
J. Lee et al. (Eds.): DEECS 2006, LNCS 4055, pp. 50 – 65, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Transforming Collaborative Business Process Models
into Web Services Choreography Specifications

Pablo David Villarreal1, Enrique Salomone1,2, and Omar Chiotti1,2

1 CIDISI, Universidad Tecnológica Nacional - Facultad Regional Santa Fe,
Lavaisse 610, 3000, Santa Fe, Argentina
pvillarr@frsf.utn.edu.ar

2 INGAR-CONICET, Avellaneda 3657, 3000, Santa Fe, Argentina
{salomone, chiotti}@ceride.gov.ar

Abstract. Languages for web services choreography are becoming more and
more important for B2B integration. However, the development of web
services-based systems is complex and time-consuming. Enterprises have to
agree on collaborative business processes and then derive their respective web
services choreographies in order to implement B2B collaboration. To support it,
this paper presents a MDA approach for collaborative processes. We describe
the components and techniques of this approach. We show how collaborative
process models defined with the UP-ColBPIP language can be used as the main
development artifact in order to derive choreography specifications based on
WS-CDL. The transformations to be carried out are also discussed. The main
advantage of this MDA approach is that it guarantees that the generated web
services choreographies fulfill the collaborative processes agreed between the
partners in a business level.

1 Introduction

Web services are having more and more interest to implement B2B information
systems for carrying out inter-enterprise collaborations. The need to specify these
collaborations based on this technology has led to the requirement of web services
choreography languages. There are several standards proposed to describe web
services-based business processes (also known as web services composition). They
can be classified according to three types of web services composition that can be
defined [3]: Choreography, Behavioral Interface and Orchestration.

Choreography describes collaborative processes involving multiples services, i.e. it
describes the global view of the interactions between the services of the partners
without considering private details of processing required by the partners. The
languages ebXML Business Process Specification Schema (BPSS) [14] and Web
Services Choreography Description Language (WS-CDL) [9] support the definition of
choreographies. BPSS is not oriented to web services. It allows defining business
transactions into binary collaborations. WS-CDL is focused on web services and
supports multi-party collaboration. Behavioral Interface describes collaborative
processes from the point of view of one partner, i.e. the order in which a partner sends
messages to and receives messages from its partners, and hence it describes the public
aspects of a web service including its observable behavior. It is also known as

 Transforming Collaborative Business Process Models 51

conversation protocol [2], business protocol or abstract process [4]. In B2B
collaborations, behavioral interfaces of the partners should be derived from
choreographies or collaborative processes agreed between them. Orchestration
describes both public aspects (derived from the behavioral interface) and private
aspects of the web services, i.e. the service business logic (e.g. internal rules) that
supports the partner’s behavior in the interaction with other partners.

In this paper we focus on the generation of web services choreographies in order to
define the logic of the collaborative processes in a technological level. Currently, web
services choreographies can be specified using the language WS-CDL. However, as it
has been recognized by other authors, choreographies are more a design that an
implementation artifact [3]. They are not intended to be directly executed. Therefore,
for design purposes, the use of an XML-based language to specify choreographies is
less useful than a graphical modeling language. Moreover, business aspects cannot be
captured with WS-CDL. A WS-CDL choreography is defined as one that describes a
collaboration between services in order to achieve a common goal. But support is not
provided to define common goals or other business aspects. In this way, a graphical
modeling language should be provided as well as a procedure for generating
automatically choreographies in a technical language such as WS-CDL.

Due to the fact that choreographies describe interactions as part of the collaborative
processes that partners agree to achieve common goals, they should be derived from
collaborative business process models. These models are designed in a business level
by business engineers and system designers, who are not acquainted with the
technical details of the collaboration. Hence, collaborative process models should be
independent of the technology to enable their implementation by using different B2B
standards according to the technological requirements of the partners [1].

To support the above issues, the Model-Driven Architecture (MDA) Initiative [12]
has been identified as a key enabler to support the modeling and specification of
collaborative processes [17, 18]. A MDA approach enables both the design of
collaborative processes independent of the idiosyncrasies of particular B2B standards,
and the automatic generation of B2B specifications based on a B2B standard from
conceptual collaborative process models. As part of this approach, the UML Profile
for Collaborative Business Processes based on Interaction Protocols (UP-ColBPIP)
has been defined [15,18]. This language allows business engineers to define several
views of the collaboration, from the definition of the partners, their roles and the
common goals, up to the definition of the interaction protocols that realize the
collaborative processes and the provided and required business interfaces of the roles.

In a previous work, we described the generation of technological solutions based
on ebXML BPSS using a MDA approach [17]. We showed how most of the concepts
used by BPSS can be derived from the conceptual elements provided by UP-ColBPIP.
In another previous work, we described the generation of technological solutions
based on web services composition using a MDA approach [19]. In this case we show
how, for each partner involved in a B2B collaboration, BPEL abstract processes can
be derived from collaborative process models defined with UP-ColBPIP. In this way,
we had applied a MDA approach to generate B2B specifications and we also have
validated the UP-ColBPIP language against standard languages. The conclusions
were most of the UP-ColBPIP concepts can be represented in BPSS or BPEL.

52 P.D. Villarreal, E. Salomone, and O. Chiotti

This paper discusses the application of a MDA approach for collaborative
processes to derive WS-CDL specifications. The purpose is to validate that UP-
ColBPIP provides the required conceptual modeling elements to generate
specifications based on web services choreographies. We do not aim to provide a
standard language but to study suitable conceptual elements a collaborative process
modeling language should provide, in order to support the modeling in a business
level and enable the automatic generation of specifications based on standard
languages in a technological level.

This paper is organized as follows. Section 2 describes the MDA approach we
propose for collaborative processes. Section 3 describes the transformation of UP-
ColBPIP models into WS-CDL and WSDL specifications. A brief description of the
conceptual elements provided by UP-ColBPIP is also provided. Section 4 discusses
related work. Section 5 presents conclusions and outlines future research directions.

2 MDA Approach for Collaborative Business Processes

The OMG’s MDA initiative proposes a conceptual framework along with a set of
standards (UML, MOF, XMI, etc.) to build model-driven development methods. In
MDA, the development process consists of: defining platform or technology-
independent models (PIMs), selecting the platform-specific models (PSMs) and
executing the transformations that generate PSMs from PIMs, and finally generating
the code from the PSMs. In MDA, the concept of system can refer to software, an
enterprise, a set of enterprises and so on. In the domain of collaborative processes, the
system to be built includes the specifications of: collaborative processes and partners’
interfaces, both defined with a technology-specific language.

Figure 1 shows the corresponding components of the MDA approach we are
proposing along with the techniques we provide to build the components:

• Collaborative Business Process Models based on UP-ColBPIP. They are the
technology-independent process models and are built through the modeling
language UML Profile for Collaborative Business Processes based on Interaction
Protocols (UP-ColBPIP) [15, 17, 18]. This UML Profile is based on UML 2.

• WS-CDL and WSDL models. WS-CDL models represent the technology-specific
collaborative process models. Web services composition standards are based on the
Web Service Description Language (WSDL), which is used to define the web
services of the partners. WSDL models represent the technology-specific partners’
interfaces. To build WS-CDL and WSDL models we define their corresponding
metamodels, which can be derived from the XML schemas provided by these
standards. Thus, a model corresponds to a XML document. Although the XML
code may be directly generated from UP-ColBPIP models, this intermediate
representation allows the transformation be more modular and maintainable.

• Transformations of UP-ColBPIP models into WS-CDL and WSDL models.
These transformations define a set of transformation rules to allow the generation
of WS-CDL models from UP-ColBPIP models. They define the correspondence
between UP-ColBPIP concepts and WS-CDL and WSDL concepts. These
transformation rules are implemented through a method and a tool for model
transformations, which support the definition and automatic execution of the rules.

 Transforming Collaborative Business Process Models 53

• WS-CDL and WSDL Specifications. The final outputs of the transformations are
the XML files of the WS-CDL process specifications and the WSDL partners’
interfaces specifications. The transformation of technology-specific models into
the corresponding specifications is almost direct. This can be supported through
XML production rules that convert a UML class models into a XML version.

In this work, we focus on UP-ColBPIP models and the definition, in a conceptual
way, of the transformations of UP-ColBPIP into WS-CDL. Transformations of UP-
ColBPIP into WSDL were described in [19]. The other techniques and components
are also out of the scope of this paper. They can be found in [15].

Method and Tool
for Model

Transformations

Components

Collaborative Process Models based on UP-ColBPIP

UP-ColBPIP to WS-CDL
Transformations

UP-ColBPIP to WSDL
Transformations

WS-CDL-based Models WSDL-based Models

 Model to XML Code Transformations

WS-CDL Specifications of
Collaborative Processes

WSDL Specifications of
the Partners' Interfaces

Modeling
Language

UP-ColBPIP

WS-CDL
Metamodel

WSDL
Metamodel

Productions
Rules of XML

Code

WS-CDL and
WSDL

Languages

Fig. 1. MDA Approach for Collaborative Processes

3 The Modeling Language UP-ColBPIP

UP-ColBPIP is a modeling language to design technology-independent collaborative
processes. It encourages a top-down approach and provides the conceptual elements
to support the modeling of four views:

• B2B Collaboration View, which defines the partners, the roles they fulfill, their
relationships, the collaborative agreement parameters and the hierarchy of common
business goals to be fulfilled by the partners in a B2B collaboration.

• Collaborative Processes View, which defines the processes partners have to
perform. They are defined informally extending the semantics of use cases.

• Interaction Protocols View, which defines the interaction protocols that realize the
collaborative processes.

• Business Interfaces View, which defines the business interfaces required by the
partners to support the exchange of messages of the interaction protocols.

54 P.D. Villarreal, E. Salomone, and O. Chiotti

The first and second views correspond to the analysis stage, in which the
requirements of collaborative processes are defined. The last views correspond to the
design stage of collaborative processes. From these last views, technological solutions
can be generated. Following we describe the Interaction Protocols View.

3.1 The Interaction Protocols View

This view focuses on the design of interaction protocols that realize the behavior of
the collaborative processes. In the B2B collaborations domain, an interaction protocol
describes a high-level communication pattern through a choreography of business
messages between partners playing different roles [16]. The purpose of modeling
collaborative processes based on interaction protocols is to fulfill the requirements of
B2B collaborations [15,16]: enterprise autonomy, decentralization, peer-to-peer
interactions, global view of the collaboration and support for negotiations.

In contrast to activity-oriented processes, interaction protocols focus on the
exchange of business messages representing interactions between partners. Activities
each partner performs for processing the information to be received or producing the
information to be sent are not defined in the interaction protocols.

In addition, B2B interactions cannot be restricted to mere information transfer [7].
They also have to express the communication of actions between the partners.
Communicative aspects can be represented in interaction protocols through the use of
speech acts [13]. In an interaction protocol, a business message has a speech act
associated, which represents the intention that a partner has with respect to an
exchanged business document through the message. Furthermore, decisions and
commitments done by the partners can be known from the speech acts. This enables
the definition of complex negotiations in collaborative processes.

UP-ColBPIP extends the semantics of UML2 Interactions to model interaction
protocols. Hence, they are defined using UML2 Sequence Diagrams. Following we
describe the main conceptual elements used to define interaction protocols.

As an example, we describe the interaction protocol Demand Forecast Request,
which realizes a simplified process to manage collaborative demand forecasts. Figure
2 shows the sequence diagram of this protocol, in which partner “A” plays the role
supplier and partner “B” plays the role customer. They are defined by lifelines.

The basic building block in an interaction protocol is a business message. It defines
an interaction between two roles, a sender and a receiver. A business message
contains a business document and its semantics is defined by its speech act associated.
In this way, a business message expresses the sender has done an action, which
generates the communication of a speech act representing the sender’s intention with
respect to the exchanged business document. Also, the message indicates the sender’s
expectative that the receiver then acts according to the semantics of the speech act.
For example, in the message request(DemandForecast), its associated speech act
indicates the supplier’s intention of requesting a demand forecast to the customer. It
also implies the customer has to respond with a suitable speech act, such as agree or
refuse. The suitable speech acts to be used depend on the speech act library selected.

 Transforming Collaborative Business Process Models 55

Xor

Object1 Object2

request(DemandForecast)

Partner A
:Supplier

Partner B
:Customer

agree(ResponseToForecastRequest)

refuse(ResponseToForecastRequest)

{t..t+2d}

{t..t+2d}

{t=now}

ref
Collaborative Demand Forecast

sd <<protocol>> Demand Forecast Request

[Failure]

Fig. 2. Sequence Diagram of the Interaction Protocol Demand Forecast Request

A business message is a one-way asynchronous communication and is managed by
the receptor just as a signal to be interpreted for activating its internal behaviors. This
feature is essential in B2B interactions because the sender’s internal control should
not be subordinated to the receiver’s response.

In addition, a business message may require the sending of a receipt and/or a read
acknowledgment by the receiver towards the sender, for indicating to the sender that
the message has been received and/or understood by the recipient. It is defined in the
atributes isReceiptAcknowledgementRequired and isReadAcknowledgementRequired.

A business document represents the information conveyed by the message. In the
example, the business document DemandForecast contains details about the period,
products and time horizon required for the forecast.

A Control Flow Segment represents complex message sequences in the interaction
protocol’s choreography. It contains a control flow operator and one or more
interaction paths. An interaction path can contain any protocol element: messages,
terminations, interaction occurrences, and nested control flow segments. The
stereotype control flow segment extends the semantics of the combined fragment of
UML2 to provide suitable control flow operators for defining collaborative processes.

The semantics of a control flow segment depends on the operator used: Xor, Or,
And, If, Loop, Transaction, Exception, Stop and Cancel. The And operator
represents the execution of parallel interaction paths in any order. The Xor operator
represents that only one path, of a set of alternative paths, can be executed in case
its condition is evaluated to true. The Or operator represents the selection of several
paths from several alternatives. Each path is executed in case its condition is
evaluated to true. The If operator represents a path that is executed when its
condition is true, or nothing is executed. This can also have an else path, which is
executed when the condition of the first path is false. The Loop operator represents
a path that can be executed while its condition is satisfied. Two types of Loop

56 P.D. Villarreal, E. Salomone, and O. Chiotti

segments can be defined: a loop “For” with the condition “(1,n)”, where its path
must be executed at least one time; and a loop “While” with the condition “(0,n)”,
where its path can be executed zero or n times. The Transaction operator indicates
messages and paths of the segment have to be done atomically, and messages
cannot be interleaved with messages of other paths. The Exception operator
represents a path to be followed if an exception occurs according to the path’s
condition. The Stop operator represents paths that manage exceptions and require
the abrupt termination of the protocol. The Cancel operator represents paths to be
followed to manage exceptions. Different to Stop and Exception operators, the
exception to be managed can occur in any point of the interaction protocol. A
segment with this operator has to be defined at the end of the protocol.

The protocol of Figure 2 has a control flow segment with the operator Xor and two
paths. This segments indicates the customer can respond in two way: it accepts the
supplier’s request and commits to carry out the demand forecast in the future
(message agree); or it rejects the supplier’s request and then the protocol ends.

Conditions represent logical expressions that constraint the execution of a message
or a path in a control flow segment. They are defined in natural language or using
OCL (Object Constraint Language) expressions.

Duration and Time constraints are used to define duration and deadlines on
messages or protocols. They can be defined using relative or absolute dates. In Figure
2, the last two messages have a relative time constraint, which indicates the messages
have to be sent before two days, after the occurrence of the first message.

An Interaction Occurrence represents the invocation of another interaction
protocol referred as the nested protocol. In Figure 2, if the customer agrees on the
supplier’s request, then the nested protocol Collaborative Demand Forecast is
invoked, in which the customer and the supplier agree on a common forecast.

Finally, an interaction protocol can have implicit or explicit terminations. Explicit
termination events are: success and failure. Success implies the protocol ends in a
successful way. Failure implies the protocol ends in an unexpected way, but from the
point of view of the business logic. In Figure 2, if the customer rejects the supplier’s
request, the protocol ends with a failure. Else, after invocating to the nested protocol,
the protocol finishes successfully in an implicit way.

4 Generation of WS-CDL Specifications from UP-ColBPIP
Models

In this section we discuss the generation of WS-CDL specifications from models of
collaborative processes defined with UP-ColBPIP. First, we describe the generation
of type definitions of a WS-CDL document. Then, we describe the transformation of
UP-ColBPIP elements into WS-CDL elements required to generate choreographies
from the protocols defined in a UP-ColBPIP model. We describe the output of the
transformations using the protocol defined in the above section. Figure 3 shows some
parts of the WS-CDL document that is generated from this interaction protocol.

 Transforming Collaborative Business Process Models 57

4.1 Generation of the Package and Type Definitions of a WS-CDL Document

The root element of a WS-CDL document is the package, which contains type
definitions. In UP-ColBPIP, the root element is the B2B collaboration. Therefore, a
B2B Collaboration is mapped into a package in WS-CDL (see line 1 in Figure 3).

Package Information and Type Definitions
1 <package name=”B2BCollaborativeForecasting” ...>
2 <informationType name=”DemandForecast” .../>
3 <informationType name=”ResponseToForecastRequest” .../>
 ...
4 <roleType name=”Customer”>
5 <behavior name=”request_DemandForecast”
6 Interface=”customer.wsdl”/>
7 </roleType>
8 <roleType name=”Supplier”>
9 <behavior name=”agree_ResponseToForecastRequest”
10 Interface=”supplier.wsdl”/>
11 <behavior name=”refuse_ResponseToForecastRequest”
12 Interface=”supplier.wsdl”/>
13 </roleType>
14 <relationshipType name=”CustomerSupplier>
15 <role type=”supplier”/>
16 <role type=”customer”/>
17 <relationshipType/>
18 <participantType name=”Partner B”>
19 <role type=”customer”/>
20 <participantType/>
21 <participantType name=”Partner A”>
22 <role type=”supplier”/>
23 <participantType/>
24 <channelType name=”CustomerChannel”
25 action=”request”>
26 <role type=”Customer”/>
27 <reference>
28 <token name=”customerRef”/>
29 </reference>
30 </channelType>

 1 Choreography Definitions
31 <choreography name=”DemandForecastRequest”
32 complete=”cdl:globalizedTrigger(‘termination’,
33 ‘customer’,’SuccessTermination’,‘supplier’)or
34 cdl:globalizedTrigger(‘termination’,‘customer’,
35 ’FailureTermination’,‘supplier’)”
36 isolation="false" root=”true” coordinated="true">
37 <relationship type=”CustomerSupplier”/>
38 <variableDefinitions>
39 <variable name=”customer_channel”
40 channelType=”CustomerChannel”
41 roleType=”Customer”/>
42 <variable name=”demandForecast”
43 informationType=”DemandForecastType”
44 roleType= “Customer,Supplier” />
45 <variable name=”FailureTermination”
46 informationType=”BooleanType”
47 roleType= “Customer,Supplier” />

48 </variableDefinitions>

Choreography Definitions (cont.)
49 <sequence>
50 <interaction name=”request_DemandForecast”

51 </interaction>
52 <choice>
53 <sequence> <!-- It represents the first interaction path -->
54 ...
55 </sequence>
56 <sequence> <!-- It represents the second interaction path -->
57 <interaction name=”refuse_ResponseToForecastRequest”
58 operation=”refuse_ResponseToForecastRequest”
59 channelVariable=”supplier_channel”
60 align=”true” initiate=”false”>
61 <participate relationshipType=”CustomerSupplier”
62 fromRole=”Customer” toRole=”Supplier”/>
63 <exchange name=”ResponseToForecastRequest”
64 informationType=”ResponseToForecastRequestType”
65 action=”request”>
66 <send variable=”cdl:getVariable(‘
67 ResponseToForecastRequest,’Customer’)”/>
68 <receive variable=”cdl:getVariable(‘
69 ResponseToForecastRequest,’Supplier’)”/>
70 </exchange>
71 <timeout time-to-complete=”t..t+2d”
72 fromRoleTypeRecordRef=”record-timeout”
73 toRoleTypeRecordRef=”record-timeout”/>
74 <record name=”record-timeout”
75 when=”timeout”
76 causeException=”TimeOutException”>
77 <source variable=”True”/>
78 <target variable=”cdl:getVariable(‘
79 timeOutException’,’Supplier’,’’)”/>
80 </record>
81 </interaction>
82 <assign roleType=”Customer”>
83 <copy name=”copyToCompleteChoreography”
84 <source expression=”true”/>
85 <target variable=”cdl:getVariable(‘
86 FailureTermination’,’’,’’)”/>
87 </copy>
88 </assign>
89 </sequence>
90 </choice>
91 <perform choreographyName=”CollaborativeDemandForecast”
92 block=”true”/>
93 </sequence>
94 </choreography

 1

Fig. 3. Fragments of the WS-CDL document generated from the protocol of Figure 2

WS-CDL informationType definitions are derived from the business document
types defined in the collaborative processes view of the UP-ColBPIP model. They
represent a business document type from a content B2B standard and contain a
reference to the XML Schema provided by the standard. They are used to indicate the
type of the business documents exchanged in collaborative processes. In Figure 3,
lines 2-3 define the business document types to be used for the protocol of Figure 2.
Furthermore, general information types, such as boolean, can also be generated.

58 P.D. Villarreal, E. Salomone, and O. Chiotti

A role defined in a B2B collaboration is mapped into a roleType in the WS-CDL
document. A roleType enumerates observable behavior a participant can exhibit in
order to interact. This behavior is defined according to the operations provided by a
WSDL interface of the participant. In the business interfaces view of a UP-ColBPIP
model, business services of the required and provided interfaces of a role indicates
the business messages that roles can send and receive, respectively. Hence, a
behavior is generated in a roleType for each business service defined in the
provided business interface of the role. For example, in Figure 3, lines 4-13 define
the role types and its behaviors corresponding to the roles involved in the protocol
of Figure 2.

A relationshipType in WS-CDL defines a relationship between two roles and
optionally the subset of the behavior they exhibit. A relationshipType is derived from
the B2B relationship connector defined in the B2B collaboration, which specifies a
static relationship between two roles. As an example, see lines 14-17 in Figure 3.

A partner can play several roles in a B2B collaboration of a UP-ColBPIP model.
Therefore, for each partner a participantType is defined in WS-CDL with the roles it
has to play. For example, in Figure 3, lines 18-23 show the participants generated.

The last type definitions are channelTypes. There is not a corresponding element in
UP-ColBPIP. However, a channelType is defined for each role to indicate the channel
through which the role will receive messages (e.g.: see lines 24-30 in Figure 3).

4.2 Transformation of Interaction Protocols into WS-CDL Choreographies

An interaction protocol is mapped into a choreography. For the root interaction
protocol of the UP-ColBPIP model, a root choreography is generated.
Choreographies derived from interaction protocols are generated in the same
package, because it corresponds to the B2B collaboration where the protocols were
defined. Several attributes describes a WS-CDL choreography. The isolation
attribute is set to “false” because variables (e.g.: business documents) defined in an
interaction protocol can only be visible within the protocol. However, they can be
correlated with variables of nested protocols as it is explained further on. The
coordination attribute is set to “true” since an interaction protocol assumes the roles
agree on how it is ended.

References to relationships between roles are generated matching the roles of the
relationship types and the roles of the interaction protocol that is being transformed.

Then, choreography’s variables are defined. Business documents used in the
interaction protocol are mapped into variables with the corresponding information
type. A variable used in a condition of a control flow segment is also mapped into a
variable in the choreography. Channel variables are generated for each channel type
defined. Variables generated are made available to each role.

In Figure 3, lines 31-48 show the choreography generated from the interaction
protocol of Figure 2. Some of the variables generated are also showed.

Once the choreography has been defined, its activities are derived from the
elements that make up the interaction protocol’s choreography, as it is described
below.

 Transforming Collaborative Business Process Models 59

4.2.1 Transformation of Business Messages
A business message of an interaction protocol is transformed into an interaction. Both
elements are the basic building block in their respective languages. An interaction in
WS-CDL can be: a request, a response or a request-response (i.e a synchronous
interaction). To represent the asynchronous communication of a business message, it
is mapped into a request interaction.

Acknowledgements in a business message are used to assure the state
synchronization between two roles when they exchange a message. WS-CDL does
not support the definition of acknowledgments in an interaction. However, state
synchronization can be achieved in WS-CDL defining an interaction as aligned, i.e.
setting to “true” the align attribute. Another solution is to generate a request-response
interaction where the response exchanges correspond to the acknowledgements.

The operation attribute of an interaction, which specifies what the recipient of a
WS-CDL message should do when it is received, is derived from the signature of the
business message, because it corresponds to one of the business services defined in the
provided business interface of the receiver role. The channelVariable of the inter-
action is generated according to the channel in which the role is the target of the
interaction. The initiate attribute is true if the business message represents the first
interaction in the interaction protocol. The participants of the interaction are derived
from the lifelines representing the receiver and sender role of the business message.

A business document conveyed in a business message is mapped into an exchange,
which defines the information to be exchanged during the interaction. The action
attribute is set to “request” to represent the asynchronous communication of the
business message. In addition, the send and receive variables of the exchange are also
generated from the business document of the business messages, in order to both roles
save the exchanged business document.

If a business message has a duration or time constraint associated, a timeout is
generated. If it has a duration constraint, the time-to-complete attribute contains the
timeframe within which an interaction must complete after it was initiated. If the
message has a time constraint, the time-to-complete attribute contains the deadline
within which an interaction must complete after it was initiated. The duration and
time constraints are those provided by UML. They can be defined in relative or
absolute time and using intervals. However, in WS-CDL a timeframe or a deadline
has to be defined in absolute time. Hence, the time-to-complete attribute is generated
with the same value (in relative or absolute time) defined in the duration or time
constraint of the business message. Then, the developers have to redefine the value of
this attribute in case a relative time has been used. The fromRoleTypeRecordRef and
toRoleTypeRecordRef attributes are also generated with a reference to a record of the
interaction, which is used to notify both roles when a timeout exception occurs. In this
case, the when attribute is set to “timeout”.

Finally, a business message of an interaction protocol can have multiple instances.
However, multiple instances of an interaction are not supported in WS-CDL.

In Figure 3, lines 57-81 define the interaction generated from the business message
refuse(ResponseToForecastRequest) of the protocol of Figure 2.

60 P.D. Villarreal, E. Salomone, and O. Chiotti

4.2.2 Transformation of Control Flow Segments
They are transformed into WS-CDL control flow activities according to the operator
used (summarized in Table 1). WS-CDL control flow activities are: sequence,
parallel, choice and workunit. They capture the basic control flow constructs.

A control flow segment (CFS) with the operator Xor is mapped into a choice
activity. This type of CFS can represent an event-driven choice or a data-driven
choice, such as the choice activity of WS-CDL. A CFS without conditions represents
an event-driven choice, meaning that the choice depends on the occurrence of the first
element defined in one of the interaction paths. Else, a CFS with conditions represents
a data-driven choice. The first type of CFS is mapped into a choice activity, and a
sequence activity is generated for each interaction path. The second type of CFS is
mapped into a choice activity and a workunit activity is generated for each interaction
path. The condition of the path is transformed into a XPath expression defined in the
guard attribute of the workunit. Its repeat attribute is set to “false”. Its block attribute
is also set to “false” because variables used in the conditions of CFSs can be different
in each interaction path and it is assumed that the variable information is available at
the moment of the evaluation.

Table 1. Transformation of control flow segments into WS-CDL control flow activities

Control Flow Segment WS-CDL Control Flow Activity
Xor (data-driven choice) A Choice and a Sequence activity for each interaction path
Xor (event-driven choice) A Choice and a WorkUnit activity for each interaction path
Or A Parallel activity and a Choice for each alternative interaction

path. In the Choice activities, two WorkUnits are defined.
And Parallel activity
Loop (0,n) WorkUnit. Guard=”Repetition condition”. Repeat=”True”
Loop (1,n) WorkUnit. Guard=”True”. Repeat=”Repetition condition”
If WorkUnit. If it contains two paths, it is mapped as a Xor
Stop Exception WorkUnit
Cancel Exception WorkUnit

A CFS with the operator And is mapped into a parallel activity and a sequence
activity is generated for each interaction path.

A CFS with the operator Or cannot be mapped into a direct way in WS-CDL. Like
BPEL, it does not support a construct representing several activities can be executed
and at least one must be executed. However, this CFS can be represented in WS-CDL
in the following way. A parallel activity is generated and within this activity a choice
activity is generated for each alternative interaction path. Within the choice activity,
two workunit activities are defined, one representing the activities to be carried out in
case of the condition is evaluated to true and another one to represent the opposite
case. This last activity is generated to guarantee the termination of the parallel activity
because it completes successfully when the enclosed activities complete successfully.

A CFS with the operator If is mapped into a workunit if it has only one interaction
path. The block and repeat attributes are set to “false” and the guard attribute contains
the CFS’s condition. If the CFS has two interaction paths, it is transformed into the
same way that a CFS with the operator Xor and two interaction paths.

 Transforming Collaborative Business Process Models 61

WS-CDL does not distinguish between loop “For” and loop “While”. Loops can be
defined with a workunit. To represent a CFS with a loop “For”, a workunit activity is
generated with the guard attribute settled to “true” and the repeat attribute with the
repetition condition. To represent a CFS with a loop “While”, a workunit is generated
with the repeat attribute settled to “true” and the guard attribute with the repetition
condition. In both cases repetition condition is derived from the CFS’s condition.

A CFS with the operator Transaction cannot be mapped into any construct of WS-
CDL. It does not support the definition of transactions for interactions, such as in
ebXML BPSS. A CFS with the operator Exception cannot also be mapped into any
construct of WS-CDL. It does not support the definition of exception blocks in a
specific point of the interaction and that does not require the end of the choreography.

A CFS with the operator Stop or Cancel is mapped into an exception workunit
defined within the exceptionBlock of the choreography. Although WS-CDL does not
support the definition of exception blocks in specific points of the choreography, the
CFS with the Stop operator can be transformed into an exception workunit, where its
guard attribute contains the exception condition derived from the path’s condition of
the CFS. If a CFS with the operator Cancel has an interaction path with the condition
“TimeException”, an exception workunit is generated with a guard using the WS-
CDL function hasExceptionOccurred. The parameter exceptionType of this function
contains the name of the caused exception according to the defined in the timeout
elements of the generated interactions. In the other cases, for each interaction path
defined in the CFS with the operator Cancel, an exception workunit is generated with
the guard attribute containing the exception condition defined in that path. The above
transformation indicates that the Stop or Cancel CFSs have the same semantics,
except that a Stop CFS can be defined in a specific point of the protocol.

In Figure 3, lines 52-56 and 89-90 show the activities generated from the CFS with
the operator Xor of the protocol of Figure 2.

4.2.3 Transformation of Terminations
An interaction protocol can have an implicit termination, such as the WS-CDL
choreographies. Hence, it is not necessary to generate any WS-CDL element if the
protocol has an implicit termination. Also, an interaction protocol can have explicit
terminations: success or failure. However, there is not a corresponding construct in
WS-CDL that represents the semantics of these terminations. Moreover, WS-CDL
does not provide a construct to define terminations in a specific point of the
choreography, such as the used in ebXML BPSS (success and failure states) and
BPEL (terminate activity). To represent an explicit termination in WS-CDL, we have
to add a condition in the complete attribute of the choreography. A termination
variable is added to the choreography and available to both roles. After the activity
where the termination should occur, an assign activity is added to set to “true” the
value of the termination variable in order to the expression of the choreography’s
complete attribute evaluates to true and the choreography completes. A termination
variable can be added to the choreography to represent a success termination and
another one to represent a failure termination. In Figure 3, lines 32-35 and lines 82-88
show an example.

In addition, a WS-CDL finalizerBlock does not have a correspondence with any
modeling element of UP-ColBPIP, therefore it cannot be derived from interaction

62 P.D. Villarreal, E. Salomone, and O. Chiotti

protocols. However, this construct can only be used in non-root choreographies and it
is not clear when a successfully completed choreography can require further action.
Due to finalizer blocks cannot be generated, finalize activities are also not used.
Furthermore, since in an interaction protocol the roles agree on whether it completes
successfully, with a failure or with an exception occurrence (like in a WS-CDL
coordinated choreography), finalizer blocks are not required.

4.2.4 Transformation of Interaction Occurrences
An interaction occurrence is transformed into a perform activity, which allows the
definition of nested choreographies. If the interaction occurrence is defined within a
CFS, an expression should be generated for the choreographyInstanceId attribute of
the perform activity representing the interaction occurrence. The block attribute
always is set to “true”, because in UP-ColBPIP a protocol must wait for the
termination of its nested protocols in order to continue after their execution. The
business documents of an interaction protocol can be correlated with the business
documents defined into the nested protocol. Correlations are defined with a comment
stereotyped Correlation associated to the interaction occurrence. Correlations are
mapped into bindings between the variables (representing the business documents) of
the enclosing choreography (the protocol) and the enclosed choreography (the nested
protocol). In WS-CDL, correlations are called binding and they are defined with the
bind element.

For example, in Figure 3, lines 91-92 show the perform activity representing the
interaction occurrence Collaborative Demand Forecast of the protocol of Figure 2.

4 Related Work

There are several Model-Driven Development (MDD) approaches proposed to
generate technological solutions based on web services composition [2,6,10]. They
focus on the modeling and automatic code generation of behavioral interfaces. Hence,
they support the modeling and specification of the behavior of collaborative processes
but only from the point of view of one partner. As a result they do not support the
global view of the interactions, which is required in the modeling of collaborative
processes and the specification of web services choreographies.

In [11], transformation of WS-CDL choreographies into BPEL abstract processes
is defined. This approach starts from WS-CDL choreography definitions and it does
not consider the use of a graphical modeling language to define choreographies or
collaborative processes. However, according to MDA principles, a language to define
technology-independent models should be provided, as it is proposed in this paper.

In [8, 17], choreographies are generated from collaborative process models. They
focus on the generation of choreographies based on the language ebXML BPSS,
which is based on business transactions instead of using web services. In [8], the
language UN/CEFACT Modeling Methodology (UMM) has been used and validated
to generate ebXML BPSS specifications. In [17], we used and validated UP-CoLBPIP
to generate ebXML BPSS specifications. The implementation of transformation rules
were carried out by using a model transformation tool we are developing. However,
the transformations presented in this work have not been implemented yet in that tool.

 Transforming Collaborative Business Process Models 63

Furthermore, other approaches focus on the generation of the behavioral interfaces
of partners from collaborative process models [5] [19]. The target language used is
BPEL. These approaches focus on the definition of behavioral interfaces in the
technological level while in the business level the focus is on the collaborative
process models. Hence, the use of choreographies in the technological level is not
considered. This is possible because a web service choreography cannot be
implemented in a direct way but it is implemented through the definition of
behavioral interfaces and orchestrations for each partner. This is one of the arguments
against the use of a XML syntax to define choreographies [3] because they are more
useful as design artifact than an implementation artifact. However, collaborative
process models and choreographies can be used as design artifact. The former should
capture the business aspects and the later should capture the technical aspects
according to the target technology.

Finally, we are not aware of other MDA approaches that focus on the generation of
WS-CDL choreographies from collaborative process models. In the MDA approach
proposed in this paper, the objective is to support the definition of technology-
independent collaborative processes in a high abstraction level. This is different to the
idea of generating graphical notations for technology-specific languages such as WS-
CDL. We consider that the main artifacts of the development in B2B collaboration
should be the collaborative process models. However, the use of standards is required
in order to partners’ systems can interoperate and implement collaborative processes.
Currently there are different standards, new versions of them can appear and new
standards can be proposed. Therefore a technology-independent modeling language
for collaborative processes is required and should provide the main conceptual
elements to define theses processes in a business level and to generate processes
specifications based on the different standards.

5 Conclusions and Future Work

In this paper we have described how web services choreographies based on WS-CDL
can be generated from collaborative process models defined with the modeling
language UP-ColBPIP, according to the principles of a MDA approach for
collaborative processes. The main advantage of using this MDA approach is that it
guarantees that web services choreographies generated in the technological level
fulfill the collaborative processes defined in a business level. The transformation rules
proposed in this paper reduce the risk of inconsistence between collaborative process
models and their corresponding web services choreographies based on WS-CDL.

The use of a UML Profile for modeling collaborative processes in a business level
allows partners focus mainly on the business aspects of the B2B collaboration. Also,
the use of interaction protocols to model collaborative processes supports the
requirements of enterprise autonomy, decentralization and peer-to-peer interactions,
as well as it supports business aspects such as the definition of negotiations and
commitments through the use of speech acts. These business aspects are not captured
in standards such as WS-CDL, which focus mainly on the technical aspects of the
collaborative processes based on web services technology. However, WS-CDL could
be enriched with conceptual elements more oriented to business aspects such as

64 P.D. Villarreal, E. Salomone, and O. Chiotti

speech acts. Also, UP-ColBPIP could also be enriched with several characteristics
provided by WS-CDL, such as the concepts of channel, tokens and finalizer blocks.

As result of the transformation rules of a UP-ColBPIP model into a WS-CDL
specification, most of the conceptual elements provided by UP-ColBPIP can be
represented in WS-CDL. Although WS-CDL only provides the basic control flow
activities, most of the control flow operators used in UP-ColBPIP can be represented
in WS-CDL. However, multiple instances of interactions and explicit terminations of
the choreography are not supported in WS-CDL.

An open issue is to determine if WS-CDL specifications generated from UP-
ColBPIP models are well-formed. But we cannot to determine if a WS-CDL
specification is well-formed, as well as it is not possible to determine yet this with
UP-ColBPIP models. To guarantee correctness of these models and specifications a
formalized model has to be generated. We are working on the formalization of UP-
ColBPIP models using Petri Nets. The purpose is to enable the verification of
collaborative processes, previous to the generation of B2B specifications.

References

1. Baghdadi, Y.: ABBA: An architecture for deploying business-to-business electronic
commerce applications. Electronic Commerce Research and Applications, 3(2004) 190-
212

2. Baïna, K, Benatallah, B., Cassati, F., Toumani, F.: Model-Driven Web Service
Development. CaiSE’04, Springer (2004) 290-306.

3. Barros, A., Dumas, M., Oaks, P.: A Critical Overview of the Web Service Choreography
Description Language (WS-CDL). BPTrends Newsletter 3 (2005).

4. BEA, IBM, Microsoft, SAP, Siebel: Business Process Execution Language for Web
Services. http://www-106.ibm.com/developerworks/library/ws-bpel/, 2003.

5. Bruno, G. and La Rosa, M.: From Collaboration Models to BPEL processes through
service models. BPM Workshops 2005, WSCOBPM 2005, 75-88, 2005.

6. Gardner, T.: UML Modelling of Automated Business Processes with a Mapping to
BPEL4WS, 17th ECOOP, Darmstadt, Germany (2003).

7. Goldkuhl, G., Lind,M.: Developing E-Interactions – a Framework for Business
Capabilities and Exchanges. Proceedings of the ECIS-2004, Finland, 2004.

8. Hofreiter B., Huemer C.: ebXML Business Processes - Defined both in UMM and BPSS.
Proc. of the 1st GI-Workshop XML Interchange Formats for Business Process
Management, Modellierung 2004, Germany, 81-102, 2004.

9. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y.: Web Services
Choreography Description Language Version 1.0. W3C Candidate Recommendation
(2005), W3C.

10. Koehler, J., Hauser, R., Kaporr, S., Wu, F., Kurmaran, S.: A Model-Driven
Transformation Method. 7th International Enterprise Distributed Object Computing, 2003.

11. Mendling, J. and Hafner, M.: From Inter-Organizational Workflows to Process Execution:
Generating BPEL from WS-CDL. OTM 2005 Workshops. LNCS 3762,506-515, 2005.

12. Object Management Group: MDA Guide V1.0.1, 2003. http://www.omg.org/mda.
13. Searle, J.R.: Speech Acts, an Essay in the Philosophy of Language, Cambridge University

Press, Cambridge, 1969.
14. UN/CEFACT and OASIS: ebXML Business Specification Schema Version 1.10,

http://www.untmg.org/downloads/General/approved/ebBPSS-v1pt10.zip (2001)

 Transforming Collaborative Business Process Models 65

15. Villarreal, P.: Method for the Modeling and Specification of Collaborative Business
Processes. PhD Thesis. Universidad Tecnológica Nacional, Santa Fe, Argentina (2005).

16. Villarreal, P., Salomone, H.E. and Chiotti, O.: B2B Relationships: Defining Public
Business Processes using Interaction Protocols. Journal of the Chilean Society of
Computer Science, Special issue on the Best Papers of the JCC 2003, Vol. 4(1) (2003).

17. Villarreal, P., Salomone, H.E. and Chiotti, O.: Applying Model-Driven Development to
Collaborative Business Processes. Proceedings of the 8th Ibero-American Workshop of
Requirements Engineering and Software Environments, Chile, 2005.

18. Villarreal, P., Salomone, H.E. and Chiotti, O.: Modeling and Specifications of
Collaborative Business Processes using a MDA Approach and a UML Profile. In: Rittgen,
P. (eds): Enterprise Modeling and Computing with UML. Idea Group Inc, (in press).

19. Villarreal, P., Salomone, H.E. and Chiotti, O.: MDA Approach for Collaborative Business
Processes: Generating Technological Solutions based on Web Services Composition.
Proceedings of the 9th Ibero-American Workshop of Requirements Engineering and
Software Environments, Argentine, 2006, in press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

