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Abstract
This work proposes a deterministic robust controller to improve tracking performance for a linear motor, taking into
account the electrical dynamics imposed by a commercial current controller. The design is split in two parts by means
of the backstepping technique, in which the first part corresponds to a typical deterministic robust controller neglecting
the electrical dynamics. In the second part, a second order electrical dynamics is considered using a particular
state transformation. There, the proposed control law is composed of a term to compensate the known part of the
model, and a robust control term to impose a bound on the effect of uncertainties on tracking error. Stability and
boundedness results for the complete controller are given. To this effect, a general result on boundedness and stability
of nonlinear systems with conditionally bounded state variables is derived first. Finally, experimental results for the
complete controller show an improvement on tracking error of up to 31.7% when compared with the results from the
typical controller that neglects the electrical dynamics.
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Introduction

The search for improvement in production time and quality
imposes specific requirements in machine-tool feed drives
regarding speed and precision. An attractive alternative for
the typical ball-screw drives are linear motors, which show
high speed and acceleration capability while keeping a low
wear due to the absence of mechanical coupling, as well
as avoiding the limitations coming from vibration modes
associated with the screw. However, this absence makes
linear motors more sensitive to force disturbances. Also,
depending on the constructive characteristics of a particular
linear motor, some effects affecting motion performance can
become more important, such as force ripple, cogging force,
and electrical dynamics.

There have been many approaches for the control of
linear motors, such as a feedforward and state feedback
controller1; a technique called nominal characteristic
trajectory following2 3; repetitive control4; a PID-based
controller5; an improved sliding mode controller in the
work by Xie6; and several model-based adaptive robust
controllers7–11 based on the work by Yao12,13, just to cite a
few. Model based controllers often have high robustness14.
In particular, sliding mode control is a type of model
based robust control, and its use has increased in precision
positioning systems14.

As can be seen on several of the mentioned references, a
usual approach for the control of linear motors consists in
neglecting the electrical dynamics, since it has a much faster
response than the mechanical dynamics7,8. Then, a controller
is set for the part of the system related to the mechanical
dynamics assuming a proportionality between control action
and motor current. This is most suitable in ironless linear
motors, with reported bandwidths on the order of kilohertz15,

and where certainly low errors are achieved, on the order
of micrometers for moderate to high speed trajectories.
However, in iron core linear motors the time constant is
not so small due to the large inductance associated with the
iron core9, and although particular iron-core linear motors
are shown to have electrical bandwidths on the order of
kilohertz16, there are other cases in which bandwidths below
the hundred hertz have been reported17. This has a negative
impact on tracking error, as the existence of unmodeled
actuator dynamics in a system is able to degrade control
performance. For instance, for sliding mode controllers,
unmodeled actuator dynamics can lead to chattering, with
lower tracking accuracy, excitation of unmodeled high
frequency dynamics, and even system instability18.

One approach followed in the literature, which considers
the electrical dynamics, is feasible when there is direct
access to motor voltage19. However, in a setup including a
commercial current controller, this is not usually possible.
Also, these works are restricted to a first order dynamics,
as in the study by Yao and Xu9. This might not be enough
to represent current loop dynamics in a setup where the
only possible control action is the current reference of a
commercial current controller17. Therefore, the present work
seeks to approach motion control for a setup including a
commercial current controller and a permanent magnet linear
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synchronous motor (PMLSM) like the one in the work by
Villegas et al.17, where electrical dynamics is represented by
a second order linear time-invariant (LTI) system.

As the system under consideration is nonlinear, there
are quite a few possible approaches for control synthesis
and stability analysis. First of all, the Lyapunov formalism
is one of the most popular and is usually used in robust
control, whether in its continuous-time version, as in the
work by Zhao et al.20, or in its discrete-time version, as
in the work by Zhang et al.21. This formalism has several
derivations, such as the Lyapunov-Krasovskii approach,
which is extensively used for stability analysis of nonlinear
systems with time delay22–26. Another branch of approaches
comes from the input-output formalism with results as the
small gain theorem or its extensions, like the scaled small-
gain theorem that is used for the design of an output feedback
controller in the work by Wei et al.27.

Fuzzy and piecewise-affine systems are other interesting
alternatives to deal with nonlinear systems, as they allow to
represent nonlinear systems with arbitrary accuracy. Also,
several approaches are available for stability analysis of
these systems. Among these can be mentioned Markovian
Lyapunov functions28, mode-dependent piecewise Lyapunov
functions29, piecewise Markovian Lyapunov functions30.
Even cases with time delay can be considered, by means of
piecewise-Markovian Lyapunov-Krasovskii functionals31.
However, when applying these system representations, care
must be taken with the increase on the number of regions, as
it comes with the corresponding increment in the number of
local models and parameters. In fact, as accuracy increases,
so does the number of regions, increasing also with the
domain of approximation32.

In view of the previous considerations, controller synthesis
in this work is based in the nonlinear model of the
system. In particular, the backstepping technique33, which
is extensively used in the literature as well as several of its
variants34,35, is applied. However, stability analysis is based
on results derived in this work, developed from fundamental
properties of nonlinear systems.

In this context, a controller is proposed using a novel
approach to reduce the performance degradation imposed
by the electrical dynamics. In this development, a result
which allows to express the electrical dynamics in a more
convenient form for controller synthesis is given. Also, a
general Lyapunov-like result on stability of systems with
conditionally bounded states is derived, which is then
used to prove stability of the proposed controller. The
distinct performance improvement achieved by the proposed
controller is shown with experimental tests, where it is
compared to a typical deterministic robust controller in
which electrical dynamics is not considered for controller
synthesis.

Thus, in the next section the system model and some
general assumptions are presented. The third section is
devoted to the development of the proposed controller,
while the fourth section considers the stability issue. The
experimental results are shown in the fifth section. Then,
conclusions are presented in the sixth section. Finally, proofs
of several results presented throughout the text are given in
the appendix.

Linear feed drive model

The system under consideration in this paper consists of
a permanent magnet linear synchronous motor driven by
a commercial current amplifier. Following the work by
Villegas et al.17, the system is modeled as shown in Fig.1.
Here,G(s) characterizes the electrical dynamics from the
reference input of the current controller (u) to the motor
current (x3). The output of the blockKf represents the
force developed by the motor for a particular current, and
depends on the position of the moving part (x1) due to the
ripple effect36. The blockFcg is related to cogging force
andFf represents friction force. Finally,fdis encompasses
unmodeled disturbances and model uncertainties.

Figure 1. System model 17

In particular,G(s) is assumed to be a second order strictly
minimum-phase LTI system with relative degree one, just
like the model in the work by Villegas et al.17. Furthermore,
it is considered thatG(s) might not necessarily be positive
real. Thus, the state equation for the whole system can be
represented as follows:

ẋ1 = x2

mẋ2 = Kf (x1)x3 − Fcg(x1)− Ff (x2) + fdis(t,x)

ẋ3 = a33x3 + a34x4 + b3u

ẋ4 = a43x3 + a44x4 + b4u.

(1)

Here, the statesx3 and x4 correspond to the electrical
dynamics, wherex3 represents the motor current, and where
b3 6= 0 and b4 6= 0. This representation of the electrical
dynamics is possible for any second order LTI system with
relative degree one (corresponding to a transfer function with
two poles and one zero), as shown in the next proposition.

Proposition 1. Given a second order SISO LTI system with
relative degree one

ẋ = Ax+Bu

y = Cx.
(2)

Then there is a nonsingular matrixTd such that by the
state transformationx = Tdz the system can be expressed
in the following form

ż = Adz+Bdu

y = Cdz
(3)

for Cd = [1 0] andBd = [b b]T whereb = 1/detTd.

Proof: Proof is given in the appendix.
As for friction force, its behavior is complex and there

are several models with different levels of sophisticationto
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represent part of this behavior. In this particular case, the
simple Stribeck-tanh friction model37 is considered. This
model is capable of representing the Stribeck curve for a
range of speeds while keeping the formal analysis simple.
Besides, as previously pointed out, deviations from this
model will be considered as part of the disturbances. The
Stribeck-tanh model is a static friction model in which the
dependence of friction force with velocity can be expressed
as

Ff (x2) =
(

Fc + (Fs − Fc)e
−| x2

Vs
|δVs
)

tanh(ktanhx2)

+ kvx2
(4)

being Fc the Coulomb force,Fs the static force,Vs
the Stribeck velocity,δVs

the Stribeck shape factor,kv the
viscous friction coefficient, andktanh a coefficient that
determines the behavior of the model in the transition
between positive and negative velocities.

It is assumed that the system parameters are not perfectly
known, but there are known bounds for the uncertainties and
unmodeled disturbances on the dynamics forx1 andx2 in
(1).
Kf (x1) depends onx1 in order to represent the ripple

effect. This is an electromagnetic effect by which force
constant varies with position. The cogging force, represented
by the termFcg(x1), is a position-varying force due to the
attraction of the motor translator to the permanent magnets
in the secondary, and can be important for PMLSM with
ferromagnetic core. Several models have been proposed
in literature, either purely periodical or including possible
aperiodical behavior to represent this variation along motor
displacement. Whichever the case, it is assumed that
there are boundsKfmax > 0, Kfmin > 0 and Fcmax >
0 such thatKfmin ≤ Kf (x1) ≤ Kfmax and |Fcg(x1)| ≤
Fcmax for all x1 ∈ R, and bothKf (x1) and Fcg(x1) are
differentiable inR.

It is also assumed thatfdis(t,x) is bounded, piecewise
continuous int and locally Lipschitz inx. Finally it is
considered that the reference trajectoryxd(t) is such that
xd, ẋd, ẍd, and

...
xd are bounded, equivalent to a jerk-limited

trajectory.

Proposed controller

In this section, a deterministic robust controller is
proposed including the electrical dynamics, seeking for an
improvement in control performance. It should be noticed
that although the controller will be designed for the whole
system, the design process will be split in two stages using
the backstepping technique18,33. Therefore, in the first stage,
the control problem will be approached as if direct access
to motor current could be achieved, like it is done when
electrical dynamics is neglected. Then, in the second stage,
electrical dynamics will be included in the design.

First stage
For the first stage, a typical deterministic robust controller
is developed following a procedure similar to that for the
design of the robust control law in the work by Xu and Yao8,
except that the system is augmented with a state representing

the integral of the position error. Such augmentation is a
common technique, used for instance with a sliding mode
controller to achieve asymptotic tracking of a constant
reference in presence of uncertainties18.

Let e1 = x1 − xd be the position error, wherexd is the
position reference, ande2 = x2 − ẋd the velocity error. Let
the statee0 be defined aṡe0 = e1, and define a variable
s = mψ0e0 +mψ1e1 +me2 as could be done for a sliding
mode controller. Thus, considering (1), ṡ can be expressed as

ṡ = mψ0e1 +mψ1e2 +Kf (x1)x3

− Fcg(x1)− Ff (x2) + fdis(t,x)−mẍd.
(5)

As a first step, a control lawα = αa + αs is proposed
for the virtual control variablex3. As in the work by Xu
and Yao8 this control law is split in two parts:αa, intended
to compensate known terms; andαs, a robust control term.
This separation allows more clarity in the design process
for the robust control termαs, as αa becomes part of
a term encompassing model uncertainties and unmodeled
disturbances.

Considering (5) and our prior assumptions,αa is given by

αa =
1

K̂f (x1)

[

F̂cg(x1) + F̂f (t)

+ m̂ (ẍd − ψ0e1 − ψ1e2)
]

.

(6)

Here, the accent “”̂ stands for an approximate value,
an estimation obtained from a previous identification of
the system. In particular, given an actual valueξ and
its estimateξ̂, its error is defined as̃ξ = ξ̂ − ξ. In the
particular case of the functionŝKf (x1) and F̂cg(x1), the
same assumptions about boundedness and differentiability
explicited for Kf (x1) and Fcg(x1) when describing the
model are assumed to apply.

Also, it is considered a feedforward compensation for
friction, represented by a time function̂Ff (t) that is obtained
solely from the reference trajectory. However, it is assumed
that the friction model used for this is such that the
feedforward signal is piecewise smooth and bounded under
the boundedness assumption forxd, . . . ,

...
xd.

The error variable for the virtual controlx3 is defined
asz3 = x3 − α, and considering thatKf (x1) = K̂f (x1)−
K̃f (x1), then

ṡ = mψ0e1 +mψ1e2 +Kf (x1)z3 +Kf (x1)(αa + αs)

− Fcg(x1)− Ff (x2) + fdis(t,x)−mẍd

= Kf (x1)(z3 + αs) + dm(t,x)

(7)

where dm includes unmodeled disturbances and model
uncertainties, and it is given by

dm(t,x) = −K̃f (x1)αa + F̃cg(x1) + F̃f (t, x2)

+ fdis(t,x) + m̃ (ẍd − ψ0e1 − ψ1e2) .
(8)

Knowing a bound for the parametrical uncertainties and
the unmodeled disturbances indm(t,x), a smooth function
δm(t,x) can be found such that|dm(t,x)| ≤ δm(t,x).

Let V1 = 1
2w1s

2 be an auxiliary function, wherew1 > 0.
Thus,

V̇1 = w1sKf (x1)z3 + w1s(Kf (x1)αs + dm(t,x)). (9)
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Let αs be expressed asαs = αs1 + αs2, whereαs1 is a
stabilizing feedback term which takes the form

αs1 = − ks
Kfmin

s (10)

whereks is a positive constant.
Now a term αs2 is proposed to reduce the effect of

the uncertainties and disturbances considered in the term
dm(t,x). This term is chosen in order to verify the condition

s(Kf (x1)αs2 + dm(t,x)) ≤ ǫ (11)

for a constantǫ > 0 that constitutes a design parameter for
the proposed controller. As described in the work by Yao and
Xu9, a suitable term can be

αs2 = − δ2m(t,x)

4Kfminǫ
s. (12)

It can be shown that this function satisfies the inequality
in (11). To see this, define

R(t,x) = −Kf (x1)
δ2m(t,x)

4Kfminǫ
s+ dm(t,x) (13)

then

sR(t,x) = −Kf (x1)

Kfmin

δ2m(t,x)

4ǫ
s2 + sdm(t,x)

≤ −d
2
m(t,x)

4ǫ
s2 + s · dm(t,x)

= −
(

dm(t,x)

2
√
ǫ

s

)2

+ s · dm(t,x).

(14)

Now considera = dm(t,x)
2
√
ǫ
s andb =

√
ǫ. As (a− b)2 ≥ 0,

or equivalentlya2 − 2ab+ b2 ≥ 0, then−a2 + 2ab ≤ b2 =
ǫ, which combined with (14) leads to

sR(t,x) ≤ −
(

dm(t,x)

2
√
ǫ

s

)2

+ s · dm(t,x) ≤ ǫ. (15)

Thus, the control lawα is proposed for the virtual
control inputx3, which represents the motor current. In this
manner, if electrical dynamics were to be neglected,α would
constitute the proposed control law. However, as electrical
dynamics is to be considered, it has to be included. This is
done on the second stage of the design, from which a novel
control law for the real input is proposed, based on the virtual
controlα.

Second stage
In the previous section,α, the desired value for the statex3,
has been obtained. Now, suppose an inputu0 is applied to
the electrical dynamics such thatx3 would be able to track
α. In such a case, whilex3 tracksα, x4 should track some
β, verifying the equations corresponding to the electrical
dynamics, leading to

α̇ = a33α+ a34β + b3u0

β̇ = a43α+ a44β + b4u0.
(16)

Therefore, givenα, such aβ could be obtained by the
following LTI system

β̇ =

(

a44 −
b4
b3
a34

)

β +

(

a43 −
b4
b3
a33

)

α+
b4
b3
α̇ (17)

which is a stable (and proper) LTI system, given that the
electrical dynamics is minimum-phase and thusa44 − b4

b3
a34,

which corresponds to the zero of the electrical dynamics, is
negative.

Having defined the quantityβ, now the statesz3 andz4 are
defined asz3 = x3 − α andz4 = x4 − β, i.e., the difference
between each state and its desired value. Then, its dynamics
can be expressed as

ż3 = a33z3 + a34z4 + b3u+ a33α+ a34β − α̇

ż4 = a43z3 + a44z4 + b4u+
b4
b3

(a33α+ a34β − α̇)
(18)

which can be written as

ż = Az+B

(

u+
1

b3
(a33α+ a34β − α̇)

)

(19)

wherez = [z3 z4]
T , B = [b3 b4]

T and

A =

[

a33 a34
a43 a44

]

. (20)

Here, A is Hurwitz, therefore∃!P symmetric positive
definite matrix such thatPA+A

T
P = −I. Considering

now an auxiliary functionV = V1 + w2z
T
Pz, withw2 > 0,

then

V̇ = −w1
Kf (x1)

Kfmin

kss
2 − w2z

T
z+ w1sKf (x1)z3

+ w1s(Kf (x1)αs2 + dm(t,x))

+ 2w2z
T
PB

(

u+
1

b3
(a33α+ a34β − α̇)

)

.

(21)

The particular form of the terṁα in (21) is not developed
in order to allow certain freedom on the way in which its
compensation might be handled.

Now, the actual control law is proposed, taking the form
u = ua + us whereus is a robust control law to be defined
later and

ua = − 1

b̂3

(

â33α+ â34β̂ − ˆ̇α
)

(22)

is a compensation term associated with the electrical
dynamics. Here, approximate values are used forβ and α̇,
as these will depend on parameters that are assumed to be
known only in an approximate way, as well as on unmodeled
disturbances. It can also be noticed that in (16), for zero
initial error, theu0 would take the form ofua except that
it should be calculated with the exact values.

Using the proposed control, and definingxa = [s z3 z4]
T ,

V̇ is given by

V̇ = −x
T
a







w1
Kf (x1)
Kfmin

ks −w1
Kf (x1)

2 0

−w1
Kf (x1)

2 w2 0
0 0 w2






xa

+ w1s(Kf (x1)αs2 + dm(t,x))

+ 2w2z
T
PB (us + de(t,x))

(23)
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wherede is

de(t,x, β, β̂) =

(

a33
b3

− â33

b̂3

)

α+

(

a34
b3
β − â34

b̂3
β̂

)

−
(

1

b3
α̇− 1

b̂3
ˆ̇α

)

(24)

which can also be expressed asde = ua − u0.
It should be noticed that the matrix in the first term of (23)

will be positive definite whenever

w1w2
Kf (x1)

Kfmin

ks − w2
1

K2
f (x1)

4
> 0 (25)

or in another form,

ks >
w1

w2

Kf (x1)Kfmin

4
. (26)

The termus on the other hand will be chosen to reduce the
error introduced by the uncertainties inde. A possible form
for this term is

us = −K̂eẑ (27)

whereK̂e =
1
2ηB̂

T
P̂, for η > 1 and ẑ = [x3 − α x4 −

β̂]T . Here, the symbolsK̂e and ẑ are used because of
their dependence on estimated values. In the same way, the
symbolsKe andz are used to indicate dependence on exact
values.

Then, proceeding as previously done withαs, leads to

2zTPB (us + de) = 2zTPB (−Kez+ d∗e)

= −2

(
√

η

2
z
T
PB

)2

+ 2zTPBd∗e

≤ (d∗e)
2

η
.

(28)

Here,d∗e is given by

d∗e(t,x, β, β̂) =

(

a33
b3

− â33

b̂3

)

α+

(

a34
b3
β − â34

b̂3
β̂

)

−
(

1

b3
α̇− 1

b̂3
ˆ̇α

)

− K̃ez− K̂ez̃

(29)

wherez̃ = [0 β̃]T .
It should be noticed that the functiond∗e is such that

there is a functionδe (not necessarily known) that satisfies
|d∗e(t,x, β, β̂)| ≤ δe(x, β, β̂). It is assumed without loss of
generality that the bounding functionδe is continuous.

Based on the prior development, in the following section
the stability of the system with the proposed control law is
evaluated.

Stability

In this section a general result on the behavior of systems
with conditionally bounded states is given first. Then,
based on this result, stability of the proposed controller is
demonstrated.

Result on the behavior of a system with
conditionally bounded states
In order to simplify the analysis of systems in which several
state variables might not vanish with time, but could be
bounded under certain conditions, the following result is
developed.

Theorem 1. Consider a system which can be represented as

ẋa = fa(t,xa,xb)

ẋb = fb(t,xa,xb)
(30)

where xa ∈ R
n, xb ∈ R

m, and either fa and fb are
piecewise continuous int and locally Lipschitz in(xa,xb)
on [0,∞)× R

n+m.
Suppose that the system is such that following conditions

hold:

1. Conditional boundedness onxb. Wheneverxa(τ) ∈
Da for all t0 ≤ τ ≤ t, then(xa(t),xb(t)) ∈ D, being
D = Da ×Db,Da andDb bounded domains.

2. Lyapunov-like condition onxa. There exists a
continuous positive definite functionW : Rn →
R : xa 7→W (xa) and a continuously differentiable
function V : [0,∞)× R

n → R : (t,xa) 7→ V (t,xa)
which is positive definite, radially unbounded, and
decrescent. There is a constantB ≥ 0 such that the
following holds:

V̇ (t,xa(t)) =
∂V

∂t
+
∂V

∂xa

fa(t,xa,xb)

≤ −W (xa)

(31)

for all t ≥ 0, (xa,xb) ∈ D̄, ‖xa‖ ≥ B.
It should be noticed that beingV (t,xa) positive
definite, radially unbounded and decrescent, there
exist classK∞ functionsα1, α2 such that18

α1(‖xa‖) ≤ V (t,xa) ≤ α2(‖xa‖). (32)

Then, it is assumed that the following condition holds
for B.

3. Condition on B.B < α−1
2 (α1(r)) for somer > 0 such

thatBr = {xa ∈ R
n : ‖xa‖ ≤ r} ⊆ Da.

In such a case, for every initial statex(t0) =
(xa(t0),xb(t0)) such that ‖xa(t0)‖ ≤ α−1

2 (α1(r)) and
xb(t0) ∈ Db, there exists a solutionx(t) defined fort ≥ t0 ≥
0. This solution is bounded. Furthermore, forB > 0 there
exists a classK∞ functionαB , a classKL functionβ(r, s)
and a constantT > 0, dependent onxa(t0) andB, such that
xa(t) satisfies:

‖xa(t)‖ ≤ β(‖xa(t0)‖, t− t0), ∀t ∈ [t0, t0 + T ]

‖xa(t)‖ ≤ αB(B), ∀t ∈ [t0 + T,∞).

(33)

In the particular case thatB = 0, the result forxa reduces
to

‖xa(t)‖ ≤ β(‖xa(t0)‖, t− t0), ∀t ∈ [t0,∞) (34)

wherebyxa(t) → 0 for t→ ∞.
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Proof: Proof is given in the appendix.
Although the previous result is local in principle, it should

be clear that the only limit on the diameter of the setsDa

andDb is given by the largest set where condition 2 of the
theorem and the conditional boundedness ofDb are verified
(which could establish a relation between the diameters of
Db andDa), wheneverB is small enough to fulfill condition
3.

Also, it should be clear that ifxb is unconditionally
bounded the result is still valid, as condition 1 is obviously
verified.

Stability of the proposed controller
For the system shown with the proposed control law, the
following result can be derived as a corollary of Theorem
1.

Corollary 1. For the given dynamics, with the properties
assumed for the reference trajectory and the functions
involved, suppose the control law is given by

u = −K̂eẑ−
1

b̂3

(

â33α+ â34β̂ − ˆ̇α
)

(35)

whereK̂e =
1
2ηB̂

T
P̂, for η > 1, ẑ = [x3 − α x4 − β̂]T ,

β̂ is obtained∗ from

˙̂
β =

(

â44 −
b̂4

b̂3
â34

)

β̂ +

(

â43 −
b̂4

b̂3
â33

)

α+
b̂4

b̂3
α̇ (36)

andα is given by

α =− ks
Kfmin

s− δ2m(t,x)

4Kfminǫ
s

+
1

K̂f (x1)

[

F̂cg(x1) + F̂f (t)

+ m̂ (ẍd − ψ0e1 − ψ1e2)
]

(37)

where s = mψ0e0 +mψ1e1 +me2, the state e0 is
defined aṡe0 = e1, andks verifies the following condition:

ks >
w1

w2

Kf (x1)Kfmin

4
. (38)

In such a case, forǫ and η properly chosen, the system
solution is bounded and there is a classK∞ functionαF

such that the error variablese0(t), e1(t), ande2(t) converge
to the region‖ei(t)‖ ≤ αF (Bd), for i = 0, 1, 2, where

Bd =

√

√

√

√

w1ǫ+ w2
δ2e,max

η

λminθ
(39)

for someθ ∈ (0, 1), and for a constantδe,max dependent
on the initial conditions.

Furthermore, in absence of unmodeled disturbances and
without model uncertainties,ei(t) → 0 for t→ ∞.

Proof: Proof is given in the appendix.
It should be noticed that although the result in corollary

1 depends on a set of admissible values for the initial

Figure 2. Linear motor stage.

conditions of the system, nothing prevents to choose such a
set to contain the maximum values admitted by the physical
system, considering the practical limits on displacement,
speed, and control action for the device in use. Furthermore,
the same set can be considered in order to choose a locally
valid boundδM for the bounding functionδm(t,x). In this
way, the termαs can be expressed in the simpler form
αs = −KSs, where

KS =
ks +

δ2M
4ǫ

Kfmin

. (40)

This particular form ofαs has been chosen to test the
proposed controller in the experimental setup.

Experimental results

The proposed controller has been tested on the linear motor
stage shown in Fig.2. The experimental setup17 includes a
permanent magnet linear synchronous motor with ball guide
rails, and a current amplifier. The setup also includes a linear
scale which provides position feedback, both for the current
amplifier and for the proposed controller.

The Generalized Maxwell-slip (GMS) friction model38,39,
with the parameters obtained in the work by Villegas et al.17,
has been used for the feedforward compensation of friction
in (37). The models used for compensation of cogging force
and ripple effect take the following form17:

Fcg(x) =

3
∑

k=0

ck,cx
k +

3
∑

k=1

(

ak,c cos

(

2πkx

37.5

)

+ bk,c sin

(

2πkx

37.5

))

Kf (x) =

2
∑

k=0

ck,rx
k +

3
∑

k=1

(

ak,r cos

(

2πkx

37.5

)

+ bk,r sin

(

2πkx

37.5

))

(41)

for x within the physically feasible motion range for this
motor. Outside of this range it is considered to be defined in
agreement with the assumptions made for both functions in
the previous sections.

The contribution of this work comes from the inclusion of
the electrical dynamics in the controller design; therefore,
the proposed controller is compared with the control law

∗Notice that β̂ is obtained fromα through a proper LTI system. Thus,
estimation ofα̇ is not necessary to calculateβ.
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Table 1. Reference detail.

n [rpm] vmax

[

mm

s

]

amax

[

mm

s
2

]

jmax

[

mm

s
3

]

5 10.1 29.9 150.4
7.5 15.1 67.2 504.4
10 20.2 119.4 1185
15 30.27 268.6 4077

Table 2. Position error comparison.

Ref.
emax [µm] δmax erms [µm] δrms

DRC DRC+ED [%] DRC DRC+ED [%]

5 rpm 20.8 14.2 -31.7 3.5 2.3 -34.3
7.5 rpm 22.2 20.6 -7.2 4.15 2.9 -30.1
10 rpm 26.4 23.9 -9.5 5.1 3.8 -25.5
15 rpm 28.5 20.2 -29.1 6.5 3.95 -39.2

α given at the first stage of the previous section, which
constitutes in itself a deterministic robust controller (DRC)
in which electrical dynamics has been neglected. This allows
to evaluate the improvement on the performance obtained
by the inclusion of the electrical dynamics in the control
law, and whether such inclusion would justify the increase
in complexity for this controller. For the sake of simplicity,
the proposed and the reference controllers are referred from
here on as DRC+ED and DRC respectively, where ED refers
to the inclusion of the electrical dynamics in control design.

In the experiments, the tracking performance for both
controllers is tested for a type of reference that includes
complex variations in position, velocity, acceleration and
jerk. This particular type of reference represents the carriage
movement for a cam grinding operation for three turns of the
cam. These cam-related references correspond to a process
with a grinding wheel diameter of360mm, and a particular
cam profile of50mm base circle radius and15mm total rise
rotating at different rotation speeds. The position trajectory
and its derivatives for one of such references, with a rotation
speed of15 rpm, are shown in Fig.3. Details on the different
reference trajectories used in the experiments are shown in
table1 for the different values of the rotation speedn.

The controller parameters in the experiments were tuned
to achieve the lowest maximum error in the DRC controller,
and the same values were used for the corresponding
parameters of the DRC+ED controller.

The tracking errors for the different reference trajectories
are shown in table2, where maximum errors as well as
rms errors are given for both controllers. Also, for ease
of comparison, the relative error difference between the
controllers is shown, given asδ = eDRC+ED−eDRC

eDRC
for both

maximum and rms errors. In particular, the tracking error
profile for references of5 rpm and15 rpm can be seen in
Figs.4and5 respectively, where the error for both controllers
along a period of the reference is shown, as well as the
reference itself.

Thus, although the proposed controller gains in com-
plexity, the improvement when considering the electrical
dynamics can be important, reducing the maximum error up
to 31.7% and the rms error up to39.2% in the experiments.

0 0.5 1 1.5 2 2.5 3 3.5
100

110

120
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x
d
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m
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0 0.5 1 1.5 2 2.5 3 3.5
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0

50
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ẋ
d
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m
/
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0 0.5 1 1.5 2 2.5 3 3.5
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ẍ
d
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x
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Figure 3. cam-related reference at 15 rpm.
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Figure 4. Position error for a cam-related reference at 5 rpm.

Conclusion

The present work has shown the importance of considering
the electrical dynamics in a system, even when it has a much
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Figure 5. Position error for a cam-related reference at 15 rpm.

faster response than the mechanical dynamics. Starting from
a typical deterministic robust controller for the mechanical
system, this article has shown a particular way to deal with
a second order electrical dynamics, such as the one in the
experimental setup.

Stability results for the proposed controller have been
presented. Furthermore, a more general result has been
shown for the stability analysis of systems in which part
of the system can be shown to be bounded or conditionally
bounded. Also, this paper has displayed a particular and
useful form in which a second order LTI system of relative
degree one can be expressed.

Finally, the proposed controller has been tested on
the experimental setup and compared with a typical
deterministic robust controller for which electrical dynamics
is neglected. It has been shown that the proposed controller
has achieved a reduction of tracking error up to a31.7% for
the maximum values and39.2% for the rms values.

Appendix

Proof of proposition 1
LetC = [c1 c2] andB = [b1 b2]

T for the second order SISO
LTI system in (2). Let T be a nonsingular matrix. Then, a
state transformationx = Tz would take the original system
to the form

ż = T
−1

ATz+T
−1

Bu

y = CTz.
(42)

Let the matrixT be

T =

[

t11 t12
t21 t22

]

. (43)

ThenT−1 is given by

T
−1 =

1

detT

[

t22 −t12
−t21 t11

]

(44)

wheredetT = t11t22 − t12t21 6= 0 asT is nonsingular.
In order to obtain vectorsCT = [cn,1 cn,2] andT−1

B =
[bn,1 bn,2]

T , the matrix componentstij should satisfy









c1 0 c2 0
0 c1 0 c2
0 −b2 0 b1
b2 0 −b1 0

















t11
t12
t21
t22









=









cn,1
cn,2

bn,1 detT
bn,2 detT









. (45)

Thus, the proposition will be proved if there is a
nonsingular matrixM with componentsmij such that









c1 0 c2 0
0 c1 0 c2
0 −b2 0 b1
b2 0 −b1 0

















m11

m12

m21

m22









=









1
0
1
1









. (46)

In such a case, the matrixTd of the proposition is given
by Td = M.

The determinant of the first matrix is
∣

∣

∣

∣

∣

∣

∣

∣

c1 0 c2 0
0 c1 0 c2
0 −b2 0 b1
b2 0 −b1 0

∣

∣

∣

∣

∣

∣

∣

∣

= (c1b1 + c2b2)
2 = (CB)2. (47)

Thus, for a system with relative degree one, asCB 6= 0
(see p. 512 in18), the determinant of this matrix is nonzero,
and the equation in (46) has a unique solution. Thus, having
determinedM, its nonsingularity has yet to be proved.

Consider the row vectorsM1 and M2 of matrix M

(MT =
[

M
T
1 M

T
2

]

). Equation (46) can be expressed with
these vectors as

c1M1 + c2M2 = Cd

b2M1 − b1M2 = B
∗
d

(48)

whereCd = [1 0] andB∗
d = [1 − 1].

It is clear that ifM1 orM2 would be the zero vector, then
Cd andB

∗
d would be linearly dependent, which is not the

case. Now suppose thatM1 andM2 were to be nonzero but
linearly dependent. ThenM1 = γM2 for some scalarγ, and
(48) can be put as

(γc1 + c2)M2 = Cd

(γb2 − b1)M2 = B
∗
d.

(49)

As neitherCd nor B
∗
d are the zero vector, the scalar

γc1 + c2 6= 0 and alsoγb2 − b1 6= 0. Then,M1 and M2

linearly dependent would implyCd = γc1+c2
γb2−b1

B
∗
d, that is it

would imply thatCd andB∗
d are also linearly dependent. As

Cd andB∗
d are not linearly dependent, neither can beM1

andM2.
Thus, the matrixM =

[

M
T
1 M

T
2

]T
is not singular, the

nonsingular transformation matrixTd exists and is given by
Td = M, and the system in (2) can be transformed to the
form in (3) through the state transformationx = Tdz.

Proof of theorem 1
This theorem is easily proven following a procedure similar
to those used for other Lyapunov-like stability results in
chapter 4 of the book by Khalil18. Such a proof is given next.

Prepared usingsagej.cls



Villegas et al. 9

Considering the caseB > 0, let η = α2(B). Then,
the time-dependent setΩt,B = {xa ∈ Br : V (t,xa) ≤ η}
is such that{xa ∈ Br : ‖xa‖ ≤ B} ⊆ Ωt,B . On the other
hand,Ωt,B ⊆ {xa ∈ Br : α1(‖xa‖) ≤ η}, being both com-
pact sets, asV (t,xa) is radially unbounded andα1 a class
K∞ function. Finally, by condition 3, this last set is a subset
of {xa ∈ R

n : α1(‖xa‖) ≤ α1(r)} = Br ⊆ Da.
If xa(t0) ∈ Ωt,B (and xb(t0) ∈ Db), as V̇ (t,xa) is

negative on its boundary,xa(t) cannot leave this compact
set, and by condition 1xb(t) stays inDb.

In case xa(t0) /∈ Ωt,B but xa(t0) ∈ Ωr = {xa ∈ Br :
α2(‖xa‖) ≤ α1(r)} ⊆ Ωt,r = {xa ∈ Br : V (t,xa) ≤
α1(r)} (and xb(t0) ∈ Db), V̇ is negative until xa(t)
enters Ωt,B , and therefore xa(t) stays in Ωt,r.
Furthermore, it stays in the setΩ0

t,xa
= {xa ∈ Br :

V (t,xa) ≤ V (t0,xa(t0))}, which is a subset of
{xa ∈ R

n : α1(‖xa‖) ≤ α2(‖xa(t0)‖)} ⊆ Br. Considering
the properties stated on the definition ofV (t,xa), these are
compact sets and

Ω0
t,xa

⊆ {xa ∈ Br : V (t,xa) ≤ α2(‖xa(t0)‖)}
⊆ {xa ∈ Br : V (t,xa) ≤ α1(r)} = Ωt,r

⊆ {xa ∈ R
n : α1(‖xa‖) ≤ α1(r)} = Br ⊆ Da.

(50)

Then,xb(t) ∈ Db ⊆ D̄b; thereforex(t) = (xa(t),xb(t))
stays in a compact set. Thus, according to Theorem 3.3 in
the book by Khalil18 there is a unique solutionx(t) for this
dynamics fort ≥ t0.

In this manner, if the initial condition is such thatx(t0) =
(xa(t0),xb(t0)) ∈ Ωr ×Db the solution will stay in the
compact set

Λ = Ωa × D̄b (51)

where

Ωa = {xa ∈ Br : α1(‖xa‖) ≤ max(η, α2(‖xa(t0)‖))}.
(52)

Hence, the solutionx(t) starting inΩr ×Db is bounded.
It has been previously shown that a trajectoryxa(t)

starting in Ωt,B will stay in that set ∀t ≥ t0. As
for the trajectories starting in{Ωr − Ωt,B} let k =
minB≤‖xa‖≤rW (xa). As the set{xa ∈ R

n : B ≤ ‖xa‖ ≤
r} contains {Ωr − Ωt,B}, in this last setV̇ (t,xa(t)) ≤
−k < 0. Thus, as long as such a trajectory stays in this set,
by comparison lemma18,

V (t,xa(t)) ≤ V (t0,xa(t0))− k(t− t0)

≤ α2(‖xa(t0)‖)− k(t− t0).
(53)

In this mannerV (t,xa(t)) reduces toη within the time
interval [t0, t0 + (α2(‖xa(t0)‖)− η) /k], with xa(t) enter-
ing the setΩt,B in finite time. Lett0 + T be the particular
instant in whichxa(t) enters this set (ifxa(t0) ∈ Ωt,B , T =
0). Then, asΩt,B ⊆ {xa ∈ Da : α1(‖xa‖) ≤ η = α2(B)},
it results that ∀t ≥ t0 + T , ‖xa(t)‖ ≤ α−1

1 (α2(B)) =
αB(B), where according to Lemma 4.2 in the book by
Khalil 18, αB = α−1

1 ◦ α2 is a classK∞ function.
Now the transient behavior will be considered. Being

W (xa) positive definite, there exists a classK functionαw

defined on[0,∞) such thatW (xa) ≥ αw(‖xa‖)18. Thus,

for all t ∈ [t0, t0 + T ]

V̇ ≤ −W (xa) ≤ −αw(‖xa‖)
≤ −αw

(

α−1
2 (V )

)

= −α(V )
(54)

whereα = αw ◦ α−1
2 is a classK function which can be

assumed to be Lipschitz (see p. 153 in18). From comparison
lemma, and Lemma 4.4 in the book by Khalil18, there exists
a classKL functionσ(r, s) such that

V (t,xa(t)) ≤ σ(V (t0,xa(t0)), t− t0) (55)

for all t ∈ [t0, t0 + T ]. Then, considering (32) leads to

‖xa(t)‖ ≤ α−1
1 (σ(V (t0,xa(t0)), t− t0))

≤ α−1
1 (σ(α2(‖xa(t0)‖), t− t0))

= β(‖xa(t0)‖, t− t0), ∀t ∈ [t0, t0 + T ]

(56)

where according to Lemma 4.2 in the book by Khalil18,
β(r, s) = α−1

1 (σ(α2(r), s)) is aKL function.
In the particular case thatB = 0, the setΩt,B is no

longer considered, and the same argument presented for the
set Ω0

t,xa
is followed to conclude thatx(t) exists and is

bounded. In this case the same definition ofΩa can be used,
as α2(B) = 0. On the other hand, the procedure used to
show the entrance onΩt,B in finite time cannot be used,
as the minimum ofW (xa) will be zero. However, the same
argument followed to analyze the transient behavior can be
applied, leading to

‖xa(t)‖ ≤ β(‖xa(t0)‖, t− t0), ∀t ∈ [t0,∞) (57)

Thus, beingβ(r, s) a classKL function, xa(t) → 0 as
t→ ∞

Proof of Corollary 1

Consider the vectorsxa = [s z3 z4]
T andxb = [e0 e1 β β̂]

T ,
and express the system equations as

ẋa = fa(t,xa,xb)

ẋb = fb(t,xa,xb).
(58)

Given the assumptions onxd and its derivatives,Kf , Fcg

and its estimates,̂Ff and fdis, the functionsfa and fb are
piecewise continuous int and locally Lipschitz in(xa,xb) on
[0,∞)× R

7. That is, functionsfa andfb behave as functions
fa andfb of Thm.1.

Variablese0 and e1 can be obtained froms through a
strictly proper and stable LTI system. Thus, for a bounded
s these variables are also bounded. Under these conditions
and the above assumptions on the functions involved,α is
bounded. Therefore,β and β̂, which are obtained fromα
through proper and stable LTI systems, are also bounded.
Hence, a boundedxa results in a boundedxb. Thus, for a
given bounded domainDa (which will be chosen to ensure
the assumptions on initial conditions in Thm.1) and a
properly chosenDb, condition 1 of Thm.1 is verified.

Consider the auxiliary functionV (xa) =
1
2w1s

2 +
w2z

T
Pz. This is a continously differentiable function,

which is also positive definite, radially unbounded, and
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decrescent. Therefore, there are classK∞ functionsα1 and
α2 such thatα1(‖xa‖) ≤ V (xa) ≤ α2(‖xa‖).

Considering (23), (11) and (28), the derivative ofV
satisfies

V̇ ≤ −x
T
a







w1
Kf (x1)
Kfmin

ks −w1
Kf (x1)

2 0

−w1
Kf (x1)

2 w2 0
0 0 w2






xa

+ w1ǫ+ w2
δ2e
η

≤ −λmin‖xa‖2 + w1ǫ+ w2
δ2e
η

(59)

whereλmin is the smallest eigenvalue of the matrix in the
first term. Due to the assumption onks in (38), this matrix is
positive definite, and thusλmin is positive.

Sinceδe is continuous,δ2e will reach a maximumδ2e,max

in the compact set̄D, the closure of the setD = Da ×Db.
Thus, considering a valueθ ∈ (0, 1) and a valuer such that
Br = {xa ∈ R

3 : ‖xa‖ ≤ r} ⊆ Da, there are values ofη
andǫ such that

Bd =

√

√

√

√

w1ǫ+ w2
δ2e,max

η

λminθ
< α−1

2 (α1(r)). (60)

Then, as

V̇ (xa) ≤ −λmin(1− θ)‖xa‖2 − λminθ‖xa‖2

+ w1ǫ+ w2
δ2e
η

(61)

considering (60) leads to

V̇ (xa) ≤ −W (xa), ∀‖xa‖ ≥ Bd (62)

for all (xa,xb) ∈ D̄, whereW (xa) = λmin(1− θ)‖xa‖2
andBd < α−1

2 (α1(r)), verifying conditions 2 and 3 of Thm.
1.

Then, from Thm. 1, for every initial statex(t0) =
(xa(t0),xb(t0)) such that ‖xa(t0)‖ ≤ α−1

2 (α1(r)) and
xb(t0) ∈ Db, there is a solutionx(t) defined fort ≥ t0 ≥ 0
which is bounded. Furthermore, there is a classK∞ function
αB , and a constantT > 0 dependent onxa(t0) andBd, such
that‖xa(t)‖ ≤ αB(Bd) for all t ∈ [t0 + T,∞).

Variablese0, e1 and e2 can be obtained froms through
strictly stable LTI systems. As shown in Sec. 4.9 of the book
by Khalil18, the state for such a kind of system with state
equationẋ = Ax+Bu is bounded as

‖x(t)‖ ≤ ke−λ(t−t∗)‖x(t∗)‖+ k‖B‖
λ

sup
t∗≤τ≤t

‖u(τ)‖
(63)

for positive constantsk and λ, from which a similar
relation can be shown for the output. Therefore, considering
t∗ ≥ t0 + T , and that in such conditions

sup
t∗≤τ≤t

‖s(τ)‖ ≤ sup
t∗≤τ≤t

‖xa(τ)‖ ≤ αB(Bd) (64)

these variables will be ultimately bounded by a classK∞
function ofBd.

In the absence of model uncertainties and unmodeled
disturbances, that isdm = de = 0, K̂e = Ke and ẑ = z,

from (23) results an expression similar to (59), except for
the absence of the last two terms. Then, from Thm.1 results
xa(t) → 0 and therefores(t) → 0 for t→ ∞. Following the
same reasoning for the ultimate bound one0, e1 ande2 it can
be shown that this errors also decay to zero.
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