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Abstract
Several advances in the structural health monitoring field and in crack identification techniques were achieved in recent

years. Nonetheless, the use of those techniques for crack identification in beams by the industry is still modest. A few

reasons can be pointed to explain this fact: some proposed methods are unfeasible from the economic or logistic point of

view, or the cracks are detected only when they already present an advanced depth, or the structures intended to be

monitored are subjected to random loads, causing methods using deterministic excitations to be unrepresentative of the

actual situation. Considering this, the objective of this study is to propose a method that could make it possible to identify

and monitor cracks in beams aiming at operational conditions, i.e., a method to identify small cracks remotely and in

almost real time, in beams subjected to unknown random loading, minimizing the measurement equipment used to a single

accelerometer and a remote computer. To achieve so, the proposed method combines an operational modal analysis (OMA)

based experimental procedure, a numerical-computational model of the damaged beam using the finite element method and

an optimization problem, solved by using the genetic algorithm (GA). The method was preliminary tested on a steel beam,

into which structural changes simulating cracks with different depths were inserted. The method was also tested on

numerically generated data with noise. The found results are encouraging, since they have shown that crack position and

depth can be determined with appropriate accuracy for many engineering applications. The limitations on the proposed

method were also discussed.

Keywords Crack identification � Operational modal analysis (OMA) � Structural health monitoring (SHM) �
Genetic algorithm (GA)

1 Introduction

In recent years, the increasing access to more accurate

equipment, the possibility of remote data transmission in

real time and the development of new physical and math-

ematical models have provided a significant improvement

in the structural health monitoring (SHM) techniques.

Those techniques have straightforward applications in

various branches of industry and engineering—such as

mechanical, structural, civil, aeronautical and naval—for

they guarantee an increased operational safety and

decreased costs associated to maintenance. Beams are

among the most studied elements in structural engineering

due to their simplicity and wide range of applications. The

identification and monitoring of damages that can appear in

those elements is of particular interest since they allow an

intervention in due time, thus avoiding the abrupt collapse

thereof.

Several recent studies on the identification of cracks in

beams have contributed to a better understanding of the

physics of the problem, as well as the development of

techniques and tools that allow a more precise and safer

monitoring of this type of structure. However, from a

technological point of view, one notices that the applica-

tion of such technique by the industry is still modest and, in
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some cases, even non-existing [1]. There is no single rea-

son for this difficulty in adopting the techniques proposed

by the academy, but a series of them, as discussed in the

next paragraphs.

It is well known that the presence of cracks introduces

local flexibilities in beams, by changing their dynamic and

vibrational behavior [2]. By studying and monitoring those

changes, it is possible to solve the so-called ‘inverse

problem’, i.e., to determine which combination of crack

position and depth produces the changes observed in those

structural elements [3, 4]. The process of determining

position and depth is usually called ‘identifying the crack’.

The existing literature presents a variety of alternatives as

possible solutions for different steps of the above-men-

tioned ‘inverse problem’. Among those steps, one can point

out: the choice of dynamic and vibrational parameters to be

monitored, the physical approach and the crack model

used, peculiarities of the measuring system used (if any),

and the optimization algorithm used.

The vibrational parameters usually monitored aiming at

identifying cracks are the natural frequencies, the vibration

modes and the frequency response function (FRF) of intact

and damaged beams. Given their relative measurement

facilities, there is also the possibility of controlling two of

those parameters simultaneously. Several studies [5–13]

solved the inverse problem by controlling changes that

cracks provoke on the beam’s natural frequencies. In their

works, Nikolakopoulos et al. [4] and Owolabi et al. [14]

presented three-dimensional graphs relating the position

and depth of cracks to the percentage reduction they pro-

duced on the natural frequencies of beams. When the

percentage reduction on a natural frequency is known, it is

possible to extract a curve from those three-dimensional

graphs, which contain all possible combinations of posi-

tions and depths of cracks that produce this specific change

[11]. When the reduction of three different natural fre-

quencies is known, it is possible to superimpose their

curves. It was observed that the curves intercept each other

on a single point, which provides the single combination of

position and depth of crack that produces the known

decrease pattern on the natural frequencies. Owolabi et al.

[14] also showed that the minimum number of natural

frequencies monitored to identify cracks must be equal to

the number of searched parameters plus one. Thus, when

one wishes to identify a single crack (to determine its depth

and position), one must monitor the reduction pattern of

three natural frequencies. When the identification of two

cracks is desired (two depths and two positions), the

monitoring must be performed on five natural frequencies,

and so on so forth. Later, Greco and Pau [15] drew similar

conclusions, also pointing out that the minimum number of

controlled natural frequencies may not be enough to

guarantee the precise solution of the inverse problem in the

presence of experimental errors. Instead of studying the

natural frequencies, some researchers tried to solve the

inverse problem by monitoring the vibration modes of

damaged beams [1, 3, 16–20]. Other researchers have

studied the effects of cracks on natural frequencies and

vibration modes simultaneously [21–25]. Finally, the

works by Owolabi et al. [14] and Saeed et al. [26] studied

the effects of cracks in beams on natural frequencies and

their FRF’s.

Beside the parameters to be monitored, the literature

also reports different possibilities of physical models to be

used in solving the inverse problem of identifying cracks in

beams. Some studies used the Euler–Bernoulli beam model

[9, 11, 15, 22, 27]. Other researchers used more sophisti-

cated beam models, which took into account also the

effects produced by shear strain [12, 28–30]. Some studies

have modeled cracks in beams as torsional springs

[6, 9, 11], others as associations of torsional and transla-

tional springs [21, 28, 30]. Other alternative approaches for

the physical modeling of the problem can also be found in

the works of Law and Lu [31], Andreaus and Baragatti [32]

and Neves et al. [33]. Bovsunovsky and Surace [34] wrote

a review article on non-linearity in vibrations of elastic

structures with closing cracks.

From the mathematical point of view, different methods

and algorithms have already been used to solve the inverse

problem in identifying cracks. Aiming at amplifying details

about the vibration responses of damaged beams, some

studies laid hands on techniques based on the Wavelet

Transform (WT) [1, 16, 20, 21]. Nikolakopoulos et al. [4]

and Owolabi et al. [14] proposed graphic methods to

identify cracks in beams. Depending on the approach, the

inverse problem can lead to an optimization problem: some

researchers applied the Newton–Raphson method to solve

it [3, 6], whereas others based their work on the use of

genetic algorithms (GA) [12, 23, 29]. Alternatively, Saeed

et al. [26] and Hakim et al. [24] used the artificial intelli-

gence (artificial neural networks—ANN) and Moezi et al.

[9] used the Cuckoo optimization algorithm. It is worth

pointing out that not only the optimization technique used

to solve the inverse problem differed in above-mentioned

researches. In addition, the optimization problem modeling

also differed in all of these studies, i.e., different objective

functions and restrictions aiming at identifying cracks in

beams were proposed.

Finally, there are also different possibilities for acquir-

ing the vibrational experimental data used in the inverse

problem. Some researchers extracted data using the

experimental modal analysis (EMA) [3, 11, 12, 14, 24],

whereas Xu et al. [20] used an operational modal analysis

(OMA). The basic difference between the two methods is

that, in the EMA, the input function (excitation force) is a

known function, whereas, in the OMA, it is unknown—
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frequently, the excitation in the OMA occurs during the

natural operation of the structure. Although the EMA

provides more accurate results, it demands a specialist to

test the structure, normally with a piezoelectric hammer or

with a shaker, which can be prohibitive in terms of a SHM

technique [35].

This large array of possibilities present in the steps that

make up a problem of identifying cracks in beams turns out

to be a difficulty found in adopting a SHM technique, since

it raises questions and doubts regarding different pecu-

liarities, advantages and disadvantages of each application.

Beside these different possibilities, a frequent subject

discussed in the literature is the difficulty on identifying

cracks in incipient stages. It is known that the shift pattern

that cracks provoke on natural frequencies and mode

shapes depends on damage localization, while the ampli-

tude of these shifts depends on damage severity. In other

words, hypothetical cracks located in the same position

would cause the same changes on the beam’s vibrational

parameters, but deeper cracks would make these effects

more evident [8, 14, 36–38]. The changes on a beam’s

dynamic behavior caused by small cracks (a=h\10%,

where a is the crack’s depth and h is the beam’s height)

may be of the same order of magnitude of errors associated

with the numerical models and the equipment utilized to

solve the inverse problem. Therefore, this type of crack is

difficult, or even impossible, to be identified.

This subject was earlier discussed by Douka et al. [16],

which pointed out the difficulty in identifying cracks with a

proportion a=h\20%. In some studies, cracks introduced

in numerical models of beams were identified, as follows:

Lee [39] identified cracks with a relative depth of

a=h ¼ 20%; Saeed et al. [26] identified cracks with a rel-

ative depth of a=h ¼ 16:7% in curved beams; Lee [6],

Attar [22] and Khiem and Tran [19] identified cracks with a

depth of a=h ¼ 10%. The problem becomes even more

complex when cracks are desired to be identified experi-

mentally, because, in these cases, the acquired data is

always susceptible to experimental errors. Cracks in beams

with the following relative depths were identified experi-

mentally in earlier studies:a=h ¼ 50% [11]; a=h ¼ 33%

[8]; a=h ¼ 30% [17]; a=h ¼ 25% [40]; a=h ¼ 20% [9, 23];

a=h ¼ 16:7% [21]; a=h ¼ 15% [12, 41]; a=h ¼ 11% [13];

a=h ¼ 10% [42]. In a recent study, He and Ng [43]

observed the effect of multiple cracks in beams. A crack

having a depth of a=h ¼ 33% was identified with an error

of 43.51%. Observing these studies, one can see that, to the

best of our knowledge, the smallest identified cracks in

beams—numerically or experimentally—have a depth of

a=h ¼ 10%. However, from the fracture mechanics and

predictive maintenance point of view, this depth might be

considered already too advanced, arising unaccept-

able risks for the operational safety depending on the

application. Therefore, there is an obvious industrial

interest in detecting damages in beams in less advanced

stages.

Based on the considerations presented in the previous

paragraphs, the four main issues that bring difficulties for

the industry to adopt the techniques proposed by the

academy can be synthesized as follows: (1) there is a large

array of possibilities in each of the steps of the crack

identification problems, which causes several doubts and

questions; (2) some proposed methods require the use of a

set of expensive equipment and qualified labor force for

in situ inspections in order to obtain vibrational data, which

turns the application of that technology unfeasible from the

economic or logistic point of view; (3) some technologies

only manage to detect cracks when they already present an

advanced depth (more than 10% of the beam’s height),

which can bring about unacceptable structural risks; (4)

beams may be subject to random loads, which introduce

more complexities into the load characterization problem

and may cause methods using deterministic excitations

become unrepresentative of the actual situation.

Considering this context, the objective of this study is to

step forward in the direction of turning the previous studies

achievements and techniques more applicable, by propos-

ing a method that makes it possible to identify and monitor

cracks in beams in almost real time in a semi-automatic

way, without the need of local inspection to acquire

vibrational data. The proposed method aims at the SHM in

operational conditions, i.e., to be able to detect the damage

in a relative initial stage (cracks with depths smaller than

10% of beam’s height), in structures subject to random

loading and minimizing the quantity of hardware utilized to

acquire data to a notebook (remote) and a unique sensor

installed on the beam. The proposed method was prelimi-

nary tested on a steel beam with a square cross-section into

which a cut simulating a crack was introduced. The depth

of the cut was gradually increased and, finally, a second cut

was introduced into the beam. Besides this experimental

evaluation, the effectiveness of the methodology was also

tested on numerically generated noisy data. The results are

presented in Sect. 4. The limits in its application of the

method were also discussed.

2 The proposed method

From data acquiring to its treatment, all the necessary steps

and decisions for the implementation of the proposed

method were developed and taken aiming at its use in an

operational way. Some studies can illustrate the importance

of the use of an appropriate monitoring system for SHM

applications [38, 44–46]. In order to reduce the measure-

ment system used, the option adopted was to control the
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natural frequencies of the beam, considering that a single

accelerometer suffices to acquire data about that parameter.

Besides, natural frequencies are easier to measure and less

susceptible to measurement errors than vibration modes

[10]. In order to obtain this parameter experimentally, it

was also decided to perform an OMA based data acquiring

of the beam. The drawback concerning the EMA is that it

requires the work of specialists in situ, which would make

it impossible to monitor the damage in real time, in addi-

tion to being unfeasible when the structures are numerous

or located in hard-to-reach places. For simplicity reasons, a

shaker was used to provoke the excitation on the beam.

However, the equipment was disconnected from the soft-

ware, which means the excitation force acting on the

structure was unknown, characterizing the OMA. In real

applications, this step could be substituted by the natural

application of the beam, with the excitation being provided

by the movement of a machine or wind forces, for example.

A comment becomes pertinent at this point: although the

term ‘natural frequency’ is used indiscriminately in many

scientific articles, very often the natural frequency is

associated to a mechanical system without damping; when

an OMA is performed to acquire vibrational data (accel-

eration response model in frequency), the peak frequencies

observed are slightly different from the natural frequencies.

Thus, in the present work, those peak frequencies are

referred to as ‘resonant frequencies’, and the term ‘char-

acteristic frequencies’ is used indistinctly for referring to

both the natural and the resonant frequencies. It is possible,

however, to use the resonant frequencies data obtained

experimentally to make comparisons with natural fre-

quency data generated numerically, provided one adopts

the premises and hypotheses presented in Sect. 2.2.

A two-dimensional numerical-computational model

based on the finite-element method and an optimization

problem solved by using GA were proposed, aiming at

giving speed and reliability to the solution of the inverse

problem, since a considerable number of simulations is

necessary. Although recommendations were taken from the

literature for solving de optimization problem using the

GA, a new objective function based on the variations of the

first five natural frequencies of the beams was proposed.

The three steps necessary for the implementation of the

presented method can be summarized as below:

• An OMA based measurement of the beam to obtain the

resonant frequencies before and after damage. With

those values, the decrease pattern is plotted on the

values of the characteristic frequencies. It is important

to notice that, when an accelerometer is installed on a

supposed intact beam, it will automatically acquire data

referring to the ‘‘before damage’’ state. If this data is

acquired periodically, one should expect changes on the

resonant frequencies values if cracks appear and, if the

values remain the same, it shall indicate that the beam

remains in an undamaged state;

• A numerical-computational model—created by using

the finite-element method—capable of simulating the

effect of cracks in different positions and depths. This

computational model of the structure should be pre-

pared before the application of the method. The same

model could be used in order to monitor the integrity of

similar structures as, for example, components of

several machines of the same model (although the

experimental data acquired from each one of them

would be slightly different, due to small constructive

differences);

• An optimization problem, the objective function of

which aims at decreasing error between the changing

pattern obtained experimentally and numerically. When

such difference is small enough, the optimization

algorithm will have identified the crack, i.e., it will

have determined, with acceptable accuracy, its depth

and location;

Each of these parts is presented in detail bellow. The

experimental procedure and the numerical-computational

model are explained first, defining the parameters obtained

in each of these steps. Later, the proposed optimization

problem is presented, pointing how experimental and

numerical data are utilized. The method presented was

applied to a SAE 1020 steel beam, with an elastic modulus

E ¼ 205 GPa and density q = 7860 kg/m3. The beam was

720 mm long with a square cross-section (22.23 mm of

width and height).

2.1 Experimental procedure

The experimental procedure is based in an OMA, aiming at

identifying the resonant frequencies of the beam, first in the

intact condition and then in the presence of damages. It is

worth pointing out that the term OMA is normally used to

refer to an experimental procedure that obtains the modal

parameters of a structure; however, using a single

accelerometer, it is not possible to determine the structure’s

mode shapes, but only the resonant frequencies. The first

step of the proposed method is to determine the number of

characteristic frequencies to be monitored. It is worth

pointing out that, from the experimental point of view, as

the characteristic frequencies assume higher values, the

difficulty in experimental acquisition also increases for it is

necessary to have an equipment with a higher data pro-

cessing capacity. As there is the intension of identifying

two cracks in the tested beam, a monitoring of its first five

natural frequencies was carried out, as discussed earlier.
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At the experimental stage, a single uniaxial accelerom-

eter, used to capture frequency acceleration response, was

placed at xa=L ¼ 0:02, where xa is the accelerometer

position and L is the length of the beam. In order to excite

the structure, a shaker was used, placed at xs=L ¼ 0:39,

where xs is the position of the shaker. These accelerometer

and shaker locations were chosen taking special care not to

position them on the node of any of the first five vibration

modes of the structure, which would cause information on

the corresponding natural frequency to be lost. The beam

was tested in a free–free boundary condition, and the

shaker was configured to produce a random excitation on

the beam (white noise). It is emphasized that the excitation

function of the shaker was not used to determine the

response of the structure—the OMA uses just the response

data. Figure 1 illustrates the measurement scheme used.

The accelerometer PCB Piezotronics� (model 352C68)

was connected to an acquisition card of a computer. First of

all, beam data in intact condition were obtained. This is a

crucial step for the level of detail one is searching for: tests

were performed in testing bodies in the intact condition,

but the small differences found in theoretically identical

bodies (about 0.1% of variation on the resonant frequencies

values) are already of the same order of magnitude of the

changes produced by cracks with small depths—see

Table 3 for more results. This effect could impair the

application of the proposed method, because a false crack

could be identified. It is therefore pointed out that the beam

to be used must be primarily assessed, i.e., its acceleration

response curve in frequency must be measured.

Later, using a thin saw, cuts with 0.5 mm width were

introduced simulating open cracks in the beam. Since cuts

are not real cracks, the term ‘‘crack’’ was avoided in the

present text when referring to this experimental procedure.

Instead, the terms ‘‘structural change’’ or ‘‘cut’’ were

preferably used. At each cut increase, a new measurement

was performed under the same conditions. Finally, after the

structural change reached a depth of a=h ¼ 50%, a second

cut was introduced to the same beam, and a double damage

(referred here as ‘‘double crack’’) case was also studied, as

further discussed. Regardless of this terminology precau-

tion, the procedure of using saw or electrode cuts in order

to simulate cracks is well reported in the literature

[3, 8, 11, 14, 21, 31, 47, 48]. Using the acceleration

response curves in frequency, five peak frequencies of the

beam (here referred to as ‘resonant frequencies’) were

determined.

Fig. 1 Measuring system adopted
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The data acquisition software installed in the computer

was the RT Pro Photon v. 6.3307. This software allowed

the user to set the frequency band in which the measure-

ment would be performed (always starting at 0 Hz) and the

number of points to be acquired in the frequency domain,

up to a maximum of 1800 points. Therefore, narrow fre-

quency bands allow a better data resolution, since the

increment in frequency is smaller. In order to obtain the

best possible resolution for each of the resonant frequen-

cies analyzed, each measurement was performed in three

different frequency bands. The three measured bands were:

from 0 to 300.00 Hz (increase of 0.16667 Hz); from 0 to

1318.26 Hz (increase of 0.73242 Hz); from 0 to 4500 Hz

(increase of 2.5 Hz). This way, it was possible to obtain

more accurate data about the first resonant frequency of the

beam (located in the first measuring band), data with an

intermediate accuracy on the second and third resonant

frequencies (between 300.00 and 1318.26 Hz) and less

accurate data regarding the fourth and fifth resonant fre-

quencies (between 1318.6 and 4500 Hz). A Hanning win-

dow was used to acquire the structure acceleration response

data.

With the purpose of illustrating the performed mea-

surements, Fig. 2 presents the acceleration response graph

in the frequency domain, obtained for the beam both in

intact condition and with an a=h ¼ 50% deep structural

change, where a is the depth of the damage and h is the

height of the beam. In the graph it is possible to observe the

first five resonant frequencies of the beam in both mea-

surements—the first five resonant frequencies of the beam

in the intact condition feIi are highlighted (see Table 1 for

the exact measured values).

Analyzing the graph, one can see that the resonant fre-

quencies decreased in the presence of the structural change.

The percentage change produced by the structural change

or crack on the ith resonant frequency obtained experi-

mentally is given by:

EDi ¼ 100 1� feCi
feIi

� �
; ð1Þ

where ED is the experimental difference of the resonant

frequency of the experimental data, feC is the resonant

frequency of the cracked beam, and feI is the resonant

frequency of the intact beam, obtained experimentally. As

the resonant frequency of the damaged beam, feC, is always

lower than the natural frequency of the intact beam, feI , ED

always assumes a positive value.

2.1.1 Simulated data

Besides the data obtained experimentally, an intact beam

case and five different damage scenarios were also simu-

lated numerically, allowing the testing of the method

Fig. 2 Acceleration response in the frequency domain for intact and cracked beams
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effectiveness in more situations. In order to obtain these

numerical results, a parameterized computational model of

a free–free beam was created numerically through the

finite-element method using the commercial software

ANSYS, as described in more details in Sect. 2.2. The

beam was excited by a unitary harmonic force and the

acceleration response in the frequency domain (inertance)

was evaluated in the range of 0–3000 Hz with increments

of 0.16667 Hz, which was the best resolution allowed by

the accelerometer in the experimental setup.

The exciting force was applied in the coordinate xs=L ¼
0:39 and the response was analyzed in xa=L ¼ 0:02, which

were the same positions of the shaker and the accelerom-

eter in the experimental procedure, respectively. Normally

distributed noise (white noise) was added to the inertance

functions obtained numerically, with the objective of

turning these computationally generated responses closer

to experimental data. The standard deviation of the white

noise was estimated to simulate effects that are consistent

to experimental error (see Fig. 2). The Fig. 3 illustrates the

response obtained for a beam with a known crack, before

and after the addition of the noise.

The five different damage scenarios are presented in

Table 2 (Cases 6–10). As in the experimental setup, the

peak frequencies of the graphs were observed and the

percentage differences produced by the cracks were cal-

culated according to the Eq. (1). With the objective of

facilitating the understanding, both the data obtained

experimentally and this numerically generated data with

noise are referred as ‘‘experimental data’’ or ‘‘obtained

experimentally’’.

2.2 Computational model

Using the ANSYS software interface, and considering that

only the characteristic frequencies associated to the bend-

ing in the axis of crack opening and closing were obtained

experimentally by the uniaxial accelerometer, one opted to

use a two-dimensional model of the beam (longitudinal

section), which leads to the same results of a three-di-

mensional model in the studied axis, at a lower computa-

tional cost. Plane isoparametric elements with 8 nodes were

selected and the mesh was refined until it provided suf-

ficing accuracy, of the same order of magnitude of those

differences observed over the resonant frequencies in the

OMA data. The elements had an average side size of

0.72 mm, resulting in a mesh formed by about 16,560

elements (this number has small variations according to the

simulated crack position and depth). Each iteration took

about 20 s to be performed, using an i5 quad-core with

4-gigabyte RAM computer. In average, it took about 1 h

and 30 min for the optimization problem to be solved, i.e.,

for the crack to be identified (the time increased to a few

hours in the double crack identification problem), but it

was verified that this time could be shorter if a more

powerful computer was used.

A free–free boundary condition was set in the numerical

model, in order to make a direct comparison with the

Table 1 Comparison between

resonant frequencies of the

beam for each case

(experimental data)

No crack feI1 ðHzÞ feI2 ðHzÞ feI3 ðHzÞ feI4 ðHzÞ feI5 ðHzÞ
224.1667 614.5020 1193.8477 1945.0 2890.0

feC1 ðHzÞ feC2 ðHzÞ feC3 ðHzÞ feC4 ðHzÞ feC5 ðHzÞ

Case 1: a=h ¼ 5% 224.0000 613.7695 1193.8477 1945.0 2887.5

a ¼ 1:1 mm

xc ¼ 22:0 cm

Case 2: a=h ¼ 10% 223.6667 612.3047 1192.3828 1945.0 2882.5

a ¼ 2:2 mm

xc ¼ 22:0 cm

Case 3: a=h ¼ 20% 222.5000 606.4453 1189.4531 1942.5 2860.0

a ¼ 4:4 mm

xc ¼ 22:0 cm

Case 4: a=h ¼ 50% 210.5 560.3027 1166.7480 1922.5 2690.0

a ¼ 11:1 mm

xc ¼ 22:0 cm

Case 5 (double crack): a1=h ¼ 50%

a2=h ¼ 25%

209.6667 553.7109 1141.1133 1890.0 2662.5

a1 ¼ 11:1 mm

xc1 ¼ 22:0 cm

a2 ¼ 5:5 mm

xc2 ¼ 59:0 cm
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Fig. 3 Inertance response

obtained for a beam with a

crack (before and after noise

conditions)

Table 2 Comparison between

resonant frequencies of the

beam for each case (numerically

generated noisy data)

No crack feI1 ðHzÞ feI2 ðHzÞ feI3 ðHzÞ feI4 ðHzÞ feI5 ðHzÞ
225.5 617.3333 1200.3333 1961.1667 2889.0

feC1 ðHzÞ feC2 ðHzÞ feC3 ðHzÞ feC4 ðHzÞ feC5 ðHzÞ

Case 6: a=h ¼ 8% 225.6667 617.1667 1198.0 1957.0 2884.6667

a ¼ 1:77 mm

xc ¼ 12:0 cm

Case 7: a=h ¼ 15% 224.6667 613.5 1197.1667 1960.6667 2875.1667

a ¼ 3:32 mm

xc ¼ 50:8 cm

Case 8: a=h ¼ 23% 221.6667 615.3333 1191.8333 1943.3333 2883.8333

a ¼ 5:10 mm

xc ¼ 31:0 cm

Case 9: a=h ¼ 40% 213.5 602.5 1189.1667 1881.1667 2885.0

a ¼ 8:86 mm

xc ¼ 43:2 cm

Case 5 (double crack): 220.0 605.5 1193.8333 1903.6667 2840.1667

a1=h ¼ 30%

a2=h ¼ 18%

a1 ¼ 6:65 mm

xc1 ¼ 27:0 cm

a2 ¼ 3:99 mm

xc2 ¼ 63:0 cm
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experimental data. It is important to notice that a modal

analysis was performed at this stage, which is different

from the harmonic analysis described in Sect. 2.1.1.

Besides the natural frequencies, the mode shapes are also

calculated in the analysis. Although it can be seen that they

are directly affected by the presence of cracks, this infor-

mation was not used, since no data regarding the mode

shapes were obtained experimentally.

Figure 4 illustrates the 2D numerical-computational

model of the beam with a crack.

The equation of motion of the system in Fig. 4 with

multiple degrees of freedom is given by [49]:

m½ �€xþ c½ � _xþ k½ �x ¼ f ; ð2Þ

where ½m�, ½c� and ½k� are the mass, damping and stiffness

matrices, respectively; x is displacement, _x is speed, €x is

acceleration and f is the external effort of the system. From

this equation, one obtains an eigenvalue problem, solved in

the calculation routine of the ANSYS software in order to

obtain the natural frequencies of the numerical model. If

the system is undamped, c½ � ¼ 0, and the generalized

eigenvalue problem is given by:

ki m½ �/i ¼ k½ �/i; ð3Þ

where ki is the ith eigenvalue, /i is the corresponding ith

eigenvector and the natural frequencies fni are given by

fni ¼
ffiffiffiffi
ki

p
. For a one-degree-of-freedom damped system,

the natural frequency and the resonant frequency for the

acceleration response model in frequency (inertance) are

given by, respectively:

fn ¼
ffiffiffiffi
k

m

r
; ð4Þ

fr ¼
fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� 2n2Þ
q ; ð5Þ

where fn is the natural frequency, fr is the resonance fre-

quency, k is stiffness, m is mass, and n is the damping

factor of the system. Considering—without losing gener-

ality—the appearance of an external effect such as a crack,

which produces a change in the system stiffness, main-

taining mass and damping practically constant, it is pos-

sible to estimate the percentage difference between those

resonant frequencies due to that change, the following way:

Dr ¼ 100 1� fr1
fr2

� �
¼ 100 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m

1�2n2ð Þ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m

1�2n2ð Þ

r
0
BBB@

1
CCCA

¼ 100 1�
ffiffiffiffiffi
k1

k2

r� �
; ð6Þ

where Dr is the difference (%) of the resonant frequencies

of a damped system, k1 is stiffness of the system in state 1

(before the change) and k2 is the stiffness of the system in

state 2 (after the change).

If a change is produced in a way to change the stiffness

of a one-degree-of-freedom system without damping, while

maintaining the mass constant, it is possible to estimate the

percentage difference between natural frequencies before

and after the change as follows:

Dn ¼ 100 1� fn1
fn2

� �
¼ 100 1�

ffiffiffi
k1
m

q
ffiffiffi
k2
m

q
0
B@

1
CA

¼ 100 1�
ffiffiffiffiffi
k1

k2

r� �
; ð7Þ

where Dn is the difference (%) of natural frequencies of an

undamped system. According to Eqs. (6) and (7), one

notices that the percentage difference produced by a

change only in the stiffness on the characteristic frequen-

cies (natural and resonant) does not depend on the system

being damped or undamped, i.e., Dr ¼ Dn.

The reasoning presented for a one-degree-of-freedom

system may be extrapolated to a multiple-degree-of-free-

dom system, as is the case of the beam under study. Then,

the hypothesis of the present work is that the crack pro-

duces changes only in the stiffness matrix of the system,

and that the mass and damping matrices remain invariant

when cracks are produced. This hypothesis can be justified

Fig. 4 Numerical-computational model
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by the following causes: the mass loss of the beam caused

by a crack is negligible when compared to the total mass of

the beam; small cracks provoke negligible effects over

system’s damping; open cracks, as in the case of the pre-

sent study, reduce the friction between the two crack

contact areas, thus reducing the energy loss and keeping

the damping of the system practically constant.

Because of this effect—percentage differences on the

resonant frequencies obtained for a viscous damped system

is equal to those percentage differences obtained for the

natural frequencies of an undamped system—it was pos-

sible to consider the system as undamped in the numerical

model used. Such choice is especially convenient since it

avoids the need for estimating the structure damping,

besides speeding up calculations during the optimization

problem, described in Sect. 2.3.

2.2.1 Numerical model

First, a simulation of the intact beam was performed, in

order to obtain the numerical natural frequencies of the

undamaged structure. Next, cracks modeled in the shape of

a pentagon—an association of a rectangle and an isosceles

triangle—were introduced, with a constant width value

parameterized according to beam’s length (0.5 mm in this

study). Although this geometry was chosen aiming at

giving some realism to the simulation, the results of the

work carried out by Orhan et al. [48] have shown that the

natural frequencies estimated in numerical models are

insensitive to different geometrical shapes of cracks. The

damage was inserted into the model by varying parameters

xc and a—position and depth of crack, respectively—and

the natural frequencies were recalculated. The changes

produced by the crack in the ith natural frequency of the

numerical model is given by:

NDi ¼ 100 1� fnCi
fnIi

� �
; ð8Þ

where ND is the numerical difference (%) of the numerical

model natural frequency, fnC is the natural frequency of the

cracked beam of the numerical model, and fnI is the natural

frequency of the intact beam of the numerical model. As

the natural frequency of the damaged beam, fnC, is always

lower than the natural frequency of the intact beam, fnI ,

ND always assumes a positive value.

2.3 Optimization problem

Starting from the accepted hypotheses and knowing the

percentage differences that structural changes and cracks

produce on the experimental data and on the numerical

model—EDi and NDi, respectively, an optimization

problem was proposed aiming at identifying these dam-

ages. As the reduction pattern of natural frequencies gen-

erated by a crack is unique, depending its position and

depth, the present work adapts the idea proposed by

Owolabi et al. [14] for identifying the structural change in a

graphic way into an optimization problem, eliminating the

problem of errors arisen due to linear interpolations and

giving speed to the solution. The proposed optimization

aims at approximating the changing pattern produced by

cracks in the numerical-computational model to the pattern

obtained experimentally, i.e., to minimize the difference

between them. Thus, the objective function S to be mini-

mized was defined, as given by:

SðxÞ ¼
XN
i¼1

ðEDi � NDiÞ2; ð9Þ

where N is the number of characteristic frequencies used to

identify the damages and x is the project vector given by a

and xc. Restrictions were imposed to the parameters sear-

ched in the problem (position xC and depth a of the crack),

as follows:

0� xC � L; ð10Þ
0� a� 0:9h: ð11Þ

When the optimization problem is solved aiming at

identifying two cracks, four restrictions must be imposed:

0� xC1
� L; ð12Þ

0� xC2
� L; ð13Þ

0� a1 � 0:9h; ð14Þ
0� a2 � 0:9h; ð15Þ

where xC1
, xC2

, a1 and a2 are the position and depth of

cracks 1 and 2, respectively.

The inverse problem was solved by using genetic

algorithms (GA) as the optimization method. The GA is a

method based on the natural evolution from Darwin’s

theory. Basically, an initial population is defined randomly,

with possible candidates for solving the problem. In the

present case, a candidate is composed by two variables:

crack’s depth and position. After this first generation is

tested, the best-fitted candidates are kept for the next

generation—sometimes called the ‘‘elite count’’ or

‘‘champions’’, while the rest of the generation suffers from

mutation and crossover. The process goes on until a vir-

tually best individual is found, i.e., a combination of

crack’s depth and position that agrees the most with

experimental data.

The choice of that method is convenient, since it does

not need an initial candidate—initial depth and position of

the crack—to start solving the optimization problem. The

definition of an initial candidate is an obstacle in this
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process of optimization, since the solution may converge to

a local minimum, leading to a false position and depth of

the crack. On the contrary, the initial population of the GA

is distributed throughout the search space, which increases

the probability of determining the global minimum of the

function. A pertinent comment is that preliminary tests

were conducted using the Nelder-Mead method for solving

the optimization problem, which demands the choice of an

initial candidate. Although this method had an advantage

regarding the simulation time (the Nelder-Mead method

took about 75% of the necessary time for the optimization

to be solved by the GA), the optimization converged to a

local minimum in approximately half of the attempts,

leading to false crack positions and depths, which is not

admissible in terms of a SHM technique. Using the GA,

100% of the cracks were identified correctly, as shown in

the results. Besides, the use of the GA for solving this kind

of problem is already established in the literature [11, 29].

The initial population was selected consisting of 15

times the number of variables. When optimization was

performed aiming at identifying a single damage, two

parameters were being searched (xc and a), and the initial

population was defined as 30. When optimization was

performed aiming at identifying two structural changes or

cracks, four parameters were being searched (xc1, xc2, a1
and a2), and the initial population was defined as 60. After

selecting the initial population, the algorithm progresses

with natural selection, mutation and crossover, and a new

population is defined. Optimization is interrupted when the

objective function S assumes a lower value than an estab-

lished tolerance or when the maximum number of itera-

tions is achieved. The tolerance was set to 10�6, because

the variations on the crack parameters when the objective

function S is lower than this are negligible for identification

purposes, i.e., the identified damage position starts to vary

in the order of 0.01 mm and the damage depth varies in the

order of 10-4 mm. The maximum number of iterations is

defined as 100 times the number of variables: 200 iterations

for the single crack problem and 400 iterations for the

double crack problem. The probability of crossover was set

to 0.9, and the three best individuals were selected from

one generation to another [12, 23, 50].

In order to solve the optimization problem, a program-

ming routine using the language of the MATLAB software

was developed. In one of the programming lines, the

ANSYS software is activated, and it starts running in batch

mode. The ANSYS software, at its turn, uses as input data a

second routine previously prepared, allowing for the

numerical-computational calculation of the natural fre-

quencies of beams for different positions and depths of

cracks; after being estimated, these parameters are expor-

ted to a text file which is read again by the MATLAB,

allowing the optimization to continue. All this process

occurs automatically, proving to be an appropriate, effi-

cient and powerful alternative for solving the inverse

problem of identifying cracks.

3 Results and discussion

Table 1 presents the values of all five resonant frequencies

obtained experimentally using the OMA of the intact beam

and with the different evaluated damages, with the preci-

sion allowed by the three different frequency bands

described in Sect. 2.1. From case 1–4, the beam has a cut

characterized by different depths; and, in Case 5, the beam

has two structural changes. Table 2 presents the resonant

frequencies obtained from the numerically generated noisy

data. This data was obtained for the intact beam and for

beams subjected to different inserted cracks, with the

precision allowed by the set resolution. Table 3 presents

the experimental difference ED calculated as in Eq. (1),

relating Cases 1–10 with the respective undamaged beam

(experimental or numerical).

As expected, as the depth of the structural change or

crack increases, more significant decreases on the values of

resonant frequencies of the beams were observed. The

optimization algorithm was run for all ten cases, according

to the values in Table 3. The results—positions and depths

of the cracks found, as well as the percentage error (in

modulus) referring to the real cuts and cracks—are pre-

sented in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13. It is

worth pointing out that, sometimes, the solution of the

optimization problem can lead to a crack localized in L�
xc instead of crack localized in xc, because of the symmetry

of the boundary conditions (both cracks cause the same

Table 3 Percentage difference calculated for each case

Case Experimental difference (%)

ED1 ED2 ED3 ED4 ED5

1 0.07436 0.11920 0 0 0.08650

2 0.22305 0.35757 0.12270 0 0.25952

3 0.74351 1.31109 0.36810 0.01285 1.03806

4 6.09667 8.82004 2.26995 1.15681 6.92042

5 6.46840 9.89274 4.41718 2.82776 7.87197

6 0.07392 0.02699 0.19439 0.21246 0.14999

7 0.36953 0.62094 0.26381 0.02550 0.47883

8 1.69991 0.32397 0.70814 0.90933 0.17884

9 5.32151 2.40280 0.93029 4.07921 0.13846

10 2.43902 1.91684 0.54152 2.93193 1.69032
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changes on the beam’s natural frequencies in a free–free

beam).

Analyzing the results, one can observe that the proposed

method is capable of identifying the parameters of a

structural change or a crack with an acceptable accuracy

for many applications in engineering, allowing a mainte-

nance intervention to be made before crack’s depth reaches

a pre-determined unacceptable value. The largest error

reported was 7.50%, corresponding to 0.42 mm in the

depth of cut 2, in the Case 5. In that case (identification of

Table 4 Structural change identified for Case 1

Real cut Identified crack Error (%)

Case 1: a=h ¼ 5%

a ¼ 1:1 mm a ¼ 1:16 mm 5.45

xc ¼ 22:0 cm xc ¼ 22:86 cm 3.91

Table 5 Structural change identified for Case 2

Real cut Identified crack Error (%)

Case 2: a=h ¼ 10%

a ¼ 2:2 mm a ¼ 2:22 mm 0.91

xc ¼ 22:0 cm xc ¼ 21:35 cm 2.96

Table 6 Structural change identified for Case 3

Real cut Identified crack Error (%)

Case 3: a=h ¼ 20%

a ¼ 4:5 mm a ¼ 4:69 mm 4.22

xc ¼ 22:0 cm xc ¼ 21:70 cm 1.36

Table 7 Structural change identified for Case 4

Real cut Identified crack Error (%)

Case 4: a=h ¼ 50%

a ¼ 11:1 mm a ¼ 11:31 mm 1.89

xc ¼ 22:0 cm xc ¼ 21:90 cm 0.46

Table 8 Structural change identified for Case 5

Real cut Identified crack Error (%)

Case 5 (two cuts): a=h ¼ 50% and a=h ¼ 25%

a ¼ 11:1 mm a ¼ 10:96 mm 1.26

xc ¼ 22:0 cm xc ¼ 21:97 cm 0.14

a ¼ 5:6 mm a ¼ 6:02 mm 7.50

xc ¼ 59:0 cm xc ¼ 59:70 cm 1.17

Table 9 Crack identified for Case 6

Real crack Identified crack Error (%)

Case 6: a=h ¼ 8%

a ¼ 1:77 mm a ¼ 1:71 mm 3.39

xc ¼ 12:0 cm xc ¼ 11:42 cm 4.83

Table 10 Crack identified for Case 7

Real crack Identified crack Error (%)

Case 7: a=h ¼ 15%

a ¼ 3:32 mm a ¼ 3:27 mm 3.31

xc ¼ 50:8 cm xc ¼ 50:63 cm 0.33

Table 11 Crack identified for Case 8

Real crack Identified crack Error (%)

Case 8: a=h ¼ 23%

a ¼ 5:10 mm a ¼ 5:27 mm 3.33

xc ¼ 31:0 cm xc ¼ 30:96 cm 0.13

Table 12 Crack identified for Case 9

Real crack Identified crack Error (%)

Case 9: a=h ¼ 40%

a ¼ 8:86 mm a ¼ 8:86 mm 0.00

xc ¼ 43:20 cm xc ¼ 43:07 cm 0.30

Table 13 Cracks identified for Case 10

Real crack Identified crack Error (%)

Case 10 (two cracks): a=h ¼ 30% and a=h ¼ 18%

a ¼ 6:65 mm a ¼ 6:58 mm 1.05

xc ¼ 27:0 cm xc ¼ 27:09 cm 0.33

a ¼ 3:99 mm a ¼ 4:11 mm 3.01

xc ¼ 63:0 cm xc ¼ 63:38 cm 0.60
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double cracks), the control of a larger number of charac-

teristic frequencies would probably lead to more accurate

results, as discussed previously. In the present study, only

two preliminary double crack cases were evaluated, pro-

viding encouraging results; further studies could test the

efficiency of the presented method in identifying multiple

cracks, especially with smaller depths.

When analyzing the results regarding the cracks gener-

ated numerically with noise (Cases 6–10), one observes

that the method was able to identify these damages (even

the smaller ones) with minor errors. This happens because,

despite the added noise caused a significant variability in

the inertance amplitude data (vertical axis of Fig. 3), there

are relative small deviations on the peak frequencies values

of the pure and noisy data (horizontal axis of Fig. 3), and

these are the parameters computed for the algorithm to be

run. In addition, it is interesting to notice that the first

natural frequency value regarding the Case 6 was higher

than the corresponding frequency of the undamaged beam,

as in Table 2. This effect, which was obviously produced

by the added noise, did not hinder the crack to be identified

with an appropriate precision.

Another issue to be analyzed is the fact that, with the

equipment used in the OMA, it would not be possible to

identify cracks having depths smaller than 5% the height of

the beam. This is so because the resolution of the data

acquisition system does not allow detecting the variation

between the resonant frequencies of the beam in intact

condition and with a small cut. Such effect can be illus-

trated by analyzing the 3rd and 4th natural frequencies

obtained in Case 1, as in Table 3. Although the structural

change has produced reductions on those frequencies, they

were too subtle to be captured by the measurement system

used (even so, it was possible to identify that structural

change with the reduction pattern obtained).

Therefore, one observes that the applicability of the

proposed method to the identification of small depth cracks

(a=h\10%) becomes conditioned to the resolution of the

hardware used. From a practical point of view, if it

becomes necessary to identify cracks in even more incip-

ient stages (a=h ¼ 2%, for example), it would be necessary

to use a system that would allow this level of detail, i.e., a

system that could carry out the acquisition of more points

in the same frequency band. Actually, since at least one

resonant frequency shift was not detected by the utilized

equipment for Cases 1 and 2 (see Table 3), there are only

indications that the proposed method is effective in

detecting these damage depths. A way to ensure the effi-

cacy would be the testing of damages of these magnitudes

with better resolution equipment.

A limitation of the presented methodology is the fact

that the number of damages was known in advance for the

single crack cases, i.e., only one crack was parameterized

in the numerical model. Regarding the double damage

cases, the algorithm ran with the possibility of one or two

cracks to be present, since a crack could assume a virtual

depth of a ¼ 0, which represents the absence of the crack

[see the lower bound values in Eqs. (14) and (15)]. Further

studies could parameterize and test a model where several

cracks could be present, considering their depths ranging

from 0� an � 0:9h, which would be a way to try to solve

the problem without previously knowing the number of

present structural changes or cracks.

Finally, it is clear that, in real systems, there is no

possibility of concluding with absolute certainty that dif-

ferences observed in the resonant frequencies were caused

by the appearance of cracks. Since these frequency shifts

can be caused also by other factors—such as other types of

faults and accommodations –, the assertiveness of the

present method is conditioned to this fact, as all the other

methods based on frequencies observation presented by the

literature. In other words, if a crack is identified by the

proposed methodology, a simple further investigation

should be made in order to proof the existence of the

damage, as a visual inspection.

4 Conclusions

Although the literature presents a wide range of possibili-

ties for solving the inverse problem of identifying cracks in

beams, there are difficulties in the process of implemen-

tation of these techniques by the industry. The present work

has presented a method for carrying out such identification

aiming at operational conditions, i.e., a method to identify

small structural changes which could represent cracks

remotely (with no need of technical inspection on the

location of the structure for data acquiring) and in almost

real time (depending only on the time consumed to solve

the optimization problem), in beams subjected to unknown

random loading, minimizing the measurement equipment

used to a single accelerometer.

The proposed method combines an OMA based proce-

dure, a parameterized numerical-computational model of

the damaged beam, and an optimization problem solved by

using genetic algorithms, in order to determine—by con-

trolling the characteristic frequencies of the structure—the

position and depth of the cracks. The technique was tested

in a steel beam with square cross-section and on numeri-

cally generated noisy data. The results show that the

method is capable of detecting single and double damages

with an acceptable accuracy for many applications in

structural engineering. A cut with a depth a=h ¼ 5% (Case

1) was identified. There were found no previous studies in

the literature that were able to identify a crack of this

magnitude—the smallest cracks earlier identified,
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numerically or experimentally, had a depth of a=h ¼ 10%.

Although the found results are encouraging, it is worth

pointing out that they represent a preliminary assessment of

the proposed methodology. Before being applied in real

situations, the presented method should be tested for a

wider range of cases, with the objective of testing its

efficiency in statistical terms.

Based on the steps described in the present work, a

hardware can be developed aiming at monitoring the

integrity of beams in an automatized and on-line way. The

smaller the cracks one wishes to identify are, the bigger the

capacity to acquire data and higher the resolution of the

hardware in frequency must be. Further works could ana-

lyze the use of the proposed method in beams with closed

cracks, excited by their operational use in in situ

applications.
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