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Abstract. We study the magnetic oscillationgy(MO) in 2D materials with a buckled
honeycomb lattice, considering a perpendicular elegtric and magnetic field. At zero
temperature the MO consist of the sum of four sawtooth oscillations, with two unique
frequencies and phases. The valdes of thesefrequencies depend on the Fermi energy and
electric field, which in turn determine the condition for a beating phenomenon in the
MO. We analyse the temperature effect in,the MO by considering its local corrections
over each magnetization peak, given by Fermi-Dirac like functions. We show that the
width of these functions is related to.the minimum temperature necessary to observe
the spin and valley propertiesimthe MO. In particular, we find that in order to observe
the spin splitting, 4he width must be lower than the MO phase difference. Likewise, in
order to observe valley mixing effects, the width must be lower than the MO period.
We also show thatfat high temperatures, all the maxima and minima in the MO are
shift to a constant value, in which case we obtain a simple expression for the MO and
its envelope. The résults obtained show unique features in the MO in 2D materials,
given by the interplay between the valley and spin.

1. Introduction

Since the experimental realization of graphene in 2004 [1, 2, 3], many similar planar
systems have been studied [4, B 6]. Among them are silicene [7, 8, 9] [10], germanene
[11],12], stanene [13,/14] and phosphorene [15,[16]. These materials have a 2D hexagonal
lattice, fmade of two buckled subtallices A and B. They are best described with a
tight binding (TB) model, which leads to an effective Dirac-like Hamiltonian in the
low' energy. approximation [I7, I§]. Thus these materials are also referred as Dirac
crystals. Despite their similarities, there are important features that distinguish one
material'from another. One is the spin-orbit interaction (SOI), which is very small in
graphene (about 1072 meV [19]), but relatively large in other materials (for instance,
it is 0.1 eV in stanene [17]), which makes them a topological insulator |20} 21], 22} 23].
Moreover, a strong SOI would make possible the observation of the quantum spin Hall
effect [24] 25] 26, 27, 28, 29]. Another characteristic is the buckle height, which defines
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the layer separation between the two sublattices. In graphene this buckle height is zero
[19], but it is not zero in the other Dirac crystals [6]. Hence, applying a perpendicular
electric field between the two sublattices causes a potential difference, which splits.the
energy bands and can be used to tune the bandgap [30, 31, 32] 33|, 34 [35, [36]:

The magnetic properties of the Dirac crystals have been investigatediin recent works
[37, 38,139, 40}, [41]. Unlike in conventional materials, the magnetizationin these systems
has unique features [42 43|, [44] [45, 40, 47]. A particular interesting phenoménon are the
magnetic oscillations (MO), the so called de Haas van Alphen effect [48]y,.produced by the
discrete energy levels that appear when a magnetic field is applied. At Zero temperature
the MO are sawtooth [40], with the peaks been caused by the‘¢éhange inghe last occupied
energy level [49]. Therefore the MO depend strongly on the systemnenergy levels. In the
Dirac crystals, at low energies the dispersion relation is relativistic [19], which causes
the Landau levels (LL) to be not equidistant [50 B1]. “These anomalous LL can be
modify by external parallel and perpendicular electric fields {52, 50]. For instance, the
MO in graphene can be modulated by an in-planeéseleetric field [53], which leads to
unique features not seen in the conventional 2D eléctron ?gas. In the Dirac crystals, a
perpendicular electric field alters the LL due to the bugkled height and strong SOT [47],
which can have an appreciable effect in the MQ.

At non zero temperature the MO are broadened as a result of the Fermi-Dirac
distribution. In classical metals this is deseribed by the Lifshitz-Kosevich (LK) formula
[48], which incorporates the temperature effect as a reduction factor. This formula
has been extended to the casenof Dirac crystals [37], where the difference only lies in
the form of the reduction facter.” Another approach, recently developed in graphene
[54], considers the temperature effect by local corrections over each MO peak. This is
particular useful at very low'temperatures, where the MO are modified only around the
peaks location at T' = 0. Nevertheless, there is no detailed analysis about how the fine
structure of the M@, in 2D ‘buckled materials is progressively lost as the temperature
increases. This is particular relevant from an experimental point of view, since there is
always a limit to how low the temperature can be.

Motivated by this we analysed the MO in a general pristine Dirac crystal, in the
presence of a perpendicular electric and magnetic field, taking into account the Zeeman
effect. We have organized,this work as follow: in section 2 we describe the MO at zero
temperature, showing that it consist of two unique frequencies and phases. Then we
study the dependence of these frequencies with the electric field, and the condition for a
beating phenomenon. In section 3 we study how the temperature broadens the MO and
affécts its observation. We estimate the minimum temperature required to observe the
valley and spin properties. At high temperature we also obtain a simple approximation
for the' MO and its envelope. Finally, our conclusions follow in section 4.
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2. MO at zero temperature

We shall study the MO in a general 2D system with a buckled honeyGomb strueture.
Examples of these materials are silicene, germanene, stanene and phosphorene. We
will consider energies close to the Fermi level, in which case one can, apply the,long
wavelength approximation [19, [I7]. Then, in the presence of a perpendicular electric
field E,, these materials are described by a Dirac Hamiltonian of the form 18]

H =wvp (npwam + pyay) + FJZO';;, ~ (1>

where vp is the Fermi velocity, o are the Pauli matrices andx? = nsAso — elE,, with
Aso the spin-orbit coupling interaction (SOI) and [ the buckle height. The indices 5
and s are the valley and spin indices, with values 1 (—1) for,the K (K’) valley and spin
up (down). The particular values of vg, Aso and [ depend on'the 2D material. It is
worth noting that graphene can be considered a special case, with [ = 0 and Agp ~ 0.
In the presence of a perpendicular magnetic fielddB;ithe Hamiltonian given by equation
gives the energy levels [A7] e¢ s = ¢ [(sAdo — nelBy)® + o’*nB| v sup B, where
¢ = +1 for the conduction and valencesbands, of = vpv2he, n = 0, 1, 2,... for the
Landau level (LL) and we took into account the Zeeman term ppB. Each energy level
has a degeneracy given by D = AB/¢, where Alis the sheet area and ¢ = h/e is the
magnetic unit flux [50]. We will take @eonstant Fermi energy 1 > 0, so that only the
conduction band contributes to the MO, Then the problem becomes analogue to the
one already studied in graphene [54], with the inclusion of the term 7. In this way,
generalizing this approach we get that the MO are given by (see the Appendix A for
details)

AP 1
M = Z g Z aretan {cot [mui (E + SAZ'>:| } : (2)
=12 " hs=t1

where

e o w;
2
u — [)\50 +(=1)"elE,
Wi = o2 ) (4)
2pp

Thexefore the MO at zero temperature consist of four type of peaks, corresponding
to the pessible combinations of valley and spin. There are two unique frequencies
wyand w,, with phases A; and A,. This result generalizes the graphene case, and
it says that the broken valley degeneracy in buckled 2D materials is seen in the MO
as two oscillations with different frequency [38]. The values of these frequencies and
phases depend on the properties of the Dirac crystal, such as the SOI, the buckle height
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and Fermi velocity, as well as the Fermi energy and the perpendicular electric field.
Therefore, these parameters define the conditions for which the peaks can ©ccur, for
that implies w > 0. In graphene, the buckle height is zero and the SOI negligible;.so
there is only one frequency w, = w; = wy = p?/a? and two peaks with phase difference
between them A, = 2uupw,a?; the condition w, > 0 just implies @ > 0. For the
other crystals, the condition w > 0 implies p? > (Aso elEZ)Q, so we have the regions
indicated in figure [I| corresponding to stanene. Depending on the value 6f the Fermi
energy and the electric field, three possibilities can occur: (I) @1 > 0.and wy > 0, so
all 4 peaks are present; (II) w; > 0 and wy < 0, so only two peaks with frequency wy
and phase difference A; are present; (III) w; < 0 and wy < 0,580 there are no peaks and
therefore no MO (the magnetization would be given only by the régular, non-oscillatory
contribution). Notice that ws always decrease with increasing K., while w; increases
with E, for elE, < )go, it takes its maximum at elH. = Xgo (where w; = p?/a? as in
graphene), and then decrease with increasing E, forelE, > Agg. It should be noted that
the MO given by equation ({2)) equals the total magnetization only when p > |Aso £ el E, |
[37], which implies w; > 0. Thus only when Bothdo, and w, are present (region I in
figure , the total magnetization is given'by equation . In the other regions, one has
also to consider the regular and vacuum contributions to the total magnetization.

The relationship between the MO and w > 0'can be better understand by analysing

w >0 \,42 — (Nso — €lE.)?
1 J S E—
I w, > () . @
- _ ul = (Aso +elE.)’
» 2

200 [

-
- wy
- a

>3
w10

<
w20

I1I

0 50 100 150 200
eIEZ (meV)

Figure 1. MO frequency spectrum for stanene, as a function of the perpendicular
electric field F, and the Fermi energy . The presence of E, produces a broken valley
degeneracy, which results in two frequencies w; and wy for the MO, with w; > wy
always. The oscillations occur only if w > 0, which defines the three regions shown: (I)
w1 > 0 and we > 0, so both frequencies are present in the MO, (II) wy; > 0 and wy < 0,
in which case the magnetization oscillates with only one frequency, as in graphene, and
(IIT) wy < 0 and ws < 0, so there is no MO.
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the energy level change that produce the oscillation. First of all, for a constant p we
have the energy levels &; = [ + o2 (nB — w;)]"/”

— supB associated with w#given by
equation 1) Then w; < 0 implies (g; + S,uBB)2 > u? + na?B, but the occupied energy
levels satisfy e; < u. Hence, given that in general ugB/pu < 1, for B > 0, (maintaining
the magnetic field direction), we have that ¢; is never occupied if w;4< .0, so there is
no oscillation associated with a change of ¢;. In the particular case(II) in figure ,
we have (Ago — elEz)2 < u? < (Aso + elEZ)Q, and the last LL n oecupied4dn &, satisfy
(Aso — elE,)? + na?B < (Ago + elE.)* < (Aso — elE,)* + (n #1)@2B_. /Thus, when
w; > 0 and wy < 0, 2 is not occupied and there are n =/ Floor|(w; — ws) /B] LL
occupied in 1. We see that n depends on B, and its value is‘given by the ratio between
the frequency difference and the magnetic field. This is expectediconsidering that the
magnetization oscillates as a function of 1/B.

In the general case, when both frequencies aré present, the MO will show an
interference pattern, produced by the superposition. of M, ‘and M, each one being
a sawtooth oscillation. The specific pattern in the MO will, in general, depend on the
values of w; and ws. The most interesting situation océirs when wy and wq are close,
in which case the MO show a beating phenomenon. Given that always w; > ws, the
beating condition is (w1 — ws) /wy < 1. Infigure[2)it is plotted (w; — wa) /wy for silicene,
at different values of i, as a function of the perpendicular electric field. We observe that
the lower the Fermi energy, the lower therange of electric field for which there is beating.
In the practice, a clear beating phenomenon is observed as long as (w; — ws) /w; S 0.1.
When (w; — wsy) /wy < 1 is notysatisfied, there is still an interference in the MO, only

1 !\ T
h i ——p=25meV
091 ' i £=-u=50meV|]
! ! =046V
08| ' LA ©=0.156V ||
. : i —pu=02eV
a n=025eV||
’ ey = 0.3 8V
_06f
3
3 05¢
3
04r
0.3r
0.2r
0.1F ,,'

100 150 200
eIEZ (meV)

Figure 2. For silicene, plot of (w1 — we) /w as a function of the perpendicular electric
field E,, for different Fermi energies p. The MO frequencies w; and wy are given by
equation 4| A beating phenomenon is observed only when (w1 — ws) /w; < 1.
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that it would not be seen as a beating phenomenon. Instead the MO show/a more
random-like pattern, where the behaviour depends specifically on the particular values
of wy and wy. This can be seen in figure [3] where we plotted the MO in_silicenefor
1w=0.2¢eV, at elE, = 70 meV and elF, = 180 meV. This drastic change of behaviour
in the MO can be explained by analysing how the energies levels are sorted in each case.
When there is beating, w; and wy are close and so are the respective'énergy. levels ¢; ,,
(with the same LL n) that give rise to these frequencies, as discussed above. Thus the
change of the last energy level (which produces the MO) follows an orderedpattern that
interchanges €1, and €3, as B is changed. On the other hand, when Jl and wq are far
apart, such that (w; —ws) /w; < 1 is not satisfied, then thé energy levels ¢, and e,
are not close and there is no clear pattern in the change of theiast energy level. In
this region, the sort of the energy levels depends on the value of E, and B, leading to a
seemingly random pattern in the MO. However, it should be noeted that if one analyses
the specific order of the energy levels at a particulatik,, then the MO behaviour can be
explained [47].

We shall now analyse in more detail the beating phe’nomenon in the MO at zero
temperature. As we can see in figure (a), the beating has a rombo-like pattern,

x107 ‘ ‘ <10 : ; ;
. 7(a)XM elE, =70 meV (w, - w, o =.0.03 17(b) OE,=180meV (v, =031
i
dx
28+ ‘ x ‘ 'i 06 ‘ |
H |
= 1l | . |
£ o | £ il
w il = 1
N <] |
= A I | s 02 ‘H
]
220\ VT4
Y | 06}
Y f f‘ / [
I | / " / "‘
. [
4.7+ T
1 125 15 175 2 1 2 3 4 5

1/B (1/T) 1/B (1/T)

Figure 3. MO in silicene at zero temperature, with a Fermi energy p = 0.2 €V,
for (a) (w1 —wz)/wi = 0.03 and (b) (w1 —w2)/wi = 0.31. In (a) we see a clear
beating phenomenon, consistent with the condition (w; —ws) /w1 < 1. The beating
is seen as a rombo-like pattern, produced by the superposition of the sawtooth
oscillations with frequencies w; and ws. The beating maxima and minima are
xy = 1r/(wg —we) and x, = (r+1/2) /(w1 —we), with 7 an integer, and their
distance is dz = 1/2 (w1 —ws) = hvd/4\solE,. In (b), the beating condition is
not satisfied, resulting in a more random-like pattern in the MO. In this situation,
the order of the peaks depends strongly not only on the value of F,, but also on the
magnetic field B.
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caused by both M; and M, being a sawtooth oscillation. If we restrict to few values
of magnetic field, one can appreciate the fine structure of the MO, as cam be seen
in the zoomed area. In this region one explicitly sees the four MO “peaks given.by
equation , with their amplitude and phase being determined by the ghange of spin
and valley in the last energy level. The absolute maxima 1/B); =&z, in the MO
occur when there is constructive interference. From equations , @ and , this
implies xy; = my/w; = Ay = mo/ws + Ay, where my and my are integér such that
me = my + r, with r an integer. Given that in general wA <1, we get that
the maxima occur at xj; = r/(w; — wsp). The absolute minima hap;en between two
maxima, so &, = (r +1/2) /(w1 —ws), and the width between maxima and minima is
dr = 1/2 (w; — wy) = hvd/4Asol E,. Therefore, one can obtain information about the
material parameters by measuring the width of the rombo-like pattern in the MO. Notice
that (w; — wsy) does not depend on the magnetic field or Fermi energy, but only on the
electric field. This is expected because the width depends on the frequency difference

of the peaks, which is only produced by the perpendicular electric field.
- 4

3. MO at non zero temperature

We shall now study the temperature influenece in the MO. We will consider low B and
T, such that we can neglect the effectuof lattice vibrations [55, 56]. The temperature
effect in the MO can be taken into account in different ways. The most common one
is by the Lifshitz—Kosevich (KK) formula [48}, in which the damping effects such as the
temperature are considered by.reductions factors. Thus, in the pristine case (i.e. no
impurities), the MO at T' # 0 are [37]

S Ry 1
My = A; —sin [27mpw; | = + sA; ||, 6
= 2L e (5 ©
where Ry = A\p/sinh (Ap), with A = 47?ukpT /a?B . Another way to express the MO
at non zero temperature,is by considering the local corrections to each peak due the
Fermi-Dirac distribution, as has been done for graphene [54]. Generalizing this result
we obtain (seé the Appendix B for details)

A, 1
Mr = — arctan { cot |mw; [ = +sA; | + Y 7Fin| ¢, 7
SR C RICR O 2
whete F;,, =1 + exp [Bus (B, — B) /B,Ai|} ', with 8 = 1/kpT and B; ' = n/w;— s/,
being the MO peaks location at 7" = 0. It is instructive to compare these two expressions
for thesMO at T # 0, because depending on the situation it may be convenient to use
one or the other formula. It is important to note that both expressions give the same
MO at T # 0; they are just two different ways of expressing the same. The series given
by equation @ express the MO as a sum of harmonics, which in some situations could
be useful, in particular when one can isolate the contribution from each harmonic. At
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low temperature the summation cannot be exactly solved, although it should he noted
that few terms are needed in the infinite sum, since the factors decay rapidly with p.
At high temperatures, such that sinh (Ap) ~ exp (—Ap), the summation can be solved,
leading to a simple expression for the MO. On the other hand, the expressiongiven by
equation ([7) considers the temperature influence by local corrections around each MO
peak at T = 0. Indeed, each term inside the summation over n isa Fermi-Dirac like
function, which at low temperature is appreciable only around B,. This 48 particular
useful to analyse in detail how the increase in the temperature@ffects,the observation
of the MO fine structure, such as the spin splitting and valley mixing.\

@ |

M (meV x 104/TA?)

M (meV x 104/ TA?)
o

T=0.1K

a4t . i
< (c)
£ 2 :
>
=
=0
>
[0}
E.
s
—
<C
=
@
Q
X
>
[0
£
- T=15K

14 144 1.18 1.22 1.25

1B (1)

Figure 4. MO in silicene, for different temperatures, with g = 0.25 eV and elE, = 92
meV, resulting in a beating phenomenon with (w; — ws) /w; ~ 0.03. All cases shown
correspond to the region between the beating maximum at xj; = 4/ (w1 —w2) and
the minimum at z,, = 4.5/ (w; —wsz). In (a) we see the MO at T' = 0, where we can
observe the fine structure of the MO, due to the spin splitting (SP) and valley mixing
(VM). For T = 0.1 K in (b), the MO are now damped, but one can still observe the
SP. Increasing further the temperature to 7' = 0.3 K in (c), the small peaks due to the
SP disappear, although the VM around the beating minimum still can be seen. If we
increase further the temperature to 7' = 1.5 K in (d), then the VM also disappears in
the MO. Thus we say that at this stage the fine structure of the MO is damped due
to the temperature.
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In figure 4! we show the MO for different temperatures, in the case of silicene with
pw=0.25eV and elE, = 92 meV. This gives w; > 0 and wy > 0, with (w; —@ws) ~ 3.6
T, so we are plotting the region between the maximum at zp = 4/ (W1 —wy) andythe
minimum at x,, = 4.5/ (w; — wy). The temperatures considered, for this particular case,
are specifically chosen to represent how they affect the observation of the spin splitting
(SP) and the valley mixing (VM) behaviour that occurs around thedeatinguminimum.
Thus, starting from the 7" = 0 case in figure (a), we clearly observe the fine structure of
the MO, due to the spin and valley. As we increase the temperatuire, all the peaks start
to broaden, and depending on 7', some peaks would no longer be oberved. First of all,
in figure [4b), we see that at 7" = 0.1 K, the peaks are nowbroaden,/but nevertheless
one could still appreciate the SP in the MO, which is seen as the small bumps between
the bigger peaks [49]. But if we continue increasing the temperature, we get to the
situation shown in figure [fl(c), where for 7' = 0.3 K the MO, aré broaden such that the
SP cannot be observed any more. However, we still see the VM behaviour in the MO
when we are at the minimum region (1/B around 1.25:T), due to the broken valley
degeneracy. Increasing the temperature further, we evenﬁlally get to the state shown
in figure (d), where the VM also disappears. This last state is maintained when the
temperature continues to increase, where the MO are more damped but the form does
not change, corresponding to a pure beating phenomenon. We shall now study in detail
the situations considered, namely ‘how Wwescan estimate in general the temperature at
which the SP and VM would no longeribe observed. As discussed above, in this low
temperature situation it will beumore useful'to use equation (7). In order to do that we
will first analyse how the last termnin equation alters the observation of each MO
peak at non zero temperature.

N
3.1. Temperature effect over éachdO peak

We will study the temperaturereffect over each MO peak, which will be useful in the
subsequent analysisssI'hus,. we consider, in general, a unique MO peak at a given B
and we omit the éffect of ethers peaks close to By (either due to spin splitting or valley
mixing). Then, from equation [7| the magnetization is (we will take s = 1, but the
analysis is valid for any.spin and valley)

My = i arctan {cot [m} (% + A) + 7Tf0:| } : (8)

™

with-Fp ={1 + exp [Bus (By — B) /BoA]} . The broadening of the MO at T # 0 is
entirely dietated by the behaviour of Fj;. This can be seen considering that, by the
properties of arctangent, equation is equivalent to [54]

MT:{M+A(1—]—“0) 1/B < 1/B,

: 9
M — AF, 1/B > 1/B, ©)

where M = Aarctan {cot [7w (4 + A)]} /7 is the magnetization at zero temperature.
Notice the change of sign in the exponential, which is consistent with the limit My — M
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if T'— 0 (8 — o0). In figure || it is schematically plotted M and My, as a funetion ef
1/B, plus the exponential functions which give the temperature correction. &rom this
we can identify two properties of the broadening due to the temperature: the shift«d
of the extrema and the width w from which My ~ M. Both § and w depend on the
temperature, and in general also depend on By and p. They are obtained from the
equations

OMy (l:i_(s) =0 < (10)

fo(i:i—w) <1 (11)

The first equation can only be solved numerically. In thisiway oné obtains 6 = 0 (T, By),
and in general, for the same temperature, (T, Bog) # 0 (T, Bg2). This dependence of
d with the magnetic field implies a broken periodieity of the MO with 1/B at very low
temperatures, although usually one has § (T, By;) =~ 0(1%By2) < 1/w. Nevertheless,
as we will show later, when the temperature is increased one needs to consider the
effect of the surrounding peaks, in which case the shift reaches the limit § — 1/4w,
equal to the medium of the maxima and zero of.the MO peaks. On the other hand,

=M (T=0)
Ak ——M (T#0)

% 15 &b (Bo~ B) /BoA]

Magnetization
<
i

A
1 + exp[—Bpp (Bo— B) /By A] -

Figure 5. Schematic representation of the temperature effect over each MO peak, as
expressed by equation (7). In red (dashed line) it is shown a magnetization peak at
T = 0, located at 1/By, and in blue (solid line) the magnetization at T # 0. It is
also shown the exponentials that broaden the magnetization at non zero temperature,
as described by equation @ The peaks modification due to the temperature can be
described by the parameters w and ¢, as indicated. The width w measures the reach
of the temperature effect over each peak, while § measures the extreme shift from its
location at T' = 0.

Page 10 of 24
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the width w can be estimated from equation by choosing a cutoff ¢ <1 such
that Fo (1/By — w) = o. This gives a width w ~ In(1/0 — 1) kgT'A/up By, where from
our experience it is sufficient to take o ~ 1072 so In(1/0 — 1) ~ 5. The widthiw-is
a measurement of the local influence of the temperature over each MQ, peak, and as
such it will be fundamental in estimating the temperature limits corrésponding to the
different behaviours shown in figure [}

3.2. Spin splitting

~
To study the influence of temperature over the observation of the'spin splitting (SP) in
the MO, we follow the same lines as we did in the graphene ¢ase54], applying it to
each of the frequencies now present. Then we consider 4wo MO peaks with frequency
w, at a given LL n, separated due to the SP, located imsgenerakat 1/B; = n/w — A and
1/By = n/w + A. From equation , the corresponding magnetization is

M = é Z arctan {Cot {mu (i + sA) +.7r]:12} } , (12)
g s==1 B

with Fig = >, 1, {1 +exp[Bus (B, — B) JAB, )Y We know, from figure , that
the width w of this exponentials determines the,observation of the MO at non zero
temperature. Thus, for two peaks separated by 2A due to the SP, one would expect
to see the SP in the MO only if w < 2A. In fact, this result can be easily visualized
by plotting equation andithe corresponding exponentials, as done in the figure .
This was done in graphene [54], where one observes that as w approaches 2A, the SP
disappears in the MO, and one is leftawith one oscillation around the middle of the
peaks. Consequently, given tha{w ~ BkgTA/upB, from the condition w = 2A we get
the spin temperature

T, ~ 2MBB,
5kp

(13)

where B = w/n s the'middle of two peaks separated due to the SP. The condition
to observe the spin splitting in the MO is that T' < T, which in order of magnitude
means that the thermal energy kg7 is lower than the Zeeman energy 2ugB. This is the
same temperature that was found in graphene, which is expected because T depends
only on_ the spinnsplitting effect in the MO and not on the broken valley degeneracy
that appears in2D buckled crystals. Moreover, it does not depend on the particular 2D
material preperties, such as vg, [ or Ao, which again is expected because the SP alters
the energyflevels by the introduction of the crystal independent Zeeman term 2ugB.
In the particular case considered in figure 4} we get that for 1/B ~ 1.1 1/T, we have
T, ~ 0.25 K, so for the region of magnetic fields considered, one would not observe the
SP in“the MO at T > 0.25 K. This is consistent with Figs. 4(b) and 4(c), where at
T =0.1K < T, we see the SP, but at T'= 0.1 K > T, we do not.
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3.3. Valley mixing

We call the valley mixing (VM) effect in the MO to the mixing pattern that appears
around the MO minimum, as can be seen in figures[4|(a)-(c). This effect is independent.of
the SP and is caused by the broken valley degeneracy, which overlaps the MO peaks with
different frequency. The way this overlap is produced determines how isthe resulting
mixing behaviour. To understand this, consider the minimum c¢ondition, when the
peaks with frequency w; and ws are between one another (destructive interference), as
separated as possible. This is shown in figure [6] where on the left we plotted the peaks
with frequency w; (dashed line) and wy (solid line), and on thewight the resulting MO
obtained by their summation (for the sake of simplicity, we shall omit the SP of each
peak, but the result obtained is independent of it). Oumnthe left; the vertical lines in

(a) 1/w2§

1w

(b)

Figure'6. Relationship between the valley mixing (VM) in the MO around the beating
minimum, and the extrema shift 6 of the MO peaks. On the left it is shown two MO
peaks M, (dashed line) and M (solid line), with frequencies wy and ws, as a function
of 1/B, where the vertical lines in red correspond to the peaks location at 7" = 0 while
the blue lines are the MO at T' # 0. The region of the plot corresponds to the minimum
location in the MO, where there is destructive interference between the peaks. In the
right it is shown the resulting MO around that minimum location, obtained by the
sum of the M; and M,. The case in (a) corresponds to a shift § < 1/4w, for which
the minimum and maximum of M; and Ms are not in the same location, causing the
mixing pattern seen in the resulting MO on the right. On the other hand, when the
shift reaches the limit § = 1/4w in (b), the minimum and maximum of M; and M, are
approximately in the same location, in which case there is no VM in the MO around
the beating minimum.

Page 12 of 24
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red correspond to the peaks locations at 7' = 0, with their periodicity 1/w indicated for
each case. The first situation, figure @(a), corresponds to the case where the MO show
a VM behaviour around the minimum, as can be seen in the right figure. /This can.be
explained by analysing how the resulting MO is obtained from the summation of the
peaks shown in the left figure. There we see that, at this temperature, the MO extrema
shift 0 is less than 1/4w (black dot line), so the maximum and minimum are.not in the
same location, and therefore the MO do not become zero. On the otherchand, when
the temperature increases, the extrema shift ¢ reaches the limit 4/4w for beth peaks, as
shown in figure [6(b), in which case the maximum and minimtm afe ;pproximately in
the same location. This behaviour is maintained if the tempeérature is further increased,
for the shift 0 remains at 1/4w and the increasing of the temperature only reduces the
amplitude of the oscillations. Therefore, the condition to ebserver the VM in the MO
is that the extrema shift ¢ is less than 1/4w.

For the MO M, g, with frequency w; and phasésd;, the extrema shift J of a peak
at 1/B; = l/w; — s/\; is obtained from the equation @M;y/0B [1/B; — pd,,;] = 0, where
p = 1 (=1) for the maximum (minimum) shift. /Thef, using (7). the equation for

Ba? 1 5 [ﬂazwi < 1 1 )]
1= E —sech — — — —pd . 14
8/1, (1/Bl — pép,l)2 7 Bn Bl Bn b ! ( )

obtaining § becomes

The equation can be solved numerically for each B; as a function of the temperature,
obtaining that § follows an éxponential distribution, with the limit 6 — 1/4w,;. The
temperature at which we get this'limit can be estimated from the relation of § with the
width w of the exponential associated with the peak at B, obtained from equation ({11]).
This was done in figure [T} wheze,we Show the numerical solution of equation for
§, and the width w = S5kgT A/ ugBo (considering Fy (1/By — w) = o with o ~ 1072).
The values correspondsto silicene;, with © = 0.25 eV, el E, = 92 meV, and considering
the spin up peak with frequency w; = 137.53 T at [ = 172, which gives 1/B; ~ 1.25
1/T (thus the shiff andywwidth calculated correspond to the peak around the minimum
in figure [4). Then we can see, in figure [7] that not only § tends to the limit 1/4ws,
but also thatwhen itydees it w = 1/w; . Hence, referring to figure , for a given peak
the extrema shift 0 approximately reaches its limit value when the width w is about
the period-ef escillation 1/w. This gives an estimation for the temperature T, at which
0 — 1/4w, for then w ~ 1/w and therefore

_ hugeB
v 5#[6’]3 ’

(15)

Then, following figure [6] 7, is also the temperature at which the valley mixing would
not. longer be seen in the MO. In that case it should be noted that the magnetic field
that goes into equation (15)) corresponds to the peaks at the destructive interference,
or the absolute minima, that is 1/B = (r 4+ 1/2) / (w1 — wy) with r an integer. For the
particular case of figure [4] we get 7, ~ 1.48 K. This is in agreement with figure [4(d),
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Figure 7. Relationship between the extreme shift g and the width w of a MO peak,
as defined in figure 5] for silicene, with p =.0.25 eV and elE, = 92 meV, considering
the peak with frequency w = wy = 187.5 T at 1/By = 172/wy — Ay = 1.25 1/T. In the
red dashed line it is plot ww, where w =5TA/upBy is the width of the exponential
associated with the peak.at 1/By, as considered in equation . In the blue solid line
it is plot 4wd, where ¢ is the maximuin shift obtained numerically from equation ,
with B; = By and p = 1. As'we,see, 0 tends exponentially to 1/4w, and when it does
it we have w 2 1/ws In other words, the maximum shift reaches its limit value when
the range of the temperature influence over each MO peaks is bigger than the peaks
separation 1/w.

N
where for T' = 1.5 K one does not see the VM in the MO. It is interesting to compare the

valley temperature 1;, swith/the spin temperature T given by equation . We have
T,/ T, = 2upu/hvie, which from equations and implies T/T,, = 2Aw. Thus the
ratio between thesé two, temperatures is equal to the ratio between the period 1/w and
phase difference,2A of the peaks (and this ratio is equal for all peaks). Of course, this
is an expectedsresultybecause each temperature was calculated from the width given by
equation , with w =2A for Ty and w = 1/w for T,.

3.4. High temperature MO approximation

When7" >, «we can say the fine structure of the MO is damped by the temperature,
and one is(left with oscillations whose extrema, for each frequency, are always shifted
1/4wifrom/the peaks locations at 7' = 0. In this situation it becomes more convenient
to describe the MO using the LK formula given by equation @, for then we can
approximate sinh (Ap) ~ exp (=Ap). Indeed, this approximation implies exp (—Ap) < 1
or \p > 1 (XA = 4n?ukgT/a?B), which is satisfied for all p if T > hvieB/2n%uks =
5T,/2m* ~ T,/4. Thus it is good approximation to take sinh (Ap) ~ exp (—Ap) if

Page 14 of 24
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T > T,. Then the summation over p in equation @ can be easily evaluated to
Asin [27w; (1/B + sA;)] cosh (), where we used the fact that in this regime cosh (\) > 1
so cosh (A) + cos[2mw; (1/B + sA;)] =~ cosh(X). We can further approximatesthe
expression for Mp by noticing that in this high temperature regime,sthe difference
between the amplitudes A; is practically negligible, so we can usérthe amplitude
Ap/4, where A, =237, Aj ~ 2 [N + (elE,)? — (%] /ép. Thengrewriting the sine
summation in equation @, we get the result

kgT~ wkgTy
sech 3 cos (yus)

X sin {M} cos {M} ; (16)
B

where we defined v = 2mpu/hvde. Tt is instructive to analyseleach term in equation .
The temperature effect is entirely contained in the term (kgTy/B)sech (rkgT~/B),
which as expected goes to zero as T increases, and itiactgyby just reducing the overall
amplitude of the MO. In other words, in this regime the temperature does not modify
the shape of each MO peak, which of ¢ourse is expected, as we are at temperatures
such that we already reached the limit d,—"1/4w for all B considered. The term
cos (yup) is independent of the maguetic field and contains the effect due to the SP,
which then only acts as a reduction, factorsin, the MO amplitude. Lastly, the last
two trigonometric functions in equation give the MO profile. Under the beating
condition (w; — wq) /wy < 1, thefirst term causes the internal, small period oscillations,
whereas the second acts as the envelope of the internal oscillations. This separation
between each contribution will be particular useful in order to obtain the MO envelope.

N

3.5. MO envelope

We shall now obtain an. expression for the MO envelope, restricting ourselves to the
beating condition 80 that (wy— ws) /w1 < 1. In the general case, at a given temperature
one should numerically obtain the shift § as function of B, and from it construct the MO
envelope, as wasidone ingraphene [54]. The generalization to 2D materials with broken
valley degeneracy is trivially done by taking into account the two frequencies involved
and the resulting beating phenomenon. For simplicity we will omit this transition region
and comsider only the case of high temperatures, such that § = 1/4w. This implies
T > T, for all the magnetic field considered, in which case it is convenient to work with
equation for the MO. To obtain its envelope we just have to eliminate the internal
oscillations in the sine function by evaluating it at its maximum value. Thus we get
envelope

" B B B

The fact that the envelope is obtained when sin [ (w; +wy) /B] = 1 implies that
the extreme shift for the internal oscillations is of the form 1/B = 2I/(w; + ws) —

T T —
E~A Gl ’ysech (WkB 7) cos (yup) cos [—W (w1 w2>} ) (17)
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1/2 (w1 + ws), which resembles 1/B = [/w — § with w = (w; +ws) /2 and 0 = 1/4w.
Thus we get our previous result that at this regime the extreme shift is equalito 1/4w;
with the frequency being the average between w; and w,. From equation we can
also get the temperature decay envelope E; = E/cos|m (w; — ws) /B].olIn figure [t
is shown the MO and its envelope in germanene, for 7" = 3 K with@ell, = 25 meV
and p = 0.25 eV. In this case, from equation we have T, ~ 2.6'K foral/B = 0.5
1/T. Hence T > T, for all the B considered and therefore the MO (and its €nvelope are
given by equations and . It should be noted that due to the Emperature, not
only the oscillation amplitude is damped, but also there is a shift.6f each MO beating
maximum from its location at T" = 0. At zero temperaturépthis maximum occurs at
1/By = 1/ (w1 — ws), with r an integer (see figure [3), but at mon zero temperature,
the new maximum occurs when 0E /0B = 0, and becauseésthe temperature decay E,
depends on B, then its solution is no longer 1/B),4 Thisican be seen in the zoomed
oscillations in figure , where the decay envelope Egi(calculated considered the maxima
at 1/By = r/ (w1 —ws)) does not exactly passéover. the MO extrema. On the other
hand, the zeros in the MO are fixed at (r + 1/2) /w;, =), the same location of the
beating minimum at 7" = 0. From an/experimental point of view, this is an useful
result because the distance between the MO modes will be always the beating period

x107°

T=3K
eIEZ =25 meV
2 n=0.25eV

"“HM‘W‘ Qe

.

N

M (meV/TA?)
o

0.5 0.6 0.7 0.8 0.9 1
1/B (1/T)

Figure 8. Magnetic oscillations in germanene, for T = 3 K with elE, = 25 meV
and p = 0.25 eV, such that (w; —wsy) /w; =~ 0.07. In this situation, the fine structure
of the MO is lost, given that from equation we have T, ~ 2.6 K for 1/B = 0.5
1/T. Thus the MO can be expressed with the Eq . The beating envelope E in
blue is given by equation , while the temperature decay envelope Ey4 in black is
E = E;cos[n (w1 —ws) /B].

Page 16 of 24



Page 17 of 24

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPCM-113384.R1

Temperature effect on the magnetic oscillations in 2D materials 17

1/ (w1 —wy) = hvd/2XsolE,. Thus, independently of the temperature, by measuring
when the MO is zero one can obtain information about the crystal parameters.

4. Conclusions

We studied the magnetic oscillations (MO) in 2D materials with a hemeycomb buckled
structure, in the low energy approximation, where the electrons' are deseribed by a
Dirac-like Hamiltonian. Examples of these system are silicene, gefmanene, stanene and
phosphorene. We considered a perpendicular electric and magnetic field, taking into
account the spin orbit interaction (SOI) and the Zeeman efféet. For a ¢onstant positive
Fermi energy, we showed that, at zero temperature, the MO can b¢ decomposed as the
sum of four sawtooth oscillations (SO), associated with the change of valley and spin
in the last energy level occupied. The four SO consist of two unique frequencies, each
one with two different phases due to the spin splitting. The frequencies depend on the
crystals properties, as well as the Fermi energy and electric field, and the corresponding
oscillation occurs only if they are positive. Hen¢e, dépendifig on the values of the Fermi
energy and electric field, one can have enly one frequency in the MO, or directly no
oscillation. When both frequencies are present, the MO show an interference pattern.
A beating phenomenon is seen only if the frequencies are close, which results in a rombo-
like pattern in the MO at zero temperature. When the frequencies are further apart, the
MO show a more disperse, non-beating pattern, where the behaviour depends specifically
on the values of the frequencies. We studied the condition to observe a beating in the
MO, obtaining that the lower the Fermi energy, the lower the perpendicular electric field
needs to be.

At non zero temperaturesowe considered the broadening of the MO using two
different approaches. Omne wa$ the Lifshitz-Kosevich (LK) formula that considers the
temperature effect bystherintroduction of a reduction factor. The other approach,
recently developed in graphene, considers the temperature effect by local corrections
over each MO peak and. thus is particular useful at low temperatures. Using this last
approach we studied how the increase of the temperature alters the observation of the
fine structuresof-the, M@, due to the valley and spin. We showed that this can be
related to the widthof the Fermi-Dirac like functions that modify each magnetization
peak at non zero temperature. Specifically, we obtained that in order to observe the
spin splitting (SP), the width must be lower than the MO phase difference. Likewise, in
order to ebserve valley mixing (VM) effects in the MO, the width must be lower than
the'MO period. When the temperature is such that the SP and VM are no longer seen,
then the MO is best described by the LK formula, for one can approximate and easily
evaluatethe series. We then obtained a simple expression for the MO, and its envelope,
where one can clearly see how the different frequencies produce a beating phenomenon.

The results obtained show unique properties in the MO in 2D materials. The
interplay between the valley and spin, under a perpendicular electric field, gives rise to
oscillations with different frequencies and phases, a behaviour not seen in conventional
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metals. Because of this, by studying the shape of the MO one can obtain information
about the 2D materials parameters. For instance, we showed the presence of zéros in the
MO when there is a beating phenomenon, and the temperature is high enough such that
the SP and VM are not longer appreciable. This may be useful from an, experimental
point of view, for the location of these zeros depends exclusively on the perpendicular
electric field and the crystals properties, such as the Fermi velocitygbuckle height and
SOI. Lastly, we want to remark that the results obtained correspond to<the pristine
case, where no effect of impurities is considered. It is known that the impurities also
broaden the MO, so one would expect a similar behaviour to the ome described for
the temperature. In particular, the higher the impurities concentration, the lower the
temperature necessary to observe the fine structure of the MO."On the other hand, an
in-plane electric field would also be expected to modulate the MO, as has been reported
in graphene.
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Appendix A. MO at zero temperature

We will derive equation fo\r the magnetic oscillations at 7" = 0, for the general
case of a 2D crystal with enérgy levels e¢p, s = ¢ [(s)\so — 77elEz)2 + ozan} VE supB,
where ¢ = +1 for the eenduction and valence bands, o = vpv2he, n =0, 1, 2,... for
the Landau level (LL)randg,s = +1 are the valley and spin indices. Graphene is a
special case, with A\so ~'0 and [ = 0, and therefore the derivation of M will follow an
analogous progedure to the one employed in [54]. We shall repeat the essential steps of
this derivation just fer completeness.

We consider a constant Fermi energy p > 0, such that at zero temperature the
valence/band is, full while the conduction band is partially filled. We will note the

1/2
— SmusB, where we

conduction energy levels ¢, = [(Sm)\SO — 77melEz)2 + aQnt}
haye introdueed the decreasing energy sorting index m = 0, 1, 2,...., so n,, gives the
LI, 4, the valley and s, the spin for the m position. At a given p > 0, all energy
levelsm'=10, 1, 2,..., f are filled, where f is such that e; < u < ey4;. Then the grand
potential at zero temperature is 0 = Qy + qu;:o D (e, — 1), where Qy is the grand
potential due to the filled valence band. It is important to notice that the oscillation
in () is caused only by the last term, due to the conduction band, associated with the

change in the last energy level as B is changed. On the other hand, the first term €2y
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makes a non-oscillatory contribution since the valence band is always filled for p > 0.
: . 1/2
Separating ¢, = &% — g,upB, with &) = [(Sm)\SO — 'r]melEZ)2 + a2nt} / . we call

write the conduction grand potential as

Q¢ = Qo — BMp, (A.1)

where Qp = Zizo D (e — ) and Mp = gD anzo Sm is the Pauli paramagnetism
associated with the spin population. The conduction magnetization is given by
Mo = —-A"1(0Q¢/0B) ,.» where A is the sheet area. Deriving and regtouping we get
1/ Qo 1
Me=——|3— M + = A2
c 23( A+pu)+ +5me (A.2)
where p = NJA =5 _ D/A= A(f —1)/D is the.density. of/conduction electrons,

my, = Mp/A and

f 2
e (SmAso — Nmel )
M = — ; A3

2h Z:o Em + SmusB y (4:3)
It is worth noting that, looking at equation (A.3)), we'see that M’ is related to the SOI
and the buckle height. Thus this contribution is,zero in graphene, while in the other
Dirac crystals it becomes appreciables.especially at large electric field. From equation
(A.2)) we directly see that the MO havesa sawtooth oscillation (SO) produced whenever

p, M’ or mp change discontinuously, Q¢ being continuous always. The SO amplitude
AM is given by

__n )
AM = 2BAp J{AM + 2Amp, (A.4)

where each contribution Ap; AM’ and Amp is determined by the discontinuous
change in the pasameters. ng ny and sy which define the last energy level
occupied. The SO"peaks occur at B; such that c¢(B;) = p. Therefore p =

[(Si)\so — nielEz)2 + Oz2niBi] - —s;upB;, and given that usually pupB/pu < 1, we obtain

1 02 — 2s;
—_— = o 5 MIU/B 5" (A5)
Bl w2 =(sidso — el E,)

From thisswe can_consider four types of MO peaks, taking into account the possible
changes of LL, #alley and spin. Each peak is associated to a fixed valley and spin, with
its oseillation being caused when the LL changes by one. The period of oscillation
is A(1/B)a= 1/By — 1/By, with An = ny —ny = 1, while n = 7, = 17, and
s =»s; =8;. Consequently, from equation we obtain the period A(1/B) and
frequency w = [A(1/B)]"!

B u? — (sAso — nelEZ)2
— v _

(A.6)

Whps
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Then we can write equation (A.5]) as 1/B,, (n;) = n;/wys + A5, where A, is the phase

2s;
Ay = — Slalis . (A7)
p? — (sAso — melE,)

From equations (A.6) and (A.7) we see that wi+ = wir), wi| = wishy whilelAgr =
—Agry, Agry = —Agy, so there are two unique frequencies and phases:, Under the

conditions assumed, the peaks can only occur if w,s > 0 in equagion (A.6).» Indeed,
remember that equation (A.6) was derived from equation considering B; and B,
such that e, = p = €9, with ny > ny. Thus, if w,; < 0 then e <{$Xso — nelEZ)Z,
which for ugB/pu < 1 implies 2g;sup > a?n;. Therefore we have 2(e; — 1) sup >
a®(ny —mny), but e —e; = 0, so 0 > a?(ny —ny). This result means ny < nq, in
contradiction with the initial assumption of ny > n;.

The peaks amplitude A, is obtained from equation . Suppose the magnetic
field is increased so the last sorted position f changes to f.— 1. For Ap and Amp
we easily get Ap = D/A = B/¢ and Amp =_Dupss/A = Bugpsg/¢. For AM’',
when the change is produced we have e; # pg so fiom equation we get
AM' = (sphso — el B,)? /26 (u+ spupB). Thus in general

(sAso — nelE.,)?
p+ sppB
e Wys

T

where we consider pugB/pu < le#Wesare now in position to express the four SO, whose

— b+ sppB

12

(A.8)

amplitude, frequency and phase are obtained from equations (A.6), (A.7)), (A.8)). Each
p ) q y p q ) )

type of peak can be expressed asran _infinite series, so the SO are written as

My Z Ay Z o sin {Qﬂ'pwm (% —~ Am)} : (A.9)

The equation (A.9)ngives’ the SO contribution to the MO. There is still
another oscillatery contribution, which comes from the continuous oscillation in
Qc.  From cequation (|A.9) we see that Q¢ should be of the form Q¢ =
Zns Chs Z;il co$ [27rpwns (%—Ans)] /(7rp)2, where C,, is such that M,,. =
— A~ (0@ /9B),,.4 From equation (A.9) we get Cps = —AB*A, /2w, so the MO
are given by

e S35 L o ()
_ Z Aps— Z (—1>2 cos [27@% (é - Ans)} : (A.10)

p

where we used the fact that 0A,, / 0B ~ 0 so 0C,;/0B ~ —ABA,/w,s. The equation
(A.10) is in agreement with [38], where the oscillating part of the magnetization is
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written as an infinite series. There is still the non-oscillatory contribution’to the
magnetization, from both the valence and conducting band. Nevertheless,4it .can be
shown [37] that when p > |sAso —nelE,|, this contribution cancels and the total
magnetization is given by equation (A.10). From equation we, seenthat the
condition p > |sAso —nelE;| implies w,s > 0, which as discussed above is also the
condition to observe the oscillation corresponding to the peak ns. Thus; beecause we will
be mainly interested with the MO, we shall omit the non-oscillatory conttibution and
take the total magnetization given by equation . It is woerth n(ﬁing that in this
formalism the spin splitting due to the Zeeman effect is already taken into account in
equation ([A.9)), so there is no need to introduce it as a redu€tion factof.

We can further simplify equation by noticing that the ¢esine series is usually
much smaller than the sine series. This can be seen by analysing the corresponding series
amplitude ratio, given by A7 /A;i," = B/w,s. Considering,that for all the 2D crystals
we have a ~ 10 meV//T, and we will work withywalues aréund p ~ 102 meV and
|sAso — nel B.| ~ 10 meV, we have A¢% /A" ~ 40728 [T, Therefore, unless B is very
high we can neglect the cosine series in equation|A.10] Then the sine series can be easily
evaluated to obtain the MO at zero temperature

M = Z % arctan {cot [muns <é — Ans)] } . (A.11)
ns

Finally, equation (A.11)) can be conveniently rewritten by separating the peaks with
frequency wy = wiy = wir| ahdiws = wi| = Wi, with phases Ay = Agy = —Ags and
Ay = Ak = —Ag |, which leads torequation for the MO at zero temperature.

Appendix B. MO at nen zero temperature

We will derive the expression (7)) for the MO at non zero temperature. As it was done in
the zero temperature case, the derivation will follow the same approach already applied
in graphene [54], whichhwwe shall repeat here for completeness. We start with the grand
potential Q7 at 2= 0, for which we can use its non-relativistic expression in the absence
of impurities J37557]x Ltds convenient to separate {21 by the contribution of each peak
associated to theresulting MO. In other words, we separate Qr :Zi:m’s:ﬂ 2, s, where

Qis = —kgT / pis (B)In [1+ ") dF. (B.1)
Here 8 = 1/kgT and p;s (E) = D}, 0 (E — ;) is the density of states (DOS) in the
pristine case, where ¢, s =  [u? + a* (nB — wi)]l/ G- supB are the corresponding energy
levels (we omit the ¢ and n subscripts for simplicity), associated with the MO peaks
withramplitude A;, frequency w; and phase sA; given by equations -, with ( = £1
for the valence band (VB) and conduction band (CB). Replacing p; s (F), the equation
becomes € = —kgT'D ) . In{l +exp[B (1 —eis)]}. The magnetization is given
by My = Ei:1,2,s:i1 M; ¢, where M; = —A™! (8&21-78/83)“. Now, under the condition
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p > 0 and low temperatures such that fu > 1, we always have 3 (u — ¢;5) > Ifor the
VB, so QY (T) ~ QY (T = 0) and (8, /0B) (T) ~ (09,/0B) (T = 0). Ontthe other
hand, for the CB we get

1 (09
e (), e
7

agzs
A Z 0B 1+ e—ﬁ f—cils) ~ (B.2)

If pis such that g, (n = f) < pu < ;s (n = f+ 1), then we camwritefequation (B.2) as

ksTD
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-A i) 0B 1+ e—Bli=ei,s)? (B3)

where MS, (T =0) = D S [ — )./ B — 02, /OB] /A is the CB magnetization
at zero temperature. Because,we are considering Su > 1, then each term in the
exponential is appreciable only-for,B such that ¢, (B) ~ p. Hence, for each term
B — €is), we can expand ;s around B,,, where 1/B,, = n/w; — sA; and ¢; 5 (B,,) = p.
Thus (1 —€;5) >~ pp (Bn =B)B,A# Furthermore, for the terms Je; /0B it is good

approximation to take

Oeis (e)” — 12 + a’w;
0B B 2B (81'73 + S,MBB)
OéQ(JJi AIA
~ = — B.4
2B D (B.4)

where A; , is'given by equation . From this we can also see that the logarithmic terms
in equation (B.3])'are much smaller than the exponential terms, so we can neglect them.
Indeed, we always have In {1 +exp [£5 (1 —€;5)]} <In2<1forn< fandn> f+1,
while the ratio’of amplitude between both terms is r = }kBTD JA; ‘ = 2kgTu/a’w;. Then,
given for the 2D crystals we have a ~ 10meV /y/T, and we will work with values around
p ~10%ameV and |sAso — nelE.| ~ 10 meV so w; ~ 10* T, we have r ~ 10747 [K].
Thus, under the temperatures that we consider, is good approximation to discard the
logarithms terms in equation (B.3)). In this way, considering also the VB magnetization
MY, = MY, (T = 0), and summing over 7 and s, we get the total magnetization
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f

1
Myr =M — Z Aj Z Z 1 + eBuB(Bn—B)/BnAi

i=1,2 s=+1 Ln=0

- 1
" nzzfﬂ 11 BB DB | (B.5)

where M is the magnetization at zero temperature, given bywequation (2). The
expression given by equation holds under the initial agsumpfion cisn=1f) <
p < gis(n=f+1) for each i,s peak, which in turn implies. 1/B;;(n= f) < 1/B <
1/B;s(n=f+1). Therefore, the temperature effect over thesMO is to introduce
factors proportional to {1 + exp [Bus (Bn — B) /B.A]}"hif n < f and proportional
to {1+ exp [Bus (B, — B) /B,A]} " if n > f. Finally, from the properties of the
arctangent and floor functions, equation can begeneralized for all B by introducing

the exponential factors inside the arctangent in Mjwhich leads to equation .
L
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