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Abstract

This work proposes a deterministic robust controller to improve tracking performance for a linear motor, taking into
account the electrical dynamics imposed by a commercial current controller. The design is split in two parts by means
of the backstepping technique, in which the first part corresponds to a typical deterministic robust controller neglecting
the electrical dynamics. In the second part, a second order electrical dynamics is considered using a particular
state transformation. There, the proposed control law is composed of a term to compensate the known part of the
model, and a robust control term to impose a bound on the effect of uncertainties on tracking error. Stability and
boundedness results for the complete controller are given. To this effect, a general result on boundedness and stability
of nonlinear systems with conditionally bounded state variables is derived first. Finally, experimental results for the
complete controller show an improvement on tracking error of up to 31.7 % when compared with the results from the
typical controller that neglects the electrical dynamics.
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Introduction and where certainly low errors are achieved, on the order
The search for improvement in production time and qualit&f mlcrom_etgrs for moderate to high spged trajectorle_s.
owever, in iron core linear motors the time constant is

imposes specific requirements in machine-tool feed drives . . X
b P g fnot so small due to the large inductance associated with the

regarding speed and precision. An attractive alternative f. . . :
g g sp P on corée’, and although particular iron-core linear motors

. ) ) . ir
Lhe typical ball-screw dnvgs are Imggr mot_ors, WhI.Ch Sho\élvre shown to have electrical bandwidths on the order of

igh speed and acceleration capability while keeping a IOkVY hertz'8, there are other cases in which bandwidths below
wear due to the absence of mechanical coupling, as W%III0 '

as avoiding the limitations coming from vibration modeé e hundred hertz have been repoftedhis has a negative

) . . Impact on tracking error, as the existence of unmodeled
associated with the screw. However, this absence make ing. ;

: o . actuator dynamics in a system is able to degrade control
linear motors more sensitive to force disturbances. Also

depending on the constructive characteristics of a pmcupérformance. For Instance, for sliding mode con_troller_s,
linear motor, some effects affecting motion performange Cunmodeled actuator dynamics can lead to chattering, with

become more important, such as force ripple, cogging fori%vierglacg'nngarﬁizufﬁé”e\?;:';ats'?e“m?;Stj;ﬁr;ﬁ’deled high
and electrical dynamics. a y dy : y y

There have been many approaches for the control fOne approach followed in the literature, which considers

linear motors, such as a feedforward and state feedbe{cﬁ electrical dynamics, is feasible when there is direct

. . ._.access to motor voltagé However, in a setup including a
controller; a technique called nominal characteristi€ g P 9

. ) . ial current controller, this is not usually possibl
trajectory following’3; repetitive controf; a PID-based ¢oMmercia - . :
) Y g P Also, these works are restricted to a first order dynamics,

controller’; an improved sliding mode controller in the%lts in the study by Yao and XuThis might not be enough
0

work by Xie®; and several model-hased adaptive robu represent current loop dynamics in a setup where the
controllers~** based on the work by Ydé', just to cite a prese P ay! P
only possible control action is the current reference of a

few. Model based controllers often have high robusttfess .

In particular, sliding mode control is a type of mode‘:ommermal current controllé?. Therefore, the pre;ent wprk

based robust control, and its use has increased in precis%gr?ks to .approach motion control for a setup mcIudmg a

positioning system. commercial current controller and a permanent magnetrinea
As can be seen on several of the mentioned references, a

usual approach for the control of linear motors consists in

neglecting the electrical dynamics, since it has a muclefastracultad de Ingenieria, UNLPam-CONICET

response than the mechanical dynarhfcdhen, a controller ?Instituto de Automatica, UNSJ-CONICET

is set for the par_t of the syst.em r.elated to the mechani.tré%lrrespon ding author:

dynamics assuming a proportionality between control 8Cli@ernando Villegas, Facultad de Ingenieria, UNLPam-CONICET, General

and motor current. This is most suitable in ironless line&ico, La Pampa, 6360, Argentina

motors, with reported bandwidths on the order of kiloh&ttz Email: fvillegas@ing.unlpam.edu.ar
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synchronous motor (PMLSM) like the one in the work by.inear feed drive model

Villegas etal.", where _elect_rical _dynamics s represented b9r‘he system under consideration in this paper consists of
a second order linear time-invariant (LT1) system. a permanent magnet linear synchronous motor driven by
As the system under consideration is nonlinear, thege commercial current amplifier. Following the work by

are quite a few possible approaches for control synthesifiegas et al'’, the system is modeled as shown in Fig.
and stability analysis. First of all, the Lyapunov formalis Here, G(s) characterizes the electrical dynamics from the
is one of the most popular and is usually used in robugiference input of the current controllex)(to the motor
control, whether in its continuous-time version, as in thgurrent (:3). The output of the blocki ; represents the
work by Zhao et af®, or in its discrete-time version, asforce developed by the motor for a particular current, and
in the work by Zhang et all. This formalism has several depends on the position of the moving paﬂ)(due to the
derivations, such as the Lyapunov-Krasovskii approachipple effect®. The block F,, is related to cogging force
which is extensively used for stability analysis of nonéine gnd Fy represents friction force. Finally,;s encompasses
systems with time dela*°. Another branch of approachesunmodeled disturbances and model uncertainties.

comes from the input-output formalism with results as the
small gain theorem or its extensions, like the scaled small-
gain theorem that is used for the design of an output feedback
controller in the work by Wei et a!.

Fuzzy and piecewise-affine systems are other interesting
alternatives to deal with nonlinear systems, as they altow t
represent nonlinear systems with arbitrary accuracy. ,Also,, G(s) K
several approaches are available for stability analysis of 3
these systems. Among these can be mentioned Markovian
Lyapunov function$?, mode-dependent piecewise Lyapunov
functions’®, piecewise Markovian Lyapunov functiof’s Figure 1. System model®’
Even cases with time delay can be considered, by means of

piecewise-Markovian Lyapunov-Krasovskii functiondlls |n particular,G(s) is assumed to be a second order strictly
However, when applying these system representations, Ccg{gimum-phase LTI system with relative degree one, just
must be taken with the increase on the number of regions,|&s the model in the work by Villegas et &1. Furthermore

it comes with the corresponding increment in the number gfis considered that(s) might not necessarily be positive

local models and parameters. In fact, as accuracy increasgg). Thus, the state equation for the whole system can be
so does the number of regions, increasing also with ”F@presented as follows:

domain of approximatiofr.

In view of the previous considerations, controller synihes Ty = T2
in this work is based in the nonlinear model of the mds = Ky(x1)xs — Fog(x1) — Fr(x2) + fais(t, %)
system. In particular, the backstepping technitfuevhich i3 = az373 + az4Tq + b3u @
is extensively used in the literature as well as severalsof it
variants*®°, is applied. However, stability analysis is based
on results derived in this work, developed from fundamental Here, the states; and 4 correspond to the electrical
properties of nonlinear systems. dynamics, where:; represents the motor current, and where
In this context, a controller is proposed using a novék # 0 and by # 0. This representation of the electrical
approach to reduce the performance degradation imposhthamics is possible for any second order LTI system with
by the electrical dynamics. In this development, a resuklative degree one (corresponding to a transfer functitim w
which allows to express the electrical dynamics in a moit&o poles and one zero), as shown in the next proposition.
convenient form for controller synthesis is given. Also, &q50gtion 1. Given a second order SISO LTI system with
general Lyapunov-like result on stability of systems W|tr|)e|ative degree one
conditionally bounded states is derived, which is then
used to prove stability of the proposed controller. The x =Ax+ Bu
distinct performance improvement achieved by the proposed y = Cx. ()
controller is shown with experimental tests, where it is
compared to a typical deterministic robust controller in Then there is a nonsingular matriX; such that by the
which electrical dynamics is not considered for controllestate transformationk = T4z the system can be expressed

— T

T4 — A4373 —+ Q4474 + b4u.

synthesis. in the following form
Thus, in the next section the system model and some .
. . A . z = A4z + Byu
general assumptions are presented. The third section is (3)
devoted to the development of the proposed controller, y=Cuaz

while the fourth section considers the stability issue. The
experimental results are shown in the fifth section. Then,
conclusions are presented in the sixth section. Finalpefsr ~ Proof: Proof is given in the appendix.

of several results presented throughout the text are given i As for friction force, its behavior is complex and there
the appendix. are several models with different levels of sophistication

for C; = [1 0] andB, = [b b]7 whereb = 1/ det T.
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Villegas et al. 3

represent part of this behavior. In this particular case, tithe integral of the position error. Such augmentation is a
simple Stribeck-tanh friction mod#l is considered. This common technique, used for instance with a sliding mode
model is capable of representing the Stribeck curve forcantroller to achieve asymptotic tracking of a constant
range of speeds while keeping the formal analysis simpleference in presence of uncertaintfes

Besides, as previously pointed out, deviations from this Let e; = 21 — x4 be the position error, where, is the
model will be considered as part of the disturbances. Tipesition reference, ane, = x5 — 44 the velocity error. Let
Stribeck-tanh model is a static friction model in which th¢he stateey be defined agy = e, and define a variable
dependence of friction force with velocity can be expressed= mipeqg + mi1e; + mes as could be done for a sliding

as mode controller. Thus, considering)( s can be expressed as
zo |Sy, .
Fy(z2) = (Fc + (Fs — Fc)€_|7§| " ) tanh(kiann o) § = mapoer +mipres + Ky(z1)xs )
. — ch<3;‘1) — Ff(aig) + fdis(t,X) — may.
vd2

4) As a first step, a control lawt = o, + o iS proposed

for the virtual control variablers. As in the work by Xu

being F.. the Coulomb force,F; the static force,Vs and Yad this control law is split in two partsy,, intended

the Stribeck velocitygy, the Stribeck shape factok,, the to compensate known terms; and, a robust control term.
viscous friction coefficient, and:.., a coefficient that This separation allows more clarity in the design process

determines the behavior of the model in the transitiofar the robust control tern,, as «, becomes part of

between positive and negative velocities. a term encompassing model uncertainties and unmodeled
It is assumed that the system parameters are not perfegfi¥turbances.

known, but there are known bounds for the uncertainties andconsidering %) and our prior assumptions,, is given by
unmodeled disturbances on the dynamicsafprand x5 in )
). Qg = [ch(xl) + Fy(t)

Ky(xz1) depends one; in order to represent the ripple Ky (1) (6)
effect. This is an electromagnetic effect by which force 41 (Bg — toer — tres) |-
constant varies with position. The cogging force, reprasgn

by the termF,(z1), is a position-varying force due to the Here, the accent™ stands for an approximate value,
attraction of the motor translator to the permanent magnef§ estimation obtained from a previous identification of
in the Secondary, and can be important for PMLSM W|tthe System_ In particu'ar' given an actual Va'&]eand
ferromagnetic core. Several models have been Pr0P0$ﬁ:,destimate§, its error is defined agzg,gl In the

in literature, either purely periodical or including pdssi particular case of the functiongf(xl) and ch(xl), the
aperiodical behavior to represent this variation alonganotsame assumptions about boundedness and differentiability
displacement. Whichever the case, it is assumed thailicited for Ky(z1) and F.,(x;) when describing the
there are boundstWw > 0, Kfmin >0 and Fa0 > model are assumed to app|y

0 such thatK spin < Kj(21) < Kpmae and |Fey(z1)] < Also, it is considered a feedforward compensation for
Femaz for all z; € R, and bothKy(z1) and Fey(z1) are  friction, represented by a time functidry () that is obtained
differentiable inR. solely from the reference trajectory. However, it is asstime

It is also assumed thafly;s(¢,x) is bounded, piecewise that the friction model used for this is such that the
continuous int and locally Lipschitz inx. Finally it is  feedforward signal is piecewise smooth and bounded under
considered that the reference trajectary(t) is such that the boundedness assumptionfqr . . ., 7.

a, &4, ¥, aNATy are bounded, equivalent to a jerk-limited The error variable for the virtual contral; is defined
trajectory. asz3 = 3 — a, and considering thak ;(z1) = Ky (z1) —
K¢(zy), then

Proposed controller .
p_ _ o s =mapger +mpres + Kyp(x1)zs + Kyp(21)(aa + )
In this section, a deterministic robust controller is

proposed including the electrical dynamics, seeking for an ~ Feg(@1) = Fy(w2) + fais (b, %) = mia

improvement in control performance. It should be noticed = Ky(z1) (23 + ) + dm(t, %)

that although the controller will be designed for the whole (7)
system, the design process will be split in two stages usingyhere 4, includes unmodeled disturbances and model
the backstepping technigtie®. Therefore, in the first stage, uncertaintiés, and it is given by

the control problem will be approached as if direct access R R ~

to motor current could be achieved, like it is done when d,,(t,x) = —K¢(x1)aq + Feg(x1) + Fr(t, x2) 8
electrical dynamics is neglected. Then, in the second stage + fais(t,X) + 100 (g — Poer — res). (8)

electrical dynamics will be included in the design. _ . o
Knowing a bound for the parametrical uncertainties and

First stage the unmodeled disturbancesdp, (¢, x), a smooth function

. . L dm (t,x) can be found such th@d,,, (¢, x)| < 6, (¢, x).
For the first stage, a typical deterministic robust congroll etV; = Lw,s? be an auxiliary function, where; > 0.

is developed following a procedure similar to that for th hus
design of the robust control law in the work by Xuand Yao =
except that the system is augmented with a state repregentinVy = wqsK y(x1)z3 + wis(Ky(x1)as + dm(t,x)).  (9)
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Let o, be expressed as; = a1 + a2, Whereay is a Therefore, givem, such as could be obtained by the

stabilizing feedback term which takes the form following LTI system
k : by by by .
— s = - = - = & (A7
Qs Ko s (100 8 <a44 by a34) B+ <a43 bs a33> a+ by (7)

wherek, is a positive constant. which is a stable (and proper) LTI system, given that the

; e e mini b
Now a term ay, is proposed to reduce the effect ofl€ctrical dynamicsis minimum-phase andthys— 3 asi,
the uncertainties and disturbances considered in the te\f’m'Ch corresponds to the zero of the electrical dynamics, is

d,n (,x). This term is chosen in order to verify the conditior"€92tve. _
Having defined the quantity, now the states; andz, are
(K (1) sz + dm (£,X)) < € (11) defined as; = z3 — a andzy = x4 — 3, i.e., the difference

between each state and its desired value. Then, its dynamics

for a constant > 0 that constitutes a design parameter fg¢an be expressed as

the proposed controller. As described in the work by Yao and. )
Xu®?, a suitable term can be % = agsz3 + azaza + byut aggat agaff — &

. by ., (18)
52 (t X) %4 = Q4323 + Qga24 + bau + E (CL330£ + a346 — Oé)
Qog = ——m0 T o (12)
AK fmine which can be written as
It can be shown that this function satisfies the inequality 1 )
in (11). To see this, define z=Az+B(u+ ™ (azsa + agaff — &) (19
I (£, %) wherez = [z3 24]7, B = [bs by]” and
- K m\" 1 3 24|, 3 04
R(t,x) f(x1)4Kfmmes +dn(t,x) (13)
ass  asq
A= . 20
then [“43 a44} 20
Ky(z1) 62,(t,x) o Here, A is Hurwitz, therefored!P symmetric positive
sR(t:x) = - Kpmin e + sdm(t,x) definite matrix such thaPA + ATP = —I. Considering
&2, (¢, %) now an auxiliary functio = V; + woz” Pz, with wy > 0,
< —%52 + 5 dpm(t,x) (14) then
€
2 . K
= MS + 5 dp(t,%). V=—u f(xl)k:ss2 —woz 7 4+ wisK ()23
2\/E ’ fmin
+wis(Kf(z1)ase + dp (t, %)) (21)
Now consider = %\j’g‘)s andb = v/e. As(a — b)? >0,

or equivalentlya® — 2ab + b*> > 0, then—a? + 2ab < b? =
¢, which combined with 14) leads to

1
+ 27,U2ZTPB (u + ™ (agzar+ azsfB — d)) .
3

The particular form of the termy in (21) is not developed
A (t,%) \° in order to allow certain freedom on the way in which its
sR(t,x) < — (2\/€S> +s-dm(t,x) <e. (15 compensation might be handled.
Now, the actual control law is proposed, taking the form
Thus, the control lawa is proposed for the virtual © = ua + us Whereu, is a robust control law to be defined
control inputzs, which represents the motor current. In thi¢ater and 1
manner, if electrical dynamics were to be neglectediould Uy = — 5 (&330( + Gsafd — &) (22)
constitute the proposed control law. However, as eledtrica bs
dynamics is to be considered, it has to be included. This isis a compensation term associated with the electrical
done on the second stage of the design, from which a nogyinamics. Here, approximate values are used3fand ¢,
control law for the real input is proposed, based on the @irtuas these will depend on parameters that are assumed to be

controla. known only in an approximate way, as well as on unmodeled
disturbances. It can also be noticed that 1®)( for zero
Second stage initial error, thew, would take the form ofu, except that

. . . it should be calculated with the exact values.
In the previous sectiony, the desired value for the state, Using the proposed control, and definigg = [s 23 z4]”

has been obtained. Now, suppose an inputs applied to y, ;o given by
the electrical dynamics such thatg would be able to track
«. In such a case, whiles tracksa, x4 should track some wy LICIVNA —wy ngwl) 0

5, verifying theT equations corresponding to the electrical y _ —xT o Krlen) w o | xa
dynamics, leading to 1= 2

& = agzo + aza + baug (16) + w1 (K (x1)ase + d(t, %))

B = assor + asf + bauo. + 2wyz" PB (ug + d.(t,x))

Prepared usingagej.cls



Villegas et al. 5
whered, is Result on the behavior of a system with
X R conditionally bounded states
dotx, B, = (938 _ G834 (G315 Gs1g - _ —-—
e\ b 7 b- 7 In order to simplify the analysis of systems in which several
3 b3 3 b3 . . . . .
1 1. state variables might not vanish with time, but could be
— (ba — Aa> bounded under certain conditions, the following result is
3 b3 developed.

(24)

Theorem 1. Consider a system which can be represented as

which can also be expressedd&as= u, — ug.
It should be noticed that the matrix in the first term 28)
will be positive definite whenever

Ky (x1) o K7 (1)
wiw ks —w >0 25
gt =k, —wi = (25)
or in another form,
K K min
ky > EM (26)
w2 4

The termu, on the other hand will be chosen to reduce th
error introduced by the uncertaintiesdp. A possible form
for this termis
(27)

whereK, = 1nB7P, for n > 1 andz = [z3 — 4 —

B)T. Here, the symbolsK. and z are used because of
their dependence on estimated values. In the same way,

us = —K.z

symbolsK. andz are used to indicate dependence on exact

values.
Then, proceeding as previously done with leads to

22" PB (u, +d.) = 22" PB (-K.z + d)

2
=2 <\/ZZTPB) + 22" PBd;

2
_
n

(28)

Here,d} is given by

5 asz3 a3z as4 asa
d:t,X,, =\7——-——)a+|(—b———
(8,5, 5) (b3 b3> (536 b36>
—<1a—}&>—Kﬂ—KJ
b3 b3

(29)

wherez = [0 3]7.
It should be noticed that the functiod is such that

there is a functior. (not necessarily known) that satisfieyng a constant” > 0, dependent ow,,

).(a = fa(t7 Xa Xb) (30)
xp = f,(t, X4, %)

where x, € R", x;, € R™, and eitherf, and f, are
piecewise continuous inhand locally Lipschitz in(x,,xs)

on[0,00) x R*m,

Suppose that the system is such that following conditions
hold:

1. Conditional boundedness a,. Wheneverx, (1) €
D, forall ty <7 <t,then(x,(t),xs(t)) € D, being
D =D, x Dy, D, and D, bounded domains.

. Lyapunov-like condition onx,. There exists a
continuous positive definite functiod? : R™ —
R:x, — W(x,) and a continuously differentiable
function V :[0,00) x R" — R : (¢,x,) — V(t,%,)
which is positive definite, radially unbounded, and
decrescent. There is a constaBt> 0 such that the
following holds:

e

the

V(t,xq(t))

<

forall t > 0, (x,,%;) € D, ||x4|| > B.

It should be noticed that beind’(¢,x,) positive
definite, radially unbounded and decrescent, there
exist classC., functionsa, as such that?®

ar([xal) < V(#%a) < ea(lxal). (32)

Then, it is assumed that the following condition holds
for B.

. Conditionon BB < a5 '(ay(r)) for somer > 0 such
that B, = {x, € R" : [|x,]| < r} C D,.

In such a case, for every initial statex(tp) =
(xa(to), xp(to)) such that [|x,(to)| < ay'(a:1(r)) and
xp(to) € Dy, there exists a solutior(¢) defined for > ¢y >
0. This solution is bounded. Furthermore, f& > 0 there
exists a clas¥, functionap, a classkCL function(r, s)
(to) and B, such that

|d(t,x, 8, )| < 8e(x, 8, B). It is assumed without loss of x (¢ satisfies:

generality that the bounding functi@g is continuous.

Based on the prior development, in the following section ||x,(t)|| < B(||xa(to)],t — to),
the stability of the system with the proposed control law is %0 (8)]| < ap(B)

evaluated.

Stability

Yt € [to,to + T
Vt € [to + T, 00).
(33)

In the particular case thaB = 0, the result forx, reduces

. . . to
In this section a general result on the behavior of systems

with conditionally bounded states is given first. Then,

based on this result, stability of the proposed controker
demonstrated.

Prepared usingagej.cls
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Proof: Proof is given in the appendix.

Although the previous result is local in principle, it shoul
be clear that the only limit on the diameter of the sBts
and Dy, is given by the largest set where condition 2 of th¢ga
theorem and the conditional boundednes®gfare verified
(which could establish a relation between the diameters
Dy andD,), wheneverB is small enough to fulfill condition
3. Figure 2. Linear motor stage.

Also, it should be clear that ifk; is unconditionally
bounded the result is still valid, as condition 1 is obvigusl
verified.

conditions of the system, nothing prevents to choose such a
set to contain the maximum values admitted by the physical
. system, considering the practical limits on displacement,
Stability of the proposed controller speed, and control action for the device in use. Furthermore
For the system shown with the proposed control law, ththe same set can be considered in order to choose a locally
following result can be derived as a corollary of Theoremalid boundd,, for the bounding functiom,, (¢, x). In this

1 way, the terma, can be expressed in the simpler form
Corollary 1. For the given dynamics, with the propertiesozS = —Kss, where
assumed for the reference trajectory and the functions . 52,
involved, suppose the control law is given by Kg = %. (40)
P A A 2 . .
u=-K.z— P (assa + a3aff — a) (85)  This particular form ofa, has been chosen to test the
3 proposed controller in the experimental setup.
whereK, = %7)BT15, forp>1,z2=[rs—axs— B]T, _
7 is obtained from Experimental results

. R . The proposed controller has been tested on the linear motor
[3 _ <d44 _ {’4&34> B+ <&43 _ {741&33) ot {)—40’4 (36) Stage shown in Fi2. The experimental setdpincludes a
b 3

3 bs permanent magnet linear synchronous motor with ball guide
rails, and a current amplifier. The setup also includes atine
anda is given by scale which provides position feedback, both for the curren
amplifier and for the proposed controller.
k. 52 (1, ) The Generalized Maxwell-slip (GMS) friction modéF®,

Q== s = with the parameters obtained in the work by Villegas et’al.
f 71’”" fmin€ has been used for the feedforward compensation of friction

4 [ch(m) + ﬁf(t) (37) in (37). The models used for compensation of cogging force
m

Ky(z1) and ripple effect take the following fort:
+ 1 (&g — Yoer — ¢162)}

3 3
2rkx
. Fo.o(z) = c>catk+ ak.c COS
where s = miygeg + mip1e; + meo, the state ey is o(7) kZ:O ko kZ::l < k, < 37.5 )
defined ag, = ey, andk; verifies the following condition:

by sin (27rkm) )
K K min ke
ko > EM (38) 37.5
w2 4 9 3 9k (41)
TR
In such a case, for and n properly chosen, the system Ky(z) = Z mek =+ Z (ak—,r cos < 375 )
solution is bounded and there is a claks, functionar k=0 k=1 '
such that the error variablesy (¢), e (¢), andes (¢) converge [ orkx
to the region||e; (t)|| < ap(By), fori = 0,1,2, where +bepsin | o

for = within the physically feasible motion range for this
(39) motor. Outside of this range it is considered to be defined in
agreement with the assumptions made for both functions in
the previous sections.
The contribution of this work comes from the inclusion of
fLHe electrical dynamics in the controller design; therefor
the proposed controller is compared with the control law

for somed € (0,1), and for a constand .., dependent
on the initial conditions.

Furthermore, in absence of unmodeled disturbances a
without model uncertainties, (t) — 0 for ¢t — oo.

Proof: Proof is given in the appendix.
It should be noticed that althOl_Jgh the result in Coro_”_a!'YNotice that/3 is obtained frome through a proper LTI system. Thus,
1 depends on a set of admissible values for the initiatimation ofx is not necessary to calculate
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Villegas et al. 7

Table 1. Reference detail.

mm mm . mm (a) Position
n [rpm} Umax [T] Amax [7] Jmaz [ST] 120
5 10.1 29.9 150.4 B 1o
7.5 15.1 67.2 504.4 =
10 20.2 119.4 1185 b
15 30.27 268.6 4077 00 e 1 15 2 25 3 as
t[s]
» . (b) Velocity
Table 2. Position error comparison. 50 - - - - - .
Ref Cmax “JHI] 6maz €rms “Jl’n] 67‘ms E
' DRC DRC+ED [%)] DRC DRC+ED [%)] 5 0
5rpm 20.8 142 -31.7 35 23 -34.3 - 50
7.5rpm 222  20.6 72 415 29 -30.1 0 05 1 15 2 25 3 35
10rpm  26.4 239 95 51 3.8 -25.5 t[s]
15rpm 285 20.2 291 65  3.95 -39.2 (© Acceleration
500
« given at the first stage of the previous section, which 5
constitutes in itself a deterministic robust controlleiRO) —5000 TR T
in which electrical dynamics has been neglected. This allow ' ' s

to evaluate the improvement on the performance obtainec

by the inclusion of the electrical dynamics in the control 5000 (d) Jerk
law, and whether such inclusion would justify the increase %
in complexity for this controller. For the sake of simpligit S 0
the proposed and the reference controllers are referred fro 5{
3

here on as DRC+ED and DRC respectively, where ED refers ~5000
to the inclusion of the electrical dynamics in control desig 0

In the experiments, the tracking performance for both
controllers is tested for a type of reference that includes
complex variations in position, velocity, accelerationdan™'9ure 3. cam-related reference at 15 rpm.
jerk. This particular type of reference represents thaager
movement for a cam grinding operation for three turns of tt (@) Reference trajectory
cam. These cam-related references correspond to a proc 120 ‘ ‘ ‘
with a grinding wheel diameter &60 mm, and a particular uer 1

i ) B ) 110 b
cam profile of50 mm base circle radius and mm total rise 105) |

[mm]

rotating at different rotation speeds. The position trajec 100

and its derivatives for one of such references, with a ratati o5, s m s m Py -
speed ofl 5 rpm, are shown in Fig3. Details on the different tls]

reference trajectories used in the experiments are showr (b) Error for DRC

tablel for the different values of the rotation speed

The controller parameters in the experiments were tun
to achieve the lowest maximum error in the DRC controlle
and the same values were used for the correspond ‘ ‘

parameters of the DRC+ED controller. 0 5 10 15t[s] 20 25 80

The tracking errors for the different reference traje@sri (c) Error for DRC+ED
are shown in table2, where maximum errors as well as 20¢ ‘ ‘
rms errors are given for both controllers. Also, for eas tor 1
of comparison, the relative error difference between tt ol |
controllers is shown, given as= “PH<LE2==REC for both 0l |
maximum and rms errors. In particular, the tracking errc 0 5 10 15 20 25 30
profile for references of rpm and 15rpm can be seen in tll
Figs.4 and5 respectively, where the error for both controllers
along a period of the reference is shown, as well as thigure 4. Position error for a cam-related reference at 5rpm.
reference itself.

e [um|

e1[pm]
o

Thus, although the proposed controller gains in co ;
. ) O _ rTqonclusmn
plexity, the improvement when considering the electrica

dynamics can be important, reducing the maximum error (jne present work has shown the importance of considering
to 31.7 % and the rms error up 9.2 % in the experiments. the electrical dynamics in a system, even when it has a much
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(a) Reference trajectory wheredet T = t11t99 — t12l21 7é OasTis nonsingular.
In order to obtain vector€T = [c,, 1 ¢, 2] andT !B =

1151 1 . .
— 110} ] [bn,1 b 2]T, the matrix components; should satisfy
% 105 —
100 cc 0 ca 0| |t Cn,1
2 a 6 8 10 1 _

95 0 (&) 0 (&) t12 Cn .2
2 _ ,
t[s] 0 —b2 0 bl tgl bn,l det T (45)
(b) Error for DRC b2 0 —b1 0 t22 bn’2 det T
- 2or ] Thus, the proposition will be proved if there is a
20 nonsingular matriXV with componentsn;; such that
_ook i
e e BN O B e B
" 0 o 0 caf |mazf _ |0 (46)
(c) Error for DRC+ED 0 *bg 0 b1 mo1 1
‘ ‘ ‘ b2 0 —bl 0 maoo 1

In such a case, the matrik,; of the proposition is given
by T, = M.
The determinant of the first matrix is

e1[um|
N}
o o
T T
L L

C1 0 Co 0

0 S0 2= b ak)? = (CBP @)

b 0 —=bp O

faster response than the mechanical dynamics. Starting fro

a typical deterministic robust controller for the mechahic  Thus, for a system with relative degree one. G # 0

system, this article has shown a particular way to deal wiffee p- 512 i), the determinant of this matrix is nonzero,

a second order electrical dynamics, such as the one in ¢ the equation in46) has a unique solution. Thus, having

experimental setup. determinedV, its nonsingularity has yet to be proved.
Stability results for the proposed controller have been Consider the row vectordI; and M, of matrix M

presented. Furthermore, a more general result has bédh" = [M{ MJ]). Equation 46) can be expressed with

shown for the stability analysis of systems in which pathese vectors as

of the system can be shown to be bounded or conditionally i _

bounded. Also, this paper has displayed a particular and aMi+e;Ms =Cy (48)

useful form in which a second order LTI system of relative boMy — b1 M, = B

degree one can be expressed.

Finally, the proposed controller has been tested onWhereCy = [1 0] andBj = [1 —1].
the experimental setup and compared with a typical Itis clear that ifM; or M, would be the zero vector, then

deterministic robust controller for which electrical dymias Ca andB; would be linearly dependent, which is not the

is neglected. It has been shown that the proposed controf{&se' Now suppose thid, andM were to be nonzero but

has achieved a reduction of tracking error up 81& % for |n8early d;:pendent. Thel, = M for some scalat, and
the maximum values ark.2 % for the rms values. (48) can be put as

Figure 5. Position error for a cam-related reference at 15 rpm.

(ye1 4+ c2)Ma = Cy
i . (49)
Proof of proposition 1 _
- As neither C; nor B}, are the zero vector, the scalar
LetC = [¢; c2] @andB = [b; bo]* for the second order SISO ~er +ea £ 0 and alsoyby — by # 0. Then, M, and Mo

LTI system in @). Let T be a nonsingular matrix. Then, Alinearly dependent would implg,; = 24+ B that is it
. . . — da’
state transformatior = Tz would take the original system;q|q imply thatC, andB}; are also IiﬁeQarI§ dependent. As

to the form C, and B} are not linearly dependent, neither can Mg
z=T 'ATz+ T 'Bu andM.
y = CTa. (42) " Thus, the matrixM = (M M2T]T is not singular, the
nonsingular transformation matrik,; exists and is given by
Let the matrixT be T, = M, and the system in2j can be transformed to the
ty tio form in (3) through the state transformatien= T ;z.
- [t21 t22} (43)

Proof of theorem 1

This theorem is easily proven following a procedure similar
. 1 {tm tlz] to those used for other Lyapunov-like stability results in

ThenT ! is given by

T detT |—ta1  ti (44) chapter 4 of the book by Khalif. Such a proof is given next.

Prepared usingagej.cls



Villegas et al. 9

Considering the caseB >0, let n = as(B). Then, forallt € [ty,to+ T
the time-dependent sé?, g = {x, € B, : V(t,x,) < n} )
is such that{x, € B, : ||x,|| < B} € Q5. On the other V < —Wi(xa) < —ay([[%al])
hand,Q; p C {x, € By : a1(||x4|]) < n}, being both com- < —aw (a3 (V) = —a(V)
pact sets, a¥ (¢, x,) is radially unbounded and; a class
K+ function. FinaIIy, by condition 3, this last set is a subset wherea = ay, o agl is a classC function which can be
of {x, € R" : a1(|[x4l]) < a1(r)} = B, C Dg.. assumed to be Lipschitz (see p. 153%n From comparison
If xa(to) € Q2 (@nd xu(to) € Db), as V(t,xa) IS lemma, and Lemma 4.4 in the book by Khé&fjlthere exists
negative on its boundary,(¢) cannot leave this compactg classc . functiono (r, s) such that
set, and by condition %, (t) stays inD,.
In case x,(ty) ¢ . p but x,(tg) € Q. = {x, € B, : V(t,x4(t)) < o(V(to,xalto)),t — to) (55)
as([[%al)) < 01(r)} € Q. = {Xa € By : V(t,%4) < o
a1(r)} (and xu(to) € Dy), Vs negative until x, (¢) forall t € [to,to + 1. Then, considering3?) leads to
enters 5, and therefore x,(¢t) stays in Q,. _q
Furthermore, it stays in the sef = {x,€ B,: Ia(®)]] < " (o(V(to, Xa(to)),t = to))

(54)

V(t,xa) < V(lo,Xa(to))}, which is a subset of < oy (o(e2(lIxa(to)ll), t = to))
{x4 € R" : a1 (||%al]) < az(||xa(to)]])} € B,. Considering = B(l[xa(to)ll,t —to),  Vt € [to,to + T
the properties stated on the definition16ft, x,,), these are (56)

compact sets and
where according to Lemma 4.2 in the book by Khlil

0 .
Qix, € {¥a € Br: V(L xa) < az([lxa(to) )} B(r,s) = ay  (a(as(r), s)) is @KL function.
C{xe € B, 1 V(t,xq) <a1(r)} = Qy In the particular case thaB = 0, the setQ, g is no
C {x0 € R : a1 (||x0])) < a1 (r)} = B, C D, longer considered, and the same argument presented for the

(50) set )} is followed to conclude thak(t) exists and is
bounded. In this case the same definitiorf)gfcan be used,

Then,x,(t) € Dy C Dy; thereforex(t) = (x4 (t), xp(t)) 2 as(B) = 0. On the other hand, the procedure used to

stays in a compact set. Thus, according to Theorem 3.35ROW the entrance oft, 5 in finite time cannot be used,

the book by Khalil® there is a unique solutior() for this @S the minimum o#¥(x,) will be zero. However, the same

dynamics fort > tq. argument followed to analyze the transient behavior can be
In this manner, if the initial condition is such thaft,) = applied, leading to

(x4 (t0), xp(t0)) € Q. x Dy the solution will stay in the

compact set 1o ()] < B([xalto)ll,t —to), Yt € [to,00) (57)

A =Qq x Dy (51)  Thus, beingB(r, s) a classk.L function, x,(t) — 0 as

where t— 00

Q, = {x, € B, : on(|xa])) < max(n, az(||xa(to)]]))}. ~ Proof of Corollary 1
_ o _ (52)  Consider the vectors, = [s z3 z4]T andx;, = [eg e1 8 4]7,

Hence, the solutior(¢) starting in€2,. x Dj is bounded.  and express the system equations as

It has been previously shown that a trajectoty(t)
starting in Q. p will stay in that setVt>t,. As Xq = £,(t, X0, Xp)
for the trajectories starting in{Q, —Q,p} let k=
minBSHXaHST‘ W(Xa). As the set{xa eR": B< ||Xa|| <
r} contains {Q, — Q; 5}, in this last setV(¢,x,(t)) <  Given the assumptions ary and its derivativesk s, Fr,
—k < 0. Thus, as long as such a trajectory stays in this send its estimatesé?f and fy4s, the functionsf, andf, are

58
Xy = f,(t, Xa, Xp). 8)

by comparison lemm&, piecewise continuous inand locally Lipschitz infx,, x;) on
[0,00) x R”. Thatis, functiond, andf, behave as functions
V(t,xq(t)) < V(to,Xa(to)) — k(t — to) (53 feandf,of Thm.1,
< ag(||xa(to)|) — k(t —to). Variablesey ande; can be obtained froms through a

strictly proper and stable LTI system. Thus, for a bounded
In this mannerV/ (¢, x,(t)) reduces ta; within the time s these variables are also bounded. Under these conditions
interval [to, to + (a2(||xa(to)]]) — 1) /K], with x,(¢) enter- and the above assumptions on the functions involved;
ing the set;  in finite time. Lett, + T be the particular bounded. Therefored and /3, which are obtained frona
instant in whichx, (¢) enters this set (ik, (to) € .5, T = through proper and stable LTI systems, are also bounded.
0). Then, as; 5 C {x, € D, : a1(||xq]]) < n=a2(B)}, Hence, a boundeg, results in a boundest,. Thus, for a

it results that Vt >ty + 7T, [|x.(t)] < a;'(aa(B))= given bounded domai®, (which will be chosen to ensure
ap(B), where according to Lemma 4.2 in the book byhe assumptions on initial conditions in Thrh) and a
Khalil '8, ap = a; ! o ay is a classC,, function. properly choserDy, condition 1 of Thm1 is verified.

Now the transient behavior will be considered. Being Consider the auxiliary functionV(x,) = jwis®+

W (x,) positive definite, there exists a classfunctiona.,, w.z"Pz. This is a continously differentiable function,
defined on[0, 0o) such thatW (x,) > ., (|x.]|) 8. Thus, which is also positive definite, radially unbounded, and

Prepared usingagej.cls



10

Journal Title XX(X)

decrescent. Therefore, there are cliss functionsa; and
ap such thatv ([|x4]]) < V(xa) < aa(||xq]])-

Considering 23), (11) and @8), the derivative ofV
satisfies

ETICOVARY VIEN R

w
. fmin
V< —xg —wy ngfl) Wy 0 | Xa
O 0 w9
52 (59)
+ wye+ wgﬁ

2
< _)\min||Xa||2 + wi€ + UJZ?

from (23) results an expression similar t69), except for
the absence of the last two terms. Then, from Thresults
X, (t) — 0 and therefore(t) — 0 for ¢ — co. Following the
same reasoning for the ultimate boundegne; ande; it can
be shown that this errors also decay to zero.
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where,,.;., is the smallest eigenvalue of the matrix in the

first term. Due to the assumption énin (38), this matrix is
positive definite, and thus,,;,, is positive.

Sinced, is continuousy? will reach a maximunv? .
in the compact seb, the closure of the sed = D, x D,,.
Thus, considering a valuge (0,1) and a value® such that
B, ={x, € R?:|x,|| <r} C D,, there are values ofy
ande such that

2
e,max

wW1€ + W .
By = < agy (aq(r)). (60)
Then, as
V(Xa) < _)‘min(l - 6’)||Xa||2 - )‘mineuxang

52 (61)

+ wi€e + U)Qi

n

considering 60) leads to
V(xe) < =W(xa),  V|xal > Ba (62)

for all (x,,x;) € D, whereW (x,) = Apin(1 — 0)||%,]|?

andB, < a; '(ay(r)), verifying conditions 2 and 3 of Thm.

1.

Then, from Thm.1, for every initial statex(tg) =
(xa(to), xp(to)) such that ||x,(to)| < a3 '(ai(r)) and
xp(to) € Dy, there is a solutiox(t) defined fort > to > 0
which is bounded. Furthermore, there is a classfunction
ap, and a constarif > 0 dependent o, (t) and By, such
that||x.(t)|| < ap(Bg) forallt € [ty + T, c0).

Variablesey, e; andes can be obtained from through

strictly stable LTI systems. As shown in Sec. 4.9 of the book
by Khalil*®, the state for such a kind of system with state

equationk = Ax + Bu is bounded as

k[IB|

Ix(t)]| < ke x(t7) | + sup_u(7)|

A t* <7<t
(63)

for positive constants: and A, from which a similar

relation can be shown for the output. Therefore, considerin

t* > to + T, and that in such conditions

sup [[s(T)| < sup |[xa(7)l| < ap(Ba)  (64)

tr <7<t t+<r<t

these variables will be ultimately bounded by a cliss
function of B,.

In the absence of model uncertainties and unmodeled

disturbances, that ig,, = d. =0, K. = K. and z = z,
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