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In this paper we introduce some local versions of Bishop–Phelps–Bollobás type 
property for operators. That is, the function η which appears in their definitions 
depends not only on a given ε > 0, but also on either a fixed norm-one operator T
or a fixed norm-one vector x. We investigate those properties and show differences 
between local and uniform versions.
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1. Introduction

It is well-known that Bishop and Phelps proved in [5] the denseness of the set of all norm attaining 
functionals in X∗. They also asked if this result remains valid for bounded linear operators between any 
Banach spaces X and Y . Nevertheless, Lindenstrauss [22] proved that this is not true in general, by showing 
that there is a strictly convex Banach space Z such that the set of norm attaining bounded linear operators 
from c0 into Z is not dense in the whole space of bounded linear operators from c0 into Z. Moreover, he 
started a systematic study of the conditions on the involved Banach spaces that guarantees an operator 
version of the Bishop–Phelps theorem. In 1970, Bollobás [6] improved the theorem of Bishop and Phelps 
by showing that, whenever we take a norm-one functional x∗ and a norm-one point x satisfying that 
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x∗(x) is sufficiently close to 1, it is possible to find a new norm-one functional y∗ and a new norm-one 
point y such that y∗ attains its norm at y, y is close to x and y∗ is close to x∗. This theorem is known 
nowadays as the Bishop–Phelps–Bollobás theorem. Motivated by Lindenstrauss’ results, there has been an 
effort of many authors to study some geometric conditions of the Banach spaces X and Y in order to get a 
Bishop–Phelps–Bollobás type theorem for bounded linear operators from X into Y . The first one was the 
seminal work [2] due to M. Acosta, R. Aron, D. García and M. Maestre, where the Bishop–Phelps–Bollobás 
property for a pair of Banach spaces (X, Y ) was introduced and studied. Essentially, a pair (X, Y ) has 
the Bishop–Phelps–Bollobás property if a Bishop–Phelps–Bollobás type theorem holds for bounded linear 
operators from X into Y . They proved, among other results, that finite dimensional Banach spaces satisfy 
it and that, whenever Y has the Lindenstrauss property β, the pair (X, Y ) has the Bishop–Phelps–Bollobás 
property for all Banach spaces X. A characterization of those Banach spaces Y such that the pair (�1, Y )
has the Bishop–Phelps–Bollobás property was also given. After the mentioned article [2] in 2008, a lot of 
attention was given to this topic and many interesting problems related to this property were discussed. 
For more information the reader can refer, for example, to [1,4,3,8,9,21].

To make the article entirely accessible, we present usual notations and necessary preliminaries. We work 
with Banach spaces X over the field K, which can be either the set of real numbers R, or the set of 
complex numbers C. We denote by SX , BX and X∗ the unit sphere, the unit ball and the topological dual 
of X, respectively, and by L(X, Y ) the set of all bounded linear operators from X into Y . We say that 
T ∈ L(X, Y ) is norm attaining whenever ‖T‖ = supx∈SX

‖T (x)‖ = ‖T (x0)‖ for some x0 ∈ SX and we 
denote by NA(X, Y ) the set of all norm attaining operators.

Following [2, Definition 1.1], we say that the pair (X, Y ) has the Bishop–Phelps–Bollobás property (BPBp, 
for short) if given ε > 0 there is η(ε) > 0 such that, whenever T ∈ L(X, Y ) with ‖T‖ = 1 and x0 ∈ SX

satisfy

‖T (x0)‖ > 1 − η(ε), (1)

there are S ∈ L(X, Y ) with ‖S‖ = 1 and x1 ∈ SX such that

‖S(x1)‖ = 1, ‖x1 − x0‖ < ε and ‖S − T‖ < ε.

It is clear that the pair (X, K) has the BPBp for all Banach spaces X by the Bishop–Phelps–Bollobás 
theorem. Very recently, a stronger property, called the Bishop–Phelps–Bollobás point property, was defined 
and studied in [12] (see also [11]). The authors added the word “point” in the middle since, in this new 
property, we fix the point x0 in the definition of BPBp and move the operator; that is, the new operator S, 
which is close to T , attains its norm at the same point that T almost attains its norm. Precisely, we say 
that the pair (X, Y ) has the Bishop–Phelps–Bollobás point property (BPBpp, for short) if given ε > 0 there 
is η(ε) > 0 such that, whenever T ∈ L(X, Y ) with ‖T‖ = 1 and x0 ∈ SX satisfy (1), there is S ∈ L(X, Y )
with ‖S‖ = 1 such that

‖S(x0)‖ = 1 and ‖S − T‖ < ε.

It is immediate that the BPBpp implies the BPBp but the opposite implication does not hold. Indeed, the 
pair (�1, Y ) has the BPBp for every Banach space having the geometric AHSP property (see [2, Theorem 4.1]) 
but (�1, Y ) cannot have the BPBpp for any Banch space Y (see [12, Proposition 2.3]).

Inspired by a result which characterizes uniformly convex Banach spaces (see [21, Theorem 2.1]), an-
other stronger property than the BPBp was studied in [10]. In this property, which we call here as the 
Bishop–Phelps–Bollobás operator property, one fixes the operator and moves the point instead of fixing the 
point and moving the operator as in the BPBpp. Specifically, we say that the pair (X, Y ) has the Bishop–
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Phelps–Bollobás operator property (BPBop, for short) if given ε > 0 there is η(ε) > 0 such that, whenever 
T ∈ L(X, Y ) with ‖T‖ = 1 and x0 ∈ SX satisfy (1), there is x1 ∈ SX such that

‖T (x1)‖ = 1 and ‖x1 − x0‖ < ε.

It is worth mentioning that the BPBop is actually the dual property of the BPBpp in the sense that (X, K)
has the BPBop if and only if (X∗, K) has the BPBpp. This follows from the characterizations of uniformly 
convex and uniformly smooth Banach spaces obtained in [21, Theorem 2.1] and [12, Proposition 2.1]. In 
[11] it was proved that if X and Y are real Banach spaces of dimension greater than or equal to 2, then the 
pair (X, Y ) fails the BPBop. Hence, the BPBop holds only for the pairs (K, Y ) for every Banach space Y
and (X, K) when X is uniformly convex. However, a local version of property BPBop (where the function 
η in the definition depends not only on ε but also on the operator T ) was addressed in [10], obtaining some 
positive results that put in evidence the difference between the BPBop and its local version.

Our aim in this article, is to follow the research line of local versions of Bishop–Phelps–Bollobás type 
properties. In Section 2, we study two local Bishop–Phelps–Bollobás type properties which we call Lp,p

and Lo,o. The first one is the local version of property BPBpp, where the function η depends not only on ε
but also on a fixed point x0 ∈ SX . The second is the local version of the BPBop addressed in [10]. We note 
that strongly subdifferentiability (SSD, for short) of the norms of X and X∗ characterizes properties Lp,p

and Lo,o of (X, K) respectively. This establishes the first difference between these local properties and the 
uniform properties BPBpp and BPBop. For instance, we have the following.

• If X is c0 or the predual of Lorentz sequence space d∗(w, 1) or the space VMO (which is the predual 
of the Hardy space H1) or the finite dimensional spaces �N1 , �N∞ when N � 2, then (X, K) has the Lp,p

but does not have the BPBpp.
• If X is �N1 or �N∞ when N � 2 or the space 

(⊕∞
k=1 �

k
∞
)
�2

, then (X, K) has the Lo,o but does not have 
the BPBop.

From this characterization of Lp,p and Lo,o in terms of strong subdifferentiability, we get some consequences. 
For example, if X is smooth (Gâteaux differentiable) and the pair (X, K) satisfies the Lp,p, then the norm 
of X is Fréchet differentiable and the converse is also true. We also prove that if X∗ has the w∗-Kadec–Klee 
property, then the norm of X is SSD or, equivalently, (X, K) has the Lp,p. Our main results in Section 2
concern the vector-valued case of property Lp,p. We show that if the pair (X, Y ) satisfies the Lp,p, then the 
norm of X must be SSD. In particular, we see that (�1, Y ) fails the Lp,p for all Banach spaces Y . However, 
we are able to prove that the pair (�N1 , X) has the Lp,p when X is uniformly convex, while it is known 
that it fails the BPBpp. We also show that if X and Y are finite dimensional, then the pair (X, Y ) satisfies 
the Lp,p. This establishes another difference with the BPBpp, since there exist finite dimensional spaces 
X0, Y0 such that (X0, Y0) fails the BPBpp (see [12, Example 2.10]). Finally, we prove that both (c0, c0) and 
(c0, X) has the Lp,p when X is a (complex) uniformly convex Banach space. Again, these are examples of 
pairs satisfying the Lp,p but failing the BPBpp.

In Section 3, we study local Bishop–Phelps–Bollobás properties, that is, the BPBp when the function 
η depends on a fixed norm-one point x or on a fixed norm-one operator T . We call them properties Lp

and Lo, respectively. We prove that if Y is strictly convex and either (�21, Y ) has the Lp or (�1, Y ) has the 
Lo, then Y must be uniformly convex. This is useful to get some counterexamples. We also show that if 
every norm-one point x ∈ SX is strongly exposed, then the pair (X, Y ) has the Lp for all Banach spaces 
Y whenever NA(X, Y ) is dense in L(X, Y ). This last result provides us examples of Banach spaces X for 
which the pair (X, Y ) has the Lp for all Banach spaces Y . These examples are stated in Section 4, where 
we investigate stability results and we deal with universal spaces for the local properties. Actually, we prove 
that both universal BPBp range space and universal Lo range space are equivalent properties. Also, if X
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is finite dimensional, we prove that X is universal BPBp domain space if and only if it is a universal Lp

domain space.
Finally, we finish this paper with Section 5 which our aim is to compare all those properties with each 

other.

2. The Lp,p and the Lo,o

In this section we study two local properties which are dual from each other in the reflexive case. Before 
we start, recall that a stronger property than the BPBp, which we call BPBop, was studied in [10] (see also 
[25,26]). As we already mention in the Introduction, it is known that there is no vector-valued version for 
the BPBop (see last section of [11]) and then it only makes sense to study it in a local sense.

Definition 2.1. (a) A pair (X, Y ) has the Lp,p if given ε > 0 and x ∈ SX , there is η(ε, x) > 0 such that 
whenever T ∈ L(X, Y ) with ‖T‖ = 1 satisfies

‖T (x)‖ > 1 − η(ε, x),

there is S ∈ L(X, Y ) with ‖S‖ = 1 such that

‖S(x)‖ = 1 and ‖S − T‖ < ε.

(b) ([10, Definition 2.2]) A pair (X, Y ) has the Lo,o if given ε > 0 and T ∈ L(X, Y ) with ‖T‖ = 1, there is 
η(ε, T ) > 0 such that whenever x ∈ SX satisfies

‖T (x)‖ > 1 − η(ε, T ),

there is x0 ∈ SX such that

‖T (x0)‖ = 1 and ‖x0 − x‖ < ε.

It is worth mentioning that if (X, Y ) has the Lo,o, then every linear operator from X into Y attains its 
norm. By using James theorem it is possible to construct an operator that never attain its norm in the 
non-reflexive case. So, in order to get positive results about this property, the domain space X should be 
reflexive.

2.1. Scalar-valued case

We first focus on Lp,p and Lo,o for bounded linear functionals. We start with the following straightforward 
observation but, for the sake of completeness, we give its proof for one implication.

Proposition 2.2. Let X be a reflexive Banach space. Then the pair (X, K) has the Lp,p if and only if (X∗, K)
has the Lo,o.

Proof. Let ε > 0 and x∗∗ ∈ SX∗∗ be given. Since X is reflexive, there is x ∈ SX such that x̂ = x∗∗ where ̂· is 
the canonical inclusion. Consider η(ε, x) > 0 the Lp,p function for the pair (X, K). Suppose that x∗ ∈ SX∗

satisfies

|x∗∗(x∗)| > 1 − η(ε, x).

Then |x∗(x)| > 1 − η(ε, x) and so there is y∗ ∈ SX∗ such that
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|y∗(x)| = 1 and ‖y∗ − x∗‖ < ε.

Since |x∗∗(y∗)| = |y∗(x)| = 1, the pair (X∗, K) has the Lo,o with η(ε, x∗∗) := η(ε, x) > 0. The converse is 
completely analogous. �

If the one-side limit limt→0+
‖x+th‖−‖x‖

t exists uniformly for h ∈ BX , we say that the norm of X is 
strongly subdifferentiable (SSD, for short) at x. When this happens for all x ∈ SX , we say that the norm 
of X is SSD. When the limt→0

‖x+th‖−‖x‖
t exists, then we say that the norm of X is Gâteaux differentiable 

at x and, finally, if this last limit exists uniformly for all h ∈ BX , then the norm of X is said to be 
Fréchet differentiable at x. It turns out that SSD characterizes the pairs (X, K) to have the Lp,p. This was 
observed by G. Godefroy, V. Montesinos and V. Zizler in [19] as a consequence of a characterization of 
strong subdifferentiability due to C. Franchetti and R. Payá [17].

Theorem 2.3. ([17, Theorem 1.2] and [19]) Let X be a Banach space.

(a) Then the pair (X, K) has the Lp,p if and only if the norm of X is SSD.
(b) Then the pair (X, K) has the Lo,o if and only if X is reflexive and the norm of X∗ is SSD.

Note that the norm of X is Fréchet differentiable at x if and only if it is Gâteaux differentiable and SSD 
at x. We rewrite this equivalence using Theorem 2.3.(a).

Theorem 2.4. Let X be a Banach space and suppose that the pair (X, K) has the Lp,p. The norm of X is 
Gâteaux differentiable if and only if it is Fréchet differentiable.

Next, we introduce three well known rotundities which are stronger than strict convexity.

(1) We say that X is locally uniformly rotund (LUR, for short) if for all x, xn ∈ SX satisfying limn ‖xn+x‖ =
2, we have that limn ‖xn − x‖ = 0.

(2) We say that X is weakly locally uniformly rotund (w-LUR, for short) if limn→∞ ‖xn + x0‖ = 2 with 
xn, x0 ∈ SX implies limn→∞ x∗

0(xn) = 1 whenever x∗
0 ∈ SX∗ and x∗

0(x0) = 1.
(3) We say that X is a midpoint locally uniformly rotund (MLUR, for short) space if whenever (xn), (yn) ⊂

SX are norm-one sequences in SX with 1
2(xn + yn) converging to some x0 ∈ SX , we have that ‖xn −

yn‖ −→ 0.

It is known that

LUR ⇒ w-LUR ⇒ strict convexity and LUR ⇒ MLUR ⇒ strict convexity

and that none of them are equivalent. Another well known fact is that the norm of X is Fréchet (respectively, 
Gâteaux) differentiable if X∗ is LUR (respectively, strictly convex), see for instance [14, Fact 8.12 and 8.18]. 
Hence, we see that if X∗ is LUR, then the pair (X, K) has the Lp,p. Also, we have that if X∗ is Fréchet 
differentiable, then (X, K) has the Lo,o, since such X is reflexive (see [14, Fact 8.6]). In particular, if X is 
LUR and reflexive then (X, K) has the Lo,o. Moreover, we have the following equivalence of those rotundities.

Theorem 2.5. Let X be a Banach space and suppose that the pair (X, K) has the Lo,o.

(a) A Banach space X is strictly convex if and only if X is MLUR.
(b) A Banach space X is strictly convex if and only if X∗ is Fréchet differentiable.
(c) A Banach space X is w-LUR if and only if it is LUR.



S. Dantas et al. / J. Math. Anal. Appl. 468 (2018) 304–323 309
Proof. We only need to prove directions from left to right.
Proof of (a): Suppose that X is strictly convex but not MLUR. Then there are x0 ∈ SX , sequences 

(xn), (yn) ⊂ SX and some δ ∈ (0, 1) such that

lim
n

∥∥∥∥(xn + yn
2

)
− x0

∥∥∥∥ = 0 but ‖xn − yn‖ � δ, ∀ n ∈ N. (2)

Take x∗
0 ∈ SX∗ to be such that Rex∗

0(x0) = 1, then limn Rex∗
0
(
xn+yn

2
)

= 1. This implies that 
limn Rex∗

0(xn) = limn Rex∗
0(yn) = 1. So there is n0 ∈ N such that

Rex∗
0(xn) > 1 − min

{
η

(
δ2

64 , x
∗
0

)
,
δ2

64

}
and Rex∗

0(yn) > 1 − min
{
η

(
δ2

64 , x
∗
0

)
,
δ2

64

}
for all n � n0 where η( · , x∗

0) > 0 is the Lo,o function for the pair (X, K). Then there are un, vn ∈ SX such 
that

|x∗
0(un)| = |x∗

0(vn)| = 1, ‖un − xn‖ <
δ2

64 and ‖vn − yn‖ <
δ2

64 , ∀ n � n0.

For each n � n0, set

x∗
0(un) = λn|x∗

0(un)| = λn and x∗
0(vn) = μn|x∗

0(vn)| = μn

for |λn| = |μn| = 1. So x∗
0(λ−1

n un) = 1 = x∗
0(μ−1

n vn) and since X is strictly convex, we have that λ−1
n un =

μ−1
n vn for all n � n0. Now note that

1 − Reλn = 1 − Rex∗
0(un) = 1 + Rex∗

0(xn − un) − Rex∗
0(xn)

� 1 − Rex∗
0(xn) + ‖xn − un‖

<
δ2

32 .

Since |λn| = 1, we have that

|1 − λn|2 = 2(1 − Reλn) < δ2

16 .

So |1 − λn| < δ
4 . Analogously, |1 − μn| < δ

4 . Then, for n � n0, we have that

‖xn − yn‖ � ‖xn − λ−1
n un‖ + ‖μ−1

n vn − yn‖
� ‖xn − un‖ + |1 − λn| + |1 − μn| + ‖vn − yn‖ < δ

which contradicts (2).
Proof of (b): This has been observed in [26], but we give details briefly. Since the pair (X, K) has the 

Lo,o, then X is reflexive and X∗ is SSD by Theorem 2.3.(b). Since X is strictly convex, the norm of X∗ is 
Gâteaux differentiable. Hence it is Fréchet differentiable by Theorem 2.4.

Proof of (c): Since X is reflexive, the pair (X∗, K) has the Lp,p. Also, w-LUR implies strict convexity for 
X and so X∗ is Fréchet differentiable by (b). Now, we apply [23, Theorem 2.4] to get that X is LUR. �

A Banach space X has the Kadec–Klee property if weak and norm topologies coincide on SX . Also, we say 
that X∗ has the w∗-Kadec–Klee property if the weak∗ and norm topologies coincide in SX∗ . It is well-known 
that if X is LUR (respectively, X∗ is LUR), then it satisfies the Kadec–Klee property (respectively, the 
w∗-Kadec–Klee property).
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Proposition 2.6. Let X be a Banach space. If X∗ has the w∗-Kadec–Klee property, then the norm of X is 
SSD or, equivalently, the pair (X, K) has the Lp,p.

Proof. Otherwise, there are ε0 > 0 and x0 ∈ SX such that for each n ∈ N, there is x∗
n ∈ SX∗ such that

1 � |x∗
n(x0)| � 1 − 1

n

and whenever x∗ ∈ SX∗ satisfies ‖x∗ − x∗
n‖ < ε0, we have |x∗(x0)| < 1. By the Banach–Alaoglu theorem, 

there is a subnet of (x∗
n), which we denote again by (x∗

n), such that x∗
n

w∗
−→ x∗

0 for some x∗
0 ∈ BX∗ . Then 

x∗
n(x0) −→ x∗

0(x0) and since |x∗
n(x0)| −→ 1, we get that |x∗

0(x0)| = 1 and then x∗
0 ∈ SX∗ . By hypothesis, 

x∗
n −→ x∗

0 in norm and since |x∗
0(x0)| = 1, we have a contradiction. �

As an immediate consequence of the previous proposition and Proposition 2.2 we see that if X is a 
reflexive space which satisfies the Kadec–Klee property, then the pair (X, K) has the Lo,o. It is worth 
mentioning that this is a particular case of [25, Theorem 2.12] where it was proved that, under the same 
assumption on X, the pair (X, Y ) has the Lo,o for compact operators for all Banach spaces Y .

As was mentioned in the Introduction, the results in this section establish the first differences between 
the local properties Lp,p and Lo,o with respect with their uniform versions BPBpp and BPBop. For instance, 
the norm of the space c0 is SSD (see, for instance, [16]) and, hence, the pair (c0, K) has property Lp,p. On 
the other hand, the pair (c0, K) fails the BPBpp, since c0 is not uniformly smooth (it is not even reflexive). 
There are many other examples of non-reflexive spaces X with a SSD norm and, consequently, such that 
(X, K) has the Lp,p but fails the BPBpp. For example, it is known that the Hardy space H1 of analytic
functions on the ball, the Lorentz spaces Lp,1(μ) and the trace class C1 are non-reflexive dual spaces that 
have the w∗-Kadec–Klee property. Indeed, they have a stronger property called the w∗-uniform Kadec–Klee 
property (see [13] and references therein). As a consequence, if X is the predual of any of those spaces, 
then X∗ has the w∗-Kadec–Klee property and, by Proposition 2.6, the pair (X, K) has the Lp,p (but it fails 
the BPBpp). We can also mention examples of reflexive space X such that (X, K) has the Lp,p and it fails 
the BPBpp. For example, if X = �N1 or �N∞ with N � 2 then the norm of X is SSD (indeed, every finite 
dimensional spaces is SSD, see [17]) but these spaces are not uniformly smooth and then, (X, K) fails the 
BPBpp. On the other hand, it is clear that if X = �N1 or �N∞ with N � 2 then (X, K) has the Lo,o and it 
fails the BPBop. Also, by [17, Theorem 2.4], we know that the reflexive space X =

(⊕∞
k=1 �

k
∞
)
�2

is such 
that the norm of X∗ is SSD and, hence, (X, K) has the Lo,o. But this space is not uniformly convex (see 
[15, Chapter 9.2]) and, consequently, (X, K) fails the BPBop.

2.2. Vector-valued case

In this subsection we focus on property Lp,p. For the vector-valued case of property Lo,o, we suggest the 
references [10], [25] and [26]. To start, we get the following observation which shows that if the Lp,p holds 
for operators from X into Y , then the Lp,p holds for the pair (X, K). The proof follows the same lines as 
[12, Proposition 2.3]. Consequently, by Proposition 2.3, we have that the norm of X must be SSD whenever 
the pair (X, Y ) has the Lp,p for some Y .

Proposition 2.7. Let X and Y be Banach spaces. If the pair (X, Y ) has the Lp,p, then (X, K) has the Lp,p.

Thus, in order to get positive results for the Lp,p in the vector-valued case, we have to assume that the 
domain space is SSD. For that reason (�1, Y ) fails the Lp,p for all Banach spaces Y , since the norm of �1 is 
SSD only at the points in the unit sphere which are sequences with finitely many nonzero terms (see, for 
example, [16]). In Section 3 (see Remark 3.3 below) we show that the converse of Proposition 2.7 is not true 
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in general. However, this converse holds if we consider Banach spaces Y satisfying the property β defined 
by Lindenstrauss in [22]. Typical examples of Banach spaces satisfying this property are c0 and �∞. In [12, 
Proposition 2.4] it was proved that the pair (X, Y ) has the BPBpp whenever (X, K) has the BPBpp and 
Y has property β, and the same proof can be applied for the Lp,p. Since the norm of c0 is SSD and it has 
property β, we also get a particular case.

Proposition 2.8. Let X and Y be Banach spaces. Assume that Y has property β. If the pair (X, K) has the 
Lp,p, then the pair (X, Y ) has the Lp,p. In particular, the pair (c0, c0) satisfies the Lp,p.

Since every finite dimensional Banach space is SSD, whenever X is finite dimensional and Y satisfies 
property β, the pair (X, Y ) has the Lp,p. On the other hand, it was proved in [10] that if X is a finite 
dimensional Banach space, then (X, Y ) has the Lo,o for all Banach spaces Y . This last statement is not true 
for the Lp,p (see Remark 3.3) but if we restrict the range space to be finite dimensional, we get a positive 
result.

Proposition 2.9. Let X and Y be finite dimensional spaces. Then the pair (X, Y ) has the Lp,p.

Proof. Otherwise, there are ε0 > 0 and x0 ∈ SX such that for each k ∈ N, there is Tk ∈ L(X, Y ) with 
‖Tk‖ = 1 and

1 � ‖Tk(x0)‖ � 1 − 1
k

(3)

such that whenever S ∈ L(X, Y ) with ‖S‖ = 1 satisfies ‖Tk−S‖ < ε0, we have ‖S(x0)‖ < 1. By compactness, 
we may assume that {Tk} is convergent and let T ∈ BL(X,Y ) be the limit of {Tk}. So there is k0 ∈ N such 
that ‖Tk − T‖ < ε0 for all k � k0. By (3) we have that ‖T‖ = ‖T (x0)‖ = 1 which is a contradiction. So the 
pair (X, Y ) has the Lp,p. �

Note that the previous proposition is not true for the property BPBpp. In fact, it is shown in [12, 
Example 2.10] that there exist finite dimensional Banach spaces X0 and Y0 such that (X0, Y0) fails the 
BPBpp.

Recall that the modulus of convexity of a Banach space Z is defined for each ε ∈ (0, 2] by

δ(ε) := inf
{

1 −
∥∥∥∥z1 + z2

2

∥∥∥∥ : z1, z2 ∈ BX , ‖z1 − z2‖ � ε

}
and Z is said to be uniformly convex if δ(ε) > 0 for ε ∈ (0, 2]. Next we prove that if the range space is 
uniformly convex, we get a positive result for the Lp,p. Actually, it seems to be interesting since in our 
result the domain is �N1 and, as we already commented before, the pair (�1, Y ) fails the Lp,p for all Banach 
spaces Y .

Proposition 2.10. Let X be a uniformly convex Banach space and let N ∈ N. Then, the pair (�N1 , X) has the 
Lp,p.

Proof. Let ε ∈ (0, 1) and x = (x1, . . . , xN ) ∈ S�N1
be given. By composing with an isometry if necessary, we 

may assume that xj � 0 for all j = 1, . . . , N . Set Ax := {i ∈ {1, ..., n} : xi �= 0} and Kx := min{xj : j ∈
Ax} > 0. Set

η(ε, x) := KxδX(ε) > 0,
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where δX(·) is the modulus of convexity of X. Let T : �N1 −→ X with ‖T‖ = 1 be such that

‖T (x)‖ > 1 − η(ε, x)

and consider x∗
0 ∈ SX∗ satisfying Rex∗

0(T (x)) > 1 − η(ε, x). Write x =
∑

j∈Ax
xjej with 

∑
j∈Ax

xj = 1. 
Then for all i ∈ Ax, we have that

1 −KxδX(ε) = 1 − η(ε, x) < Rex∗
0(T (x))

= Re
∑
j∈Ax

xjx
∗
0(T (ej))

�
∑

j∈Ax\{i}
xj + xi Rex∗

0(T (ei))

= 1 − xi + xi Rex∗
0(T (ei)) = 1 + xi(Rex∗

0(T (ei)) − 1)

which implies that

1 − Rex∗
0(T (ei)) <

Kx

xi
δX(ε) � δX(ε),

and so we get that Rex∗
0(T (ei)) > 1 − δX(ε) for all i ∈ Ax. Since X is reflexive, there exists x0 ∈ SX such 

that x∗
0(x0) = 1. Define S : �N1 −→ X by S(ei) := x0 for all i ∈ Ax and S(ei) = T (ei), otherwise. Then 

‖S‖ = 1 and

‖S(x)‖ =

∥∥∥∥∥∥
∑
j∈Ax

xjS(ej)

∥∥∥∥∥∥ =
∑
j∈Ax

xj = 1.

Finally, for i ∈ Ax, since Rex∗
0(S(ei)) = x∗

0(x0) = 1 and∥∥∥∥S(ei) + T (ei)
2

∥∥∥∥ � Rex∗
0(S(ei)) + Rex∗

0(T (ei))
2 > 1 − δX(ε),

we get that ‖S(ei) − T (ei)‖ < ε for all i ∈ Ax and then ‖S − T‖ < ε since S(ei) = T (ei) if i /∈ Ax. This 
proves that the pair (�N1 , X) has the Lp,p as desired. �

We know that the pair (c0, c0) has the Lp,p, so it is natural to ask if the pair (c0, X) has the Lp,p for others 
Banach spaces X different from c0. In what follows, we show that this pair satisfies that property whenever 
X is a (complex) uniformly convex Banach space. Before we do that, let us give some preliminaries about 
complex uniformly convex Banach spaces.

For a complex Banach space Z, the C-modulus of convexity δC is defined for every ε > 0 by

δC(ε) := inf
{

sup{‖z1 + λεz2‖ − 1 : λ ∈ C, |λ| = 1} : z1, z2 ∈ SZ

}
.

The Banach space Z is called C-uniformly convex if δC(ε) > 0 for every ε > 0 (see, for example, [18]). 
Every uniformly convex complex space is C-uniformly convex space and the converse is not true. Also, it 
was proved in [18] that the complex L1(μ)-space is C-uniformly convex.

To prove the next theorem, we need the following lemma. Its proof is similar to [1, Lemma 2.3] and we 
omit it. For a given A ⊂ N, we define PA : c0 → c0 by PA(x) :=

∑
n∈A x(n)en, where (ej)j is the canonical 

basis of c0.
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Lemma 2.11. Let X be a C-uniformly convex Banach space with modulus δC. Let ε > 0 be given. If T ∈
L(c0, X) with ‖T‖ = 1 and A ⊂ N has the property that ‖TPA‖ > 1 − δC

1+δC
, then ‖T (I −PA)‖ � ε, where I

is the identity mapping on c0.

Besides that, we are using that the pair (c0, X) has the BPBp whenever X is a C-uniformly convex 
Banach space (see [1,20]). Note also that in the definition of the BPBp we can consider the initial operator 
in the ball of the space instead of the sphere by doing an easy change of parameters. We are using this 
observation in the next theorem.

Theorem 2.12. Let X be a C-uniformly convex Banach space. Then, the pair (c0, X) has the Lp,p.

Proof. Let ε ∈ (0, 1) and z ∈ Sc0 be given. Set

Az := {i ∈ N : |z(i)| = 1} and Kz := min
{

1 − max
i∈Ac

z

|z(i)|, ε

}
> 0.

We know that the pair (c0, X) has the BPBp for some function η̃(ε) > 0. By [4, Theorem 2.1], the pair 
(�∞(A), X) has BPBp for any finite subset A ⊂ N with the same η̃(ε). If δC(ε) is the C-modulus of convexity 
of X, we set

η(ε) := min
{
η̃(ε), δC

1 + δC

}
> 0.

Let T ∈ L(c0, X) with ‖T‖ = 1 be such that

‖T (z)‖ > 1 −Kzη(ε)

and consider x∗ ∈ SX∗ to be such that Rex∗(T (z)) > 1 −Kzη(ε). Then

1 −Kzη(ε) < Rex∗(T (z)) = Re(T ∗x∗)(z) = Re
∑
i∈N

z(i)(T ∗x∗)(i). (4)

By composing with an isometry if necessary, we may assume that (T ∗x∗)(i) = Re(T ∗x∗)(i) � 0 for every i. 
Now set

Cz := {i ∈ N : Re z(i) > 1 −Kz}.

Note that Cz ⊂ Az. Also, note that

Re
∑
i∈N

z(i)(T ∗x∗)(i) =
∑
i∈Cz

Re z(i)(T ∗x∗)(i) +
∑
i∈Cc

z

Re z(i)(T ∗x∗)(i)

�
∑
i∈Cz

T ∗(x∗)(i) + (1 −Kz)
∑
i∈Cc

z

T ∗(x∗)(i)

=
∑
i∈Cz

T ∗(x∗)(i) − (1 −Kz)
∑
i∈Cz

T ∗(x∗)(i) + (1 −Kz)
∑
i∈N

T ∗(x∗)(i)

� Kz

∑
i∈Cz

(T ∗x∗)(i) + 1 −Kz

= Kz

(
−1 +

∑
(T ∗x∗)(i)

)
+ 1.
i∈Cz
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By using this and (4), we get that

x∗ (TQCz
(1Cz

)) = (T ∗x∗)(QCz
(1Cz

)) =
∑
i∈Cz

(T ∗x∗)(i) > 1 − η(ε) (5)

where QCz
is the canonical extension from �∞(Cz) to c0 and 1Cz

is the element whose components are 1
in Cz and 0 otherwise. It is clear that Cz is nonempty. Let PCz

be the canonical projection from c0 into 
�∞(Cz) and note that QCz

PCz
(x) =

∑
n∈Cz

x(n)en. By (5), we have that ‖TQCz
PCz

‖ > 1 − δC
1+δC

and by 
Lemma 2.11, we get

‖T (I −QCz
PCz

)‖ � ε. (6)

Now set TCz
:= TQCz

, the restriction of T to �∞(Cz). Then ‖TCz
‖ � 1 and by (5),

‖TCz
(1Cz

)‖ � x∗ (TQCz
(1Cz

)) > 1 − η̃(ε).

Hence, there are S ∈ L(�∞(Cz), X) with ‖S‖ = 1 and z1 ∈ S�∞(Cz) such that

‖S(z1)‖ = 1, ‖1Cz
− z1‖ < ε and ‖S − TCz

‖ < ε.

Let S′ := SPCz
, the natural extension of S on c0. Define z2 ∈ S�∞(Cz) by z2(i) := z1(i)

|z1(i)| for each i ∈ Cz. 
Then it is easy to see that

‖Sz2‖ = 1 and ‖1Cz
− z2‖ < 2ε.

Finally, define U ∈ L(c0, c0) by Uei = z2(i)
z(i) ei for i ∈ Cz and Uei = ei, otherwise. Then U is an isometry 

such that ‖S′Uz‖ = 1. So ‖S′U‖ = 1 and it attains its norm at z. It remains to prove that ‖S′U − T‖ is 
small. Indeed, note first that for each i ∈ Cz ⊂ Az, we have

Re z(i) + ε � Re z(i) + Kz > 1

which implies that 1 − Re z(i) � ε. So since |z(i)| = 1 for i ∈ Cz we have Im z(i)2 = 1 − Re z(i)2. Then

|1 − z(i)|2 = (1 − Re z(i))2 + Im z(i)2 = 2(1 − Re z(i)) � 2ε,

and so ∣∣∣∣z2(i)
z(i) − 1

∣∣∣∣ = |z2(i) − z(i)| � |z2(i) − z1(i)| + |z1(i) − 1| + |1 − z(i)|

< 2|1 − z1(i)| +
√

2ε < 2ε +
√

2ε.

Because of this and using (6), we get that

‖S′U − T‖ � ‖S′U − S′‖ + ‖S′ − TQCz
PCz

‖ + ‖TQCz
PCz

− T‖
� ‖U − I‖ + ‖S − TQCz

‖ + ε

� max
i∈Cz

{∣∣∣∣z2(i)
z(i) − 1

∣∣∣∣} + 2ε � 4ε +
√

2ε. �
Since the complex spaces Lp(μ) with 1 � p < ∞ are C-uniformly convex for every positive measure μ, 

we get the following consequence.



S. Dantas et al. / J. Math. Anal. Appl. 468 (2018) 304–323 315
Corollary 2.13. Let μ be a positive measure and 1 � p < ∞. In the complex case, the pairs (c0, Lp(μ)) has 
the Lp,p.

It is worth mentioning that the pairs (�N1 , X) and (c0, X) (for X uniformly convex and C-uniformly convex, 
respectively), which were shown to satisfy property Lp,p, fail the BPBpp. This is a simple consequence of 
[12, Proposition 2.3].

3. The Lp and the Lo

In this section we study the BPBp in the local sense as we did with the BPBpp and the BPBop.

Definition 3.1. (a) A pair (X, Y ) has the Lp if given ε > 0 and x ∈ SX , there is η(ε, x) > 0 such that 
whenever T ∈ L(X, Y ) with ‖T‖ = 1 satisfies

‖T (x)‖ > 1 − η(ε, x),

there are S ∈ L(X, Y ) with ‖S‖ = 1 and x0 ∈ SX such that

‖S(x0)‖ = 1, ‖x0 − x‖ < ε and ‖S − T‖ < ε.

(b) A pair (X, Y ) has the Lo if given ε > 0 and T ∈ SL(X,Y ), there is η(ε, T ) > 0 such that whenever 
x ∈ SX satisfies

‖T (x)‖ > 1 − η(ε, T ),

there are S ∈ L(X, Y ) with ‖S‖ = 1 and x0 ∈ SX such that

‖S(x0)‖ = 1, ‖x0 − x‖ < ε and ‖S − T‖ < ε.

It is immediate that the BPBp implies both Lp and Lo. Also the Lp,p implies the Lp and the Lo,o implies 
the Lo. We give useful results to get counterexamples for reverse implications.

Proposition 3.2. Let Y be a strictly convex Banach space.

(a) If the pair (�21, Y ) has the Lp, then Y is uniformly convex.
(b) If the pair (�1, Y ) has the Lo, then Y is uniformly convex.

Proof. Suppose that Y is not uniformly convex. Then there is ε0 ∈ (0, 1) such that for each k ∈ N, there 
are yk1 , y

k
2 ∈ SY with ‖yk1 − yk2‖ > ε0 and ∥∥∥∥yk1 + yk2

2

∥∥∥∥ > 1 − 1
k
. (7)

We start with (a). Let n ∈ N be such that

1
n
< η

(
ε0

2 ,
e1 + e2

2

)
.

Define Tn : �21 −→ Y by Tn(e1) = yn1 and Tn(e2) = yn2 . For x = (x1, x2) ∈ S�21
, we have ‖Tn(x)‖ � 1. Since 

‖Tn(e1)‖ = ‖yn1 ‖ = 1, we get ‖Tn‖ = 1. Now
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∥∥∥∥Tn

(
e1 + e2

2

)∥∥∥∥ =
∥∥∥∥yn1 + yn2

2

∥∥∥∥ > 1 − 1
n
> 1 − η

(
ε0

2 ,
e1 + e2

2

)
and so there are Sn ∈ L(�21, Y ) with ‖Sn‖ = 1 and z = (z1, z2) ∈ S�21

such that

‖Sn(z)‖ = 1,
∥∥∥∥z − (

e1 + e2

2

)∥∥∥∥ <
ε0

2 <
1
2 and ‖Sn − Tn‖ <

ε0

2 .

Since 
∥∥z − (

e1+e2
2

)∥∥ < 1
2 , we have that z1 and z2 are nonzero. Assume that z1, z2 � 0. Since 1 = ‖Sn(z)‖ =

‖z1Sn(e1) + z2Sn(e2)‖ � 1 and Y is strictly convex, we have that Sn(e1) = Sn(e2). So

‖yn1 − yn2 ‖ = ‖Tn(e1) − Tn(e2)‖ � ‖Tn(e1) − Sn(e1)‖ + ‖Sn(e2) − Tn(e2)‖ < ε0.

This contradicts (7).
Now we prove (b). For each n ∈ N, define T : �1 −→ Y by T (en) := yn1 and T (en+1) := yn2 . We have 

‖T‖ = 1 and, by hypothesis, there is η
(
ε0
2 , T

)
> 0. Assume that 1

n < η
(
ε0
2 , T

)
. Since∥∥∥∥T (

en + en+1

2

)∥∥∥∥ =
∥∥∥∥1

2T (en) + 1
2T (en+1)

∥∥∥∥ =
∥∥∥∥1

2y
n
1 + 1

2y
n
2

∥∥∥∥ > 1 − 1
n
> 1 − η

(ε0

2 , T
)
,

there are S ∈ L(�1, Y ) with ‖S‖ = 1 and z ∈ S�1 such that

‖S(z)‖ = 1,
∥∥∥∥z − (

1
2en + 1

2en+1

)∥∥∥∥
1
<

ε0

2 and ‖S − T‖ <
ε0

2 .

If z =
∑∞

i=1 ziei ∈ S�1 , then zi = 0 for all i �= n, n + 1. Indeed, if there is i0 ∈ N with i0 �= n, n + 1 and 
zi0 �= 0, we have that

1 = ‖S(z)‖ =

∥∥∥∥∥
∞∑
i=1

ziS(ei)

∥∥∥∥∥ =

∥∥∥∥∥∥
∑
i�=i0

ziS(ei) + zi0S(ei0)

∥∥∥∥∥∥
�

∑
i�=i0

|zi| + |zi0 |‖S(ei0)‖

=
∑
i�=i0

|zi| + |zi0 |‖S(ei0) − T (ei0)‖

<
∑
i�=i0

|zi| + |zi0 | ·
ε0

2 <
∑
i�=i0

|zi| + |zi0 | = 1,

which is a contradiction. Since 
∥∥∥z − (

en+en+1
2

)∥∥∥ < 1
2 , we have zn and zn+1 are nonzero. So we may assume 

that zn, zn+1 � 0. Since 1 = ‖Sn(z)‖ = ‖znS(en) + zn+1S(en+1)‖ � 1 and Y is strictly convex, we have 
that S(en) = S(en+1). So

‖yn1 − yn2 ‖ = ‖T (en) − T (en+1)‖ � ‖T (en) − S(en+1)‖ + ‖S(en+1) − Tn(en+1)‖ < ε0.

This contradicts (7) again. �
Remark 3.3. There is a Banach space X which is SSD but the pair (X, Y ) fails the Lp,p for some Y . Indeed, 
Propositions 2.10 and 3.2.(b) show that for a strictly convex Banach space Y , the pair (�21, Y ) has the Lp

if and only if Y is uniformly convex. Now if we take a Banach space Y0 which is strictly but not uniformly 
convex, then the pair (�21, Y0) fails the Lp. Since the Lp,p implies the Lp, we get the desired counterexample.
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To finish this section, we obtain some conditions under which the pair (X, Y ) has the Lp. We will return 
to this result in Section 4.

Proposition 3.4. Let X and Y be Banach spaces. Suppose that the set NA(X, Y ) is dense in L(X, Y ). If 
every point x ∈ SX is strongly exposed, then the pair (X, Y ) has the Lp.

Proof. Let ε ∈ (0, 1) and x ∈ SX be given. Since x is strongly exposed, there are δ(ε, x) > 0 and x∗
0 ∈ SX∗

with Rex∗
0(x) = 1 such that whenever z ∈ SX satisfies Rex∗

0(z) > 1 − δ(ε, x), we have ‖z − x‖ < ε. Let 
ε2 := ε2(ε, x) > 0 be such that

1 − 2ε2 − 2ε2
2 + ε3

2 + e4
2 > 1 − δ(ε, x) and ε2

2 + 2ε2 < ε.

Set η(ε, x) := ε2
2 > 0. Let T ∈ L(X, Y ) with ‖T‖ = 1 be such that

‖T (x)‖ > 1 − η(ε, x)

and define T̃1 ∈ L(X, Y ) by

T̃1(z) := T (z) + ε2x
∗
0(z)T (x) (z ∈ X).

Then ‖T̃1 − T‖ < ε2 and

1 + ε2 � ‖T̃1‖ � ‖T̃1(x)‖ = ‖T (x) + ε2T (x)‖ > (1 − ε2
2)(1 + ε2) > 0.

So T̃1 �= 0 and 
∣∣∣1 − ‖T̃1‖

∣∣∣ < ε2. Let T1 := T̃1
‖T̃1‖

∈ L(X, Y ). Since NA(X,Y ) = L(X, Y ), there are S ∈
L(X, Y ) with ‖S‖ = 1 and x1 ∈ SX such that

‖S(x1)‖ = 1 and ‖S − T1‖ < ε2
2.

Since ‖S(x1) − T1(x1)‖ � ‖S − T1‖ < ε2
2, we get that ‖T1(x1)‖ > 1 − ε2

2. Note that we can take x1 to be 
such that x∗

0(x1) � 0. So

1 + ε2x
∗
0(x1) � ‖T (x1) + ε2x

∗
0(x1)T (x1)‖ = ‖T̃1(x1)‖

� (1 − ε2
2)‖T̃1‖

> (1 − ε2
2)(1 − ε2

2)(1 + ε2)

= 1 + ε2 − 2ε2
2 − 2ε3

2 + ε4
2 + e5

2

which implies that

x∗
0(x1) > 1 − 2ε2 − 2ε2

2 + ε3
2 + e4

2 > 1 − δ(ε, x).

So ‖x1 − x‖ < ε. Moreover, we have that

‖S − T‖ � ‖S − T1‖ + ‖T1 − T̃1‖ + ‖T̃1 − T‖ < ε2
2 + 2ε2 < ε.

This proves that the pair (X, Y ) has the Lp as desired. �
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4. Stability results and universal spaces

In his seminal paper [22], Lindenstrauss considered two properties which are called property A and 
property B. A Banach space X has property A if the set of norm attaining operators from X into Y is 
dense for arbitrary Y and Y has property B if the set of norm attaining operators from X into Y is dense 
for arbitrary X. He found some Banach spaces which have properties A or B in geometric terms. We study 
analogous spaces for the local properties.

Definition 4.1. Let X and Y be Banach spaces.

(a) Let P be one of the following properties: Lo, Lp, Lp,p, Lo,o or BPBp. We say that X is a universal P 
domain space if for every Banach space Z, the pair (X, Z) has the P.

(b) Let P be one of the following properties: Lo, Lp or BPBp. We say that Y is a universal P range space
if for every Banach space Z, the pair (Z, Y ) has the P.

(c) We say that Y is a universal Lp,p range space if for every SSD space Z, the pair (Z, Y ) has the Lp,p.
(d) We say that Y is a universal Lo,o range space if for every reflexive space Z whose dual is SSD, the pair 

(Z, Y ) has the Lo,o.

As a consequence of Proposition 3.4, we obtain some examples of universal Lp domain spaces.

Corollary 4.2. If X is LUR and reflexive or X = �1 with the equivalent norm defined by ‖|x‖|2 = ‖x‖2
1+‖x‖2

2
(where ‖ · ‖i denotes the canonical norm on �i, i = 1, 2), then X is a universal Lp domain space.

Proof. On one hand, it is well-known that if X is LUR then every point x ∈ SX is strongly exposed and that 
reflexive spaces are universal Bishop–Phelps domain spaces (see [22, Theorem 1]). Then, by Proposition 3.4
we have that the pair (X, Y ) has the Lp for every Banach space Y . On the other hand, the stated renorming 
of �1 is LUR (see [15, Lemma 13.26]) and, by a classical result of Bourgain [7], every renorming of �1 is a 
universal Bishop–Phelps domain space. Then, Proposition 3.4 gives once again the desired result. �

In Section 5 we will prove that the space 
(⊕∞

k=2 �
2
k

)
�2

is another example of universal Lp domain space. 
Moreover, we will show that this space fails to be a universal BPBp domain space.

In the study of universal BPBp domain and range spaces, their stability plays an important role. For 
more details, we refer the reader to [4]. For a family {Xλ : λ ∈ Λ} of Banach spaces, we denote the c0-sum 
(respectively, �1-sum, �∞-sum) of this family by 

[⊕
i∈Λ Xi

]
c0

(respectively, 
[⊕

i∈Λ Xi

]
�1

, 
[⊕

λ∈Λ Xi

]
�∞

).
Similarly to [4, Theorem 2.1], we get the following stability results for direct sums. The proof is almost 

the same and we omit it.

Theorem 4.3. Let {Xi : i ∈ I} and {Yj : j ∈ J} be families of Banach spaces. Let X be the c0-, �1-, or 
�∞-sum of {Xi} and let Y be the c0-, �1-, or �∞-sum of {Yj}. For every i ∈ I and j ∈ J , denote by Ei and 
Fj the natural inclusion maps from Xi into X and from Yj into Y , respectively. Also, Pi is for the natural 
projection from X onto Xi.

(a) If the pair (X, Y ) has the Lp,p (resp. Lp) with η(ε, x) > 0 at x ∈ SX , then for every i ∈ I and j ∈ J

the pair (Xi, Yj) has the Lp,p (resp. Lp) with η(ε, Eiz) > 0 at z ∈ SXi
.

(b) If the pair (X, Y ) has the Lo,o (resp. Lo) with η(ε, T ) > 0 at T ∈ SL(X,Y ), then for every i ∈ I and 
j ∈ J the pair (Xi, Yj) has the Lo,o (resp. Lo) with η(ε, FjSPi) at S ∈ SL(Xi,Yj).

This theorem shows that for Lp and Lp,p universal domain spaces, there exist universal functions. Indeed, 
for example, assume that (X, Y ) has the Lp,p for every Y but there is no such universal function at some 
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point x. Then, for some ε > 0, there exists a sequence of Banach spaces {Yn} such that all the possible 
choices of ηn(ε, x), the function appears in the definition of Lp,p of (X, Yn), converges to 0 when n → ∞. 
But if we consider the space Y =

[⊕
n∈N

Yj

]
c0

, then (X, Y ) has the Lp,p with η(·, z) > 0 at z ∈ SX by the 
assumption and Theorem 4.3 gives that η(ε, x) can be choosen for ηn(ε, x) which is a contradiction. The 
case of Lp can be shown by using similar arguments.

As in [11, Proposition 2.1], we see the following stability result for Lo,o and Lp,p.

Proposition 4.4. Let X be Banach space and X̃ and Ỹ be one-complemented subspaces of X and Y , respec-
tively.

(a) If (X, Y ) has the Lo,o, then (X̃, Ỹ ) has the Lo,o.
(b) If (X, Y ) has the Lp,p, then (X̃, Y ) has the Lp,p.

We do not know whether the pair (X, Y ) has the Lp,p, then (X, Ỹ ) has the Lp,p for one-complemented 
subspace Ỹ of Y . Also, it is not known whether the same results holds for the BPBp or Lo or Lp.

In what follows, we study relations on universal spaces. It is clear that Lo,o gives that every operator 
attains its norm. It is known however that for each infinite dimensional space X there exists an operator 
in L(X, c0) which does not attain its norm (see [24, Lemma 2.2]). Hence, finite dimensional spaces are the 
only universal Lo,o domain spaces. Since uniformly convex space is universal BPBp domain space [21], we 
see that universal BPBp domain space is not the same as universal Lo,o domain space. On the other hand, 
it is known that �21 is not a universal BPBp domain space [4, Example 4.1], so universal BPB domain space 
is not the same as universal Lo domain space since Lo,o implies Lo.

We prove that universality of BPBp and Lo on range spaces are equivalent properties although it is not 
true for domain spaces.

Proposition 4.5. The Banach space Y is a universal BPBp range space if and only if it is a universal Lo

range space.

Proof. Since the BPBp implies the Lo, it is clear the first direction. Suppose now that Y is a universal Lo

range space. If Y is not a universal BPBp range space, there is a Banach space X such that the pair (X, Y )
fails the BPBp. So there is ε0 > 0 such that for all n ∈ N, there are Tn ∈ SL(X,Y ) with ‖Tn‖ = 1 and 
xn ∈ SX satisfying

1 � ‖Tn(xn)‖ > 1 − 1
n

such that for all R ∈ SL(X,Y ) u ∈ SX satisfying both ‖Tn−R‖ < ε0 and ‖u −xn‖ < ε0, we have ‖R(u)‖ < 1.
Define the operator T : �1(X) −→ Y by

T (z) :=
∞∑
i=1

Ti(zi) (z = (zi)i ∈ �1(X)) .

Then ‖T‖ = 1 since ‖Ti‖ = 1 for all i ∈ N. Let n0 ∈ N be such that 1
n0

< η
(
ε0
2 , T

)
where η is the function 

appears in the definition of Lo for the pair (�1(X), Y ) and take the embedding Qn0 : X ↪−→ �1(X) in the 
n0-th coordinate. So Qn0(xn0) ∈ S�1(X) and

‖T (Qn0(xn0))‖ = ‖Tn0(xn0)‖ > 1 − 1
n0

> 1 − η
(ε0

2 , T
)
.
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So there are S ∈ L(�1(X), Y ) with ‖S‖ = 1 and u = (ui)i ∈ S�1(X) such that

‖S(u)‖ = 1, ‖u−Qn0(xn0)‖ <
ε0

2 and ‖S − T‖ < ε0.

Since ‖u −Qn0(xn0)‖ < ε0
2 , we have that ‖un0 − xn0‖ < ε0

2 and so

∥∥∥∥xn0 −
un0

‖un0‖

∥∥∥∥ � ‖xn0 − un0‖ + |1 − ‖un0‖| = ‖xn0 − un0‖ + |‖xn0‖ − ‖un0‖| < ε0.

Consider the operator SQn0 ∈ L(X, Y ). Then ‖SQn0‖ � 1 and

‖SQn0 − Tn0‖ = ‖SQn0 − TQn0‖ � ‖S − T‖ < ε0.

To get a contradiction, we will prove that 
∥∥∥SQn0

(
un0

‖un0‖

)∥∥∥ = 1. Indeed, let y∗ ∈ SY ∗ be such that y∗(S(u)) =
1. Then

1 = y∗(S(u)) =
∞∑
i=1

y∗(SQi(ui)) =
∑
i�=i0

y∗(SQi(ui)) + y∗(SQn0(un0)) �
∑
i�=i0

‖ui‖ + ‖un0‖ = 1.

So y∗(SQn0(un0)) = ‖un0‖ and then 
∥∥∥SQn0

(
un0

‖un0‖

)∥∥∥ = 1 as desired. �
We do not have an analogous result for the Lp, but if X is finite dimensional, we have a similar result 

on domain spaces. It is worth noting that this result is not valid for infinite dimensional Banach spaces, as 
we will see in the next section.

Proposition 4.6. Let X be a finite dimensional Banach space. Then X is a universal BPBp domain space if 
and only if it is a universal Lp domain space.

Proof. Assume that there exists a finite dimensional space X which is a universal Lp domain space but 
not a universal BPBp domain space. Fix Y such that (X, Y ) does not have BPBp, then for some ε > 0, 
there exist sequences xn ∈ SX and Tn ∈ SL(X,Y ) such that ‖Tnxn‖ converges to 1 and ‖Sz‖ < 1 whenever 
‖S − Tn‖, ‖z − xn‖ < ε for some n. We assume that xn converges to some x ∈ SX .

Using the function η(·, x) which appears in the definition of Lp at x, we choose n0 so that ‖xn0−x‖ < ε/2, 
‖Tn0x‖ > 1 −η(ε/2, x). Therefore, we have an operator U ∈ SL(X,Y ) and a vector z ∈ SX such that ‖Uz‖ = 1
and ‖Tn0 − U‖, ‖z − xn0‖ < ε which give the desired contradiction. �

5. Relations between the properties

In this final section we show the relations between the properties that we had studied in this paper. We 
consider the following diagram. In the picture, NA = L means that the set of norm attaining operators is 
dense.
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BPBpp Lp,p Lp

BPBp

BPBop Lo,o Lo

NA = L

Our main aim is to see that all the converses implications are not true.
Let us first consider the pairs (X, K). By the Bishop–Phelps–Bollobás theorem, this pair always satisfies 

the BPBp and, as we had seen, it is known that the BPBpp, the BPBop, the Lo,o and the Lp,p characterize 
uniform smoothness, uniform convexity, reflexivity and SSD of the dual X∗ and SSD of X, respectively. 
Therefore, a finite dimensional space which is not uniformly convex is a counterexample for directions from 
Lp,p to BPBpp and from Lo,o to BPBop (see Proposition 2.9 and [10, Theorem 2.4]). Also, (�1, K) can be 
a counterexample for the implications from Lo to Lo,o and Lp to Lp,p (see Theorem 2.3).

It remains to check the opposite directions from Lo or Lp to BPBp and from NA = L to Lo. In order to 
see that these are not true in general, we need to consider the vector-valued case.

To see that the Lp does not imply the BPBp, we recall a definition of uniformly strongly exposed family. 
We say that a family {xα}α ⊂ SX is uniformly strongly exposed with respect to a family {fα}α ⊂ SX∗ if 
there is a function ε ∈ (0, 1) �−→ δ(ε) > 0 such that

fα(xα) = 1 ∀α, and Re fα(x) > 1 − δ(ε) implies ‖x− xα‖ < ε whenever x ∈ BX .

And fixed ε0 ∈ (0, 1) we say that this family {xα}α is an ε0-dense uniformly strongly exposed family if for 
each x ∈ SX there exist some xα0 such that ‖x − xα0‖ < ε0.

It is known that if X is a superreflexive universal BPBp domain space, then for every ε0 ∈ (0, 1)
there is a ε0-dense uniformly strongly exposed family of SX [4, Corollary 3.6]. We consider a superreflex-
ive space 

(⊕∞
k=2 �

2
k

)
�2

where �np is the n dimensional �p space. Then NA
((⊕∞

k=2 �
2
k

)
�2
, Y

)
is dense in 

L 
((⊕∞

k=2 �
2
k

)
�2
, Y

)
for every Banach space Y [22]. Since every norm-one element in 

(⊕∞
k=2 �

2
k

)
�2

is strongly 

exposed, by Proposition 3.4, the pair 
((⊕∞

k=2 �
2
k

)
�2
, Y

)
has the Lp for any Banach space Y . On the other 

hand, we show that there exists a number ε0 > 0 such that there is no ε0-dense uniformly strongly exposed 
family on the unit sphere of 

(⊕∞
k=2 �

2
k

)
�2

.

Lemma 5.1. Let Y, Z be Banach spaces and X = Y
⊕

2 Z. Suppose that there exists a ε0-dense uniformly 
strongly exposed family of SX with a function δ(·), where 0 < ε0 < 1/2. Then, there exists a 2ε0-dense 
uniformly strongly exposed family of SY with function δ(·/2).

Proof. Let {xα}α∈Λ ⊂ SX be the ε0-uniformly strongly exposed family with respect to {fα}α∈Λ ⊂ SX∗

and, for convenience, write xα = (yα, zα) and fα = (y∗α, z∗α). Note that

1 = fα(xα) = y∗α(yα) + z∗α(zα) = ‖y∗α‖‖yα‖ + ‖z∗α‖‖zα‖.
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Fix y ∈ SY and choose α0 ∈ Λ such that ‖xα0−(y, 0)‖ < ε0. Then we have ‖yα0‖ > 1 −ε0 and, consequently, ∥∥∥y − yα0
‖yα0‖

∥∥∥ < 2ε0. It is enough to show that ŷ = yα0
‖yα0‖

is a strongly exposed point with respect to ŷ∗ = y∗
α0

‖y∗
α0

‖
and that δ(·/2) is the modulus. If it not were the case, there would exist a positive number ε and a point 
y0 ∈ SY such that Re ŷ∗(y0) > 1 − δ(ε/2) and ‖y0 − ŷ‖ > ε. Then, we would have

Re fα0(‖yα0‖y0, zα0) = ‖y∗α0
‖‖yα0‖Re ŷ∗(y0) + ‖z∗α0

‖‖zα0‖ > 1 − δ(ε/2)

which gives ‖(‖yα0‖y0, zα0) − xα0‖ < ε/2. Hence, we obtain ‖y0 − ŷ‖ < ε which is the desired contradic-
tion. �
Proposition 5.2. For some ε0 > 0, there is no ε0-dense uniformly strongly exposed family on the unit sphere 
of 

(⊕∞
k=2 �

2
k

)
�2

.

Proof. Assume that ε0 ∈ (0, 1/2) and there is ε0-dense uniformly strongly exposed family with modulus 
δ(·) on the unit sphere of 

(⊕∞
k=2 �

2
k

)
�2

. Then from Lemma 5.1, every unit sphere of �2k (k = 2, 3, 4, . . .) has 
2ε0-dense uniformly strongly exposed family Fk with a modulus δ(·/2).

Fix 0 < ε < 1/2. Choose k ∈ {2, 3, 4...} so that (1/2)k < δ(ε/2) and define sets S1 = {(t1, t2) ∈ S�2k
: t1 >

0, 0 � t2 � 1/2} and S2 = {(t1, t2) ∈ S�2k
: t1 > 0, −1/2 � t2 � 0}. We see that every point in Si can not 

be in Fk. Indeed, the diameter of Si is bigger than 1/2, and for (xi, yi) ∈ Si whose exposing functional is 
(xk−1

i , |yi|k−1sign(yi)) ∈
(
�2k
)∗, we have

(xk−1
i , |yi|k−1sign(yi))(si, ti) � xk−1

i si � 1 − (1/2)k > 1 − δ(ε/2)

whenever (si, ti) ∈ Si. Since the diameter of S1 ∪ S2 is bigger or equal to 1, we get the contradiction that 
Fk is not ε0-dense. �

To see that the Lo does not imply the BPBp, we consider the fact that if X is finite dimensional, then 
the pair (X, Y ) satisfies the Lo,o for all Banach spaces Y and so does the Lo. Nevertheless, there is a Banach 
space Y0 such that the pair (�21, Y0) fails the BPBp (see [4, Example 4.1]).

To check that denseness of norm attaining operators does not imply the Lo, note that NA(�1, Y ) =
L(�1, Y ) for all Banach spaces Y but if we take some strictly convex Banach space Y which is not uniformly 
convex, the pair (�1, Y ) cannot have the Lo by Proposition 3.2.(b).

Moreover, there is no relation between the properties Lo,o and Lp,p. Indeed, it is clear that the Lp,p

implies the Lp. Now take Y a infinite-dimensional strictly convex Banach space which is not uniformly 
convex. By Proposition 3.2.(a), the pair (�21, Y ) fails the Lp and so the Lp,p. On the other hand, the pair 
(�21, Y ) has the Lo,o (see [10, Theorem 2.4]). Also, the Lp,p does not imply the Lo,o. The pair (�2, Y ) always 
has the Lp,p since it has the BPBpp (see [12, Theorem 2.5]) but (�p, �q) fails the Lo,o for 1 < p � q < ∞
(see [10, Theorem 2.21.(b)]). As final remarks, we comment that it is not known whether Lp implies the 
denseness of norm attaining operators and the pair (�2p, �q) for 1 < p, q < ∞ has Lp,p.
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