellular reactive oxygen species
and activation of the JNK pathway (Matsui et al., 2007). Finally,

Figure 2. Galectin-driven regulatory circuits in the TME. Galectins influence the function of distinct cell types, including immune cells, ECs, and CAFs in the
TME. Within the immune compartment, Gal1, Gal3, and Gal9 fuel immune-evasive mechanisms through the control of myeloid and lymphoid programs. Gal1
tilts the balance of the immune response toward a Th2 profile by selectively deleting Th1, Th17, and CTLs. Moreover, Gal1 drives the differentiation of T reg
cells, endows DCs with tolerogenic potential, polarizes macrophages toward an anti-inflammatory M2 profile, and inhibits NK cell function. Interestingly,
Gal1–N-glycan interactions may couple tumor hypoxia to vascularization and preserve angiogenesis in tumors refractory to anti-VEGF treatment. On the other
hand, Gal3 acts by limiting TCR-dependent signaling and promoting T cell anergy and exhaustion by distancing the TCR from CD8molecules and engaging LAG-
3 on the surface of CD8 T cells. Gal3 also impairs the antitumor activity of NK cells by inhibiting NKp30-mediated cytotoxicity and interrupting NKG2D–MHC
class I–related chain A interactions. Moreover, Gal3 influences VEGF and basic fibroblast growth factor–induced angiogenesis through binding to N-glycan
motifs on αvβ3 integrin. Moreover, Gal9 confers immune privilege to tumor cells through TIM-3–dependent or independent mechanisms. While it selectively
kills terminally differentiated TIM-3+ Th1 cells, it also binds to Dectin-1 on macrophages and CD44 on T reg cells, favoring a tolerogenic microenvironment. On
the other hand, Gal8 controls EC biology via association with ALCAM-1 (CD166), whereas different Gal9 isoforms selectively control angiogenesis. Within the
tumor stroma, Gal1 is highly expressed in CAFs, particularly in human stellate pancreatic cells and controls fibroblast secretion of a variety of cytokines,
chemokines, and growth factors. Gal1 (a prototype family member) is indicated as a noncovalent homodimer each containing one CRD, Gal3 (a chimera-type
galectin) is illustrated based on its pentameric structure, and Gal9 (a tandem-repeat galectin) is depicted as two CRDs connected in tandem. MDSC, myeloid-
derived suppressor cell.

Girotti et al. Journal of Experimental Medicine 8

Galectins in tumor progression https://doi.org/10.1084/jem.20182041

https://doi.org/10.1084/jem.20182041


recent studies showed an inverse correlation between Gal3 ex-
pression and the extent of tumor necrosis in renal cell carcinoma
patients (Aboulhagag et al., 2018). Thus, intracellular galectins
may govern cell death pathways, including apoptosis, necrosis,
or autophagy, induced by pro-inflammatory cytokines, reactive
oxygen species, and anticancer agents.

Deregulating cellular energetics
Acquisition of tumorigenic andmetastatic capabilities requires a
well-adjusted energy metabolism that fuels tumor growth. Un-
like normal cells that metabolize glucose entirely into carbon
dioxide and maximize ATP production through oxidative
phosphorylation, cancer cells may coopt a less efficient process
termed aerobic glycolysis. Otto Warburg initially described the
abnormal energy metabolism of cancer cells, which even in the
presence of oxygen metabolize glucose incompletely into lactate
(Koppenol et al., 2011). This apparent counterintuitive energy
production route in combination with an increased glutamine
metabolism provides tumor cells with the building blocks re-
quired to sustain protein, lipid, and nucleic acid synthesis nec-
essary for an accelerated division rate, constituting a distinct
cancer hallmark (Cantor and Sabatini, 2012).

Although glycosylation has emerged as a major regulator of
metabolic fitness in the TME (Song et al., 2018), scarce in-
formation is available regarding the role of glycan-binding
proteins in this process. The glycolytic pathway promotes
N-glycan branching by fueling metabolites into the hexosa-
mine pathway, thus increasing the number of galectin ligands
on relevant cell-surface receptors (Partridge et al., 2004).
Although Gal3 cross-links complex branched N-glycans on
epidermal growth factor and TGF-β receptors at the surface of
breast cancer cells and favors cytokine signaling, EMT, cell
motility, and tumor metastasis (Partridge et al., 2004), scarce
information is available on the role of galectin-glycan lattices
in tumor metabolism.

In this regard, Gal9 has been shown to bind to N-glycans on
TIM-3 in myeloid leukemia cells, interrupting mammalian tar-
get of rapamycin (mTOR) signaling, hampering glycolysis, and
inhibiting tumor cell proliferation (Gonçalves Silva et al., 2017).
Moreover, intracellular Gal3 interacts with the ATP synthase in
mitochondria of colorectal cancer cells, limiting ATP production
and mitochondrial respiration (Lee et al., 2013). On the other
hand, Gal12 may influence mitochondrial activity in adipocytes,
although its role in tumor metabolism remains to be elucidated
(Yang et al., 2011). Given the elevated expression of galectins in
the TME, it is anticipated that they play a significant role in
tumor cell energetics, linking metabolism-dependent glycosy-
lation status with tumor malignancy and progression.

Conclusions and future perspectives
Galectins contribute to tumor progression through multiple in-
terconnected pathways (Fig. 2). Given their critical roles in
different hallmarks of cancer, galectins have emerged as rele-
vant therapeutic targets and reliable biomarkers delineating
clinical responses and patient prognosis.

The last two decades have witnessed a paradigm shift in
the field of cancer therapy leading to the development of

immunotherapies, targeted therapies, and antiangiogenic ther-
apies. However, durable responses are only observed in a
limited number of patients due to intrinsic resistance mecha-
nisms and acquisition of compensatory pathways. Combina-
tion therapies may enhance the quality of clinical responses
(i.e., response duration, progression-free survival, and overall
survival) in cancer patients by combining agents with syner-
gistic mechanisms of action. In this promising scenario, ga-
lectins have emerged as novel therapeutic targets to be taken
into account for combinatorial modalities. However, it is still not
clear whether extracellular or intracellular activities of galectins
should be preferentially targeted to halt tumor progression.
Importantly, although some findings presented here are based
on overexpression of galectins in mouse models and human
cancer cell lines, these studies could have limitations in their
translation to clinical settings, suggesting the need of further
preclinical and clinical work to validate the therapeutic rele-
vance of these glycan-binding proteins. In fact, numerous efforts
are underway to develop effective galectin-targeted anticancer
compounds, mainly represented by chemical inhibitors, natural
polysaccharides, peptidomimetics, and monoclonal antibodies
(Cagnoni et al., 2016), that could effectively control different
hallmarks of cancer.
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