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We study the non-Markovian evolution of two free spinless distinguishable particles in a 1D lattice
using a completely positive map. The Renewal theory is used to introduce, in a phenomenological
way, the concept of disorder in the random time-interventions of the environment. If the waiting-
time of the Renewal approach is exponential we recover a semigroup description for the density
matrix. Introducing a non-Poissonian random-time bath-interventions a non-Markovian evolution
for the density matrix has been worked out. Under this scenario we have studied the time evolution
of the Quantum Coherence and Negativity measures for local and non-local initial conditions. We
show the relevance of the (weak) non-Markovian evolution in calculating short-time correlations,
while in the long-time regime a renormalized Markovian evolution appears.

PACS numbers: 02.50.Ga, 03.67.Mn, 05.40.Fb

I. INTRODUCTION

A quantum system interacting with the degree of freedom of the environment is the key ingredient to describe its
decoherence and fluctuations, and the so called Markov completely positive (CP) dynamics are the starting point for
considering fluctuations and dissipation in quantum mechanics [1]. A natural generalization of the Markov dynamics
is the so called memory-kernel (non-Markov) Quantum Master Equation [2, 3]. These types of evolutions have been
used in different research areas, and the problem arising from the indiscriminately use of memory-kernels was pointed
out in [4]. One important contribution in that direction was presented introducing stochastic interventions in the
quantum dynamics, then it was shown that if the environment interventions occur a random times and if these
random times follows a renewal stochastic structure the non-Markov dynamics for the density matrix turns to be
CP [5]. A much wider class of time memory-kernel CP evolution was also written in terms of piecewise dynamics
with microscopic interaction embedded in a continuous-time description [6], as well as in the context of the random
measurement interventions [7]. It is interesting to point out that same extra mathematical constraints have recently
been presented in order to assure a CP dynamics [2] and sufficient conditions to have a memory-kernel CP structure
[3].

Given a memory-kernel CP dynamics, and due to the complexity in solving this type of non-local operational
evolution, an important point to consider is to introduce a systematic perturbation approach to be able to find some
approximation for the non-Markov evolution of the density matrix. In order to tackle this issue it is convenient
to consider a simple but non-trivial model to test the perturbation approach and its consequence on the quantum
correlations. So in the present work we will work out a tight-binding system interacting with a phonon bath, this is
an interesting model which has been used to study transport in thermally activated electrons [8, 9], and tunneling
in one-band conductivity [10]. This model is a prototype of open quantum system which is now called dissipative
Quantum Walk (QW) and it is suitable for study quantum correlations [11, 12]. An important point to be addressed in
the context of Markov QW, is the analysis of the quantum to classical transition. It has been shown that considering
two particles this transition is drastically changed [13] with respect to the one particle model [14]. Then, it would be
important to study the inference of a non-Markov dynamics on the quantum correlations between many QWs.

QWmodels are expected to be useful for designing quantum algorithms and modeling coherent transport on complex
networks [15], as well as in describing nano-experiments [16, 17]. The important point in a QW model is the analysis of
the evolution of the coherent superposition of states (something impossible in the classical random walk framework).
QW on random environment is a promising approach which has been studied with diagonal disorder using unitary
evolutions [8, 9]. A dissipative quantum walk (DQW) is a related process but takes into account the explicit interaction
with a phonon thermal bath. In the case of a dissipative evolution the simplest dynamics is dictated by a quantum
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semigroup [18]. Nevertheless, it is well known that a Markov QW process cannot always describe complex relaxation
processes [15, 17, 19]. For this reason, it would be important to work out a generalized (many-body) non-Markov
DQW model [20].

We noted that even when the description of a DQW in a random environment is a very important issue, up to
now it is still not completely understood, mainly because in general the dynamics of the Green mean-value over
quenched disorder will not be a semigroup. In the present paper we will not directly tackle a non-unitary random
model, here we are going to construct a well-defined quantum non-Markov approach borrowing renewal ideas from the
classical random jump problem [21–23]. Then, from the present random quantum jump model we will get information
concerning the evolution of coherence and quantum correlations in the framework of a non-Markov dynamics.

We use the concept of a CP map [1] to present a Markov chain into quantum mechanics. Then, the Renewal
theory is used to introduce a CP infinitesimal generator for the density matrix, allowing to build up a non-Markov
CP approach in the QW framework. In this context we point out that the waiting-time functions of the Renewal
theory are probability densities used to model random disruptive interventions of the bath into the system of interest.
The Renewal approach is also presented in the context of subordination processes [24], in this way it is possible to
consider a transformation from an internal-time into the physical-time [5], which may helps to work-out the non-
Markov evolution in some special cases. Here we are going to solve, in a perturbative way, a particular non-Markov
bath intervention acting over two free QWs. Then, the time evolution of a two-body density matrix will be used as
our main tool to study its inference in the short-time decoherence and correlations evolution. Conclusions on the
mechanism of destruction of quantum correlations within a non-Markov approach will be presented.

II. DISSIPATIVE QUANTUM EVOLUTIONS

A. Discrete-time: Quantum Markov chains

In quantum mechanics the concept of a Markov chain can be stated in terms of a CP map. That is, the most
general map acting on the density matrix preserving Hermitian, trace = 1, and positive definite [1]. This map has
the Kraus form:

E [•] =
∑
j

Vj [•]V †
j , with

∑
j

VjV
†
j = I, (1)

where {Vj} is any set of operators determining the irreversible dissipative evolution of the density matrix, and I
the identity operator. Therefore in order to represent the intervention of a bath B on a system S, we assume a
discrete-time model in terms of the CP map E [•], similar to a discrete recurrence relation for a classical Markov chain
[23].
In the interaction representation with respect to the Hamiltonian of the system HS , we propose a quantum Markov

chain acting on the density matrix σ in the form:

σ (n+ 1) = E [σ (n)] ,with initial condition σ (0) . (2)

The solution of this map can be found using the generating function technique (the z-transform of σ (n))

σ (z) =

∞∑
n=0

znσ (n) = (I− zE [•])−1
σ (0) . (3)

Let σ be the density matrix of a given system S, then the solution (3) gives the evolution in discrete-time considering
the disruptive interventions of B on S.

B. Continuous-times: non-Markovian evolutions

To consider a continuous time random intervention of the bath on S, we now introduce a Renewal process charac-
terizing the random number of events n in a continuous-time representation [23, 25]. The continuous-time evolution
of σ(t) can be studied in terms of the probability density ψ(n) (t) for the n-th event-intervention:

Q (t) =

∞∑
n=0

ψ(n) (t)σ (n) , (4)
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here the quantity Q (t) dt gives the density matrix just at time t and t+dt for a given realization of the random events.
The Renewal process is characterized by the waiting-time probability distribution function (pdf) ψ (t) ≥ 0,∀t ≥ 0
and the hierarchy of distributions ψ(n) (t):

ψ(n) (t) =

∫ t

0

ψ(n−1) (τ)ψ (t− τ) dτ, (n ∈ N )

ψ(0) (t) = δ
(
t− 0+

)
.

From (4), going to Laplace’s representation we get

Q (u) = (I− ψ (u) E [•])−1
σ (0) . (5)

In order to calculate the density matrix σ (t) at time t > 0 we have to consider also the possibility of remaining
without any disruptive intervention from the bath. This effect is taken into account considering the probability of
no-intervention during the time interval [0, t]:

ϕ (t) = 1−
∫ t

0

ψ (τ) dτ, with

∫ ∞

0

ψ (τ) dτ = 1. (6)

Going back to the time-representation of Q (t) (from solution (5)) and using the probability of no-intervention (6)
we can write the density matrix σ (t) in continuous-time in the form:

σ (t) =

∫ t

0

ϕ (t− τ)Q (τ) dτ, t > 0. (7)

After some algebra [20], we can write an exact evolution equation for the density matrix in the interaction repre-
sentation σ (t) = e−tL0ρ (t) as:

∂tσ (t) =

∫ t

0

Φ(t− τ) e−τL0 (E [•]− I) e+τL0σ (τ) dτ, (8)

where L0 [•] = −i [HS , •] is the von Neumann superoperator, I the identity operator, and Φ (t) the kernel of the
evolution, which in the Laplace representation is given by

Φ (u) =
uψ (u)

1− ψ (u)
. (9)

The function Φ (t) is the memory of the generalized Kossakowski-Lindblad (KL) infinitesimal generator [1]

KL [•] ≡ E [•]− I. (10)

When ψ (t) = λ−1e−t/λ (exponential waiting-time model) we recover a semigroup because Φ (t− τ) = δ (t− τ)λ.
In this particular case the KL evolution is characterized by a Poissonian statistics for the disruptive interventions of
B. In the general case Φ (t) is a correlation function and therefore it need not to be a positive function, but the area
of Φ (t) indeed characterizes a dissipative constant [23].
In the interaction representation a picture for the dissipative quantum evolution can be thought in terms of quantum

jumps any time the intervention of the environment applies. Then a unitary evolution results during a random waiting-
time interval [0, τ ], until another CP map is applied again, and so on time and again in continuous-time. The resulting
evolution operator is a generalized CP infinitesimal generator that has a time-convolution structure reminiscent of
the classical CTRW theory [21]. Short and long times asymptotic regimes can analytically be studied in terms of the
waiting-time model that we may have used [23]. The important point is that introducing a ”random” time intervention
of the bath B produces an evolution equation which is a generalized (non-Markov) CP infinitesimal generator.

Going to the original representation ρ (t) = e+tL0σ (t), from (8) we get:

∂tρ (t) = L0 [ρ (t)] +

∫ t

0

Φ(t− τ) e(t−τ)L0KL [•] ρ (τ) dτ, (11)

which is the non-local in time evolution equation to be solved. This equation can be worked out by perturbations on
the intensity of the bath interaction KL [•], or alternatively on the non-Markovian characteristic time-scale associated
to the Kernel Φ (t).
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C. Exact non-Markov solution in the interaction representation

In the particular case when von Neumann’s superoperator L0 [•] commutes with the CP map E [•], the non-
Markovian evolution equation (8) reduces to

∂tσ (t) =

∫ t

0

Φ(t− τ)KL [•]σ (τ) dτ. (12)

This equation can formally be solved in the Laplace representation in the form

σ (u) =
1

u− Φ(u)KL [•]
σ (0) . (13)

Therefore, going back to the original representation we get

ρ (t) = e+tL0σ (t)

= e+tL0L−1
u

[
1

u− Φ(u)KL [•]

]
σ (0) . (14)

Note that even if there exist a representation where L0 [•] and the superoperator KL [•] were diagonal, the difficult
part in expression (14) is its Laplace inversion. So we have to deal with some perturbation theory in order to find an
approximated solution for the density matrix in the non-Markovian case.

Alternatively, the solution of (12), σ (t), can be written in an integral form with the help of an escort Markovian
density matrix: σM (ς). After some algebra [5], the final expression turns to be

σ (t) =

∫ ∞

0

P (t, ς)σM (ς) dς, (15)

where σM (ς) is the solution of the subordinated Markovian evolution [24]

∂ςσ
M (ς) = KL

[
σM (ς)

]
, σM (0) = σ (0) . (16)

Here the real positive function P (t, ς) defines a pdf for the dimensionless time ς. In the Laplace representation this
pdf is given by

P (u, ς) =
1

Φ (u)
exp

[
−ςu
Φ(u)

]
, (17)

fulfilling conditions:
∫∞
0

P (t, ς) dς = 1 and P (t, ς) ≥ 0,∀{t, ς} ≥ 0. Then, solution (15) allows to interpret the non-
Markovian evolution of σ (t) in terms of a subordination random process [24], where the mapping from an internal-time
ς to the physical-time t is characterized by the pdf P (t, ς).

Notably, a particular model of non-Markovian DQW can be solved analytically in the context of fractional dynamics.
That is the pdf (17) can be inverted in Laplace allowing to handle (15), and therefore the expression (14) can be
worked out analytically, more details on this subject will be presented in a future work.

D. Perturbative expansion in the intensity of bath interventions

If the map E [•] commutes with the von Neumann superoperator L0 [•] it is possible to simplify the non-Markovian
evolution equation (11), then we can write

d

dt
ρ (t) = L0 [ρ (t)] +

∫ t

0

Φ(t− τ)KL [•] e(t−τ)L0ρ (τ) dτ. (18)

For an arbitrary memory kernel Φ (t) this evolution equation can be studied by perturbations in the intensity of the
superoperator KL [•]. In particular we can write a series expansion in O (KL [•]m). To first order in the intensity of
the interventions of the CP map we can approximate e(t−τ)L0ρ (τ) ≃ ρ (t) into the integrand, and so we can get an
approximated non-Markovian evolution dictated by the equation (see appendix A):

d

dt
ρ (t) = L0 [ρ (t)] +

(∫ t

0

Φ(t− τ) dτ

)
KL [ρ (t)] +O

(
KL [ρ (t)]

2
)
, (19)
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where KL [•] is given by (10) and L0 [•] corresponds to the unitary evolution with a Hamiltonian HS . Eq. (19) is an
evolution approximation in the intensity of the bath intervention, not in the non-Markovian character of the evolution
equation (18). Equation (19) can easily be solved calling an auxiliary function:

χ (t) ≡
∫ t

0

Φ(t− τ) dτ =

∫ t

0

Φ(t′) dt′ ≥ 0, ∀t ≥ 0. (20)

We see that in a first order approximation the non-Markovian structure has a global multiplicative character in the
infinitesimal generator of the density matrix. We note that in the presence of a waiting-time ψ (τ) with a long-tail
(strong-disordered disruptive interventions of the bath) we would get χ (t→ ∞) → 0 requiring that the correlation
Φ (t) is not always positive, as we mentioned before this fact does not posse any restriction of the CP character of the
evolution.

Calling

D (t) ≡
∫ t

0

χ (τ) dτ > 0,

we can write the formal solution of (19), to O
(
KL [•]2

)
, in the form:

ρ (t) ≃ exp (tL0 [•] +D (t)KL [•]) ρ (0) , (21)

where D(t) is a time-dependent (positive) dissipative coefficient, the nature of this function can be studied in terms of
the waiting-time model ψ (t) that we may use (see appendix B). We note that in the Markovian limit Φ (t) → δ (t) /λ,
so the function D(t) is linear in time: D (t) → t/λ.

A weak-disordered model for the random intervention of the CP map can be considered using the Gamma waiting-
time function, in this case (see appendix B) the expression for the function D(t) is given, in the Laplace representation,
as

D (u) =
Φ (u)

u2
=

u−1

(1 + λu)
b − 1

, (22)

then, short and long time asymptotic regimes can analytically be obtained:

D(t) ≃
(
t

λ

)b

+ · · · , b > 0, t≪ λ,

and

D(t) ≃ t

λb
+ · · · , b > 0, t≫ λ.

Therefore, using the Gamma pdf at long time we recover a renormalized Markovian behavior. We note that in the
present work we will be interested in the case b ≥ 1, see B4 and B5 in Appendix B.

E. On the Kossakowski-Lindblad infinitesimal generator

It is well known that starting from a CP Kraus’ map the KL infinitesimal generator is well defined and it is given
by Eq. (10), while the inverse is in general not true [1]. In the particular case when the KL infinitesimal generator
is given, and if we would like to use the present non-Markov Renewal approach, what we can do is to introduce an
approximation with some control parameter to study the time evolution of the system S.

To be specific let us assume that the dimensionless KL infinitesimal generator has the form

ηKL [•] = η

2

∑
j,m

ajm
([
Vj•, V †

m

]
+
[
Vj , •V †

m

])
where η is a small parameter and {ajm} is a positive definite matrix. Following the theory of one-parameter contracting
semigroup on Banach spaces [1], it is possible to associate a CP map E [•] in the following way:

E [•]− I =
(
eηKL[•] − I

)
.
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Therefore, if the pdf ψ (t) of the Renewal approach accepts a dense point process parametrized, for example, by some
very large mean number of events by unit of time, we can introduce a double simultaneous limit in order to write
down a non-Markov evolution equation for the density matrix [5]. In terms of the Kernel Φ (t) of Eq. (11) it means

that there is a common factor ⟨t⟩−1
, such that the limit ⟨t⟩ → 0 represents an infinitely dense point process in the

Renewal approach. Then, we can take a double simultaneous limit in such a way that limη,⟨t⟩→0 η/ ⟨t⟩ →constant,

thus the evolution equation (11) can written in the form (denoting Φ (t) = Φ̃ (t) / ⟨t⟩):

∂tρ (t) = L0 [ρ (t)] + constant

∫ t

0

Φ̃ (t− t′) e(t−t′)L0KL [•] ρ (t′) dt′ +O (η)
2
. (23)

Equation (23) is the starting point to analyze, in a phenomenological way, a non-Markovian evolution when the KL
infinitesimal generator is given. In an analogous way, in the interaction representation, and when L0 [•] and KL [•]
commute we can write (8) taking the double simultaneous limη,⟨t⟩→0 η/ ⟨t⟩ →constant, in the form

∂tσ (t) ≃ constant

∫ t

0

Φ̃ (t− t′)KL [•]σ (t′) dt′ +O (η)
2
. (24)

In conclusion, we can use the evolution (23) when the intervention of the bath is modeled from an infinitesimal
generator ηKL [•] rather than by the action of the CP map E [•], iff the set of random time {t1 < t2 < · · · < tn}
(characterized by the pdf ψ (t)) that set-in the disruptive bath’s interventions admits to take the limit when the
number of events by unit of time go to infinite.

Many models of waiting-time functions ψ (t) allow to take that mentioned limit preserving the characteristic of
a well defined positive pdf ψ (t) [5]. We will exemplify this procedure in the present paper by considering weak
disordered random time events characterized by a Gamma pdf [20]. In this sense we said that the disorder is weak
because, asymptotically at long-time the set of random times {ti}i=n

i=1 gets a Poissonian characteristics, then leading
(at long-time) to a renormalized Markovian evolution, see appendix B.

III. TWO DISSIPATIVE QUANTUM WALKS

A. The Born-Markov approximation

A model of two free distinguishable particles coupled to a common bath B can be written using the Wannier base
[12]. A similar analysis in the Fock representation for N indistinguishable particles can also be introduced [13]. Let
the total Hamiltonian be HT = HS +HB+HSB, here HS is the free tight-binding Hamiltonian (our system S), which
can be written in the form:

HS = 2E0I−
Ω

2

(
a†12 + a12

)
, (25)

here {a†12, a12} are shift Wannier’s operators for particles labeled 1 and 2, I =
∑

s,s′ |s, s
′⟩⟨s, s′ | is the identity in the

Wannier base, then:

a†12|sj , sl⟩ = |sj + 1, sl⟩+ |sj , sl + 1⟩ (26)

a12|sj , sl⟩ = |sj − 1, sl⟩+ |sj , sl − 1⟩. (27)

We note that due to distinguishable character of particles the “shift operator” translates each particle individually.
Here we have used a “pair-ordered” bra-ket |sj , sl⟩ representing the particle “1” at site sj and particle “2” at site sl.

From Eqs. (26)-(27) it is simple to see that
[
a†12, a12

]
= 0, and the fact that

a12a
†
12|sj , sl⟩ = 2|sj , sl⟩+ |sj − 1, sl + 1⟩+ |sj + 1, sl − 1⟩.

We adoptHB as the phonon bath HamiltonianHB =
∑
n
ℏωnB

†

nBn, thus {B
†

n,Bn} are bosonic operator characterizing

the thermal bath at equilibrium. The term HSB in the total Hamiltonian represents the interaction term between S
and B, here we use a linear interaction between S and the bath operators. Our model is a many-body generalization
of the van Kampen approach used to address the nature of a physical dissipative particle interacting with a boson
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bath [18]. Because shift operators a12 and a†12 commute with HS (do not evolve in time), any bath interaction with
these shift operators will lead to a CP infinitesimal generator. Thus, for two distinguishable particles we propose the

interaction term in the form HSB = ℏΓ
(
a12 ⊗

∑
n
vnBn + a†12 ⊗

∑
n
v∗nB

†

n

)
, where vn represents the spectral intensity

weight function from the phonon bath at thermal equilibrium, and Γ is a dimensionless interaction parameter. We
have chosen this interaction model in order to recover the classical master equation for two independent random walks
in the case when Ω = 0 (that is when the von Neumann evolution disappears), an extended discussion on the issue of
one particle can be seen in [14].
In order to study the non-equilibrium evolution of S we derive from HT , eliminating the bath variables an infinites-

imal generator KL [•]. Tracing out bath variables in the Ohmic approximation and assuming as initial state of the
total system a density matrix in the form of a product ρT (0) = ρ (0) ⊗ e−HB/kBT /Z, where Z =Tr

(
e−HB/kBT

)
, we

can write in a second order Born-Markov approximation the Quantum Master Equation (QME) [23, 26]:

ρ̇ =
−i
ℏ

[Heff , ρ] +
Γ2kBT

2ℏ

(
2a12ρa

†
12 − a†12a12ρ− ρa12a

†
12

)
+

Γ2kBT

2ℏ

(
2a†12ρa12 − a12a

†
12ρ− ρa†12a12

)
, (28)

here T is the temperature of the bath B and Γ is the small dimensionless interaction parameter, we note here that
ℏ/kBT is a macroscopic characteristic time scale. Adding −2E0 + Ω to HT the effective Hamiltonian turns to

be: Heff = Ω
(
I− a†

12+a12

2

)
− ℏωca12a

†
12, where ωc ≡ 2ω̃cΓ

2 is related to the frequency cut-off ω̃c in the Ohmic

approximation (linear) [1, 18, 26]. It can be seen from the strength function g (ω) of thermal oscillators (defined
by g (ω)∆ω ↔

[∑
n v

2
n

]
{ω<ωn<ω+∆ω}) that the high-frequency oscillators (beyond ω̃c) only modify the effective

Hamiltonian. This von Neumann dynamics can be defused by going to the interaction representation. However,
here we will be interested in studying the non-equilibrium evolution of S as a function of the rate of energies Ω and

kBT . Then, in order to simplify the analysis of the QME (28) we will drop-out the term ℏωca12a
†
12 in the effective

Hamiltonian, which only produces additional reversible coherence. Under the assumption that ℏω̃c/kBT ≪ 1, the
dissipative coefficient appearing in (28) comes from the strength function, g (ω), and the thermal bath correlation
function. This terms only involves bath oscillators in the low-frequency region. It is also possible to see that the
Markov approximation used to get (28) involves a coarse-grained time scale such that ω̃c∆t ≫ 1 in addition to the
second order weak interaction approach [18].

From (28) and calling η = Γ2 it is simple to extract the dimensionless KL infinitesimal generator in the form

KL [•] =
(
a12 • a†12 + a†12 • a12 − a†12a12 • − • a12a†12

)
, (29)

where we have used that a†12a12 = a12a
†
12 ̸= I. In the rest of the work we are going to use the evolution equation (23)

with ψ (t) given by (B1), and KL [•] = KL [•] from (29).

B. Non-Markovian evolution for two dissipative quantum walks

As we commented before, a CP non-Markov evolution can be modeled considering quantum jumps inserted between
the unitary evolution of the system, the elapsed time for the occurrence of these disruptive CP map interventions is
dictated by the waiting-time function of the Renewal theory [20]. As a result of this dynamics the density matrix is
governed by a generalized QME (not a semigroup). Then, the exact evolution equation is (11), which fulfills the CP
condition.

Noting that L0 [•] = i [HS , •] with HS given in (25) and KL [•] given by (29), it is possible to show that both
superoperators commute. Then we can use the evolution equation (18), and we can introduce a perturbation approach
in the intensity of the disruptive intervention to work out its solution (21), see appendix A. Then, we get

ρ (t) = exp (tL0 [•] +D (t)KL [•]) ρ (0) +O
(
KL [•]2

)
, (30)

with D(t) characterized by a waiting-time function ψ(t). Expression (30) can explicitly be worked out in a particular
basis.

In the present paper we will use a weak-disordered model for the disruptive interventions characterized by the
Gamma pdf ψ(t) (see appendix B). Then, in the Laplace representation D(t) is given by (22). In figure 1 we show
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FIG. 1: Time-dependent dissipative coefficient D (t) using a numerical inverse Laplace transform of (22) as function of dimen-
sionless time t → t/λ for several values of b. At short-time we get the expected analytical behavior (B4). In the asymptotic
long-time limit we get D(t) ∼ t/bλ leading to a renormalized Markov regime (B5).

D(t) performing a numerical evaluation of the inverse Laplace transform, as can be seen the expected analytical
results for short and long times are obtained.

An explicit solution for the density matrix can be written in the Wannier representation, now we will use the
localized Initial Condition (IC) in the lattice:

ρ(0) = |s1, s2⟩⟨s1, s2| = |⃗0⟩⟨⃗0|. (31)

From the formal solution (30) we calculate the elements of ρ(t) in the discrete Fourier representation, noting that
a Fourier ”bra-ket” is defined in terms of a Wannier basis for two distinguishable particles in the form, using

|k1, k2⟩ =
1

2π

∑
s1,s2∈Z

eik1s1eik2s2 |s1, s2⟩ ,

with kj ∈ (−π, π) and s1, s2 ∈ integers. Therefore

⟨k1, k2 |ρ(t)| k′1, k′2⟩ = exp (−F(k1, k
′
1, k2, k

′
2) t) ⟨k1, k2 |ρ(0)| k′1, k′2⟩ , (32)

where

F(k1, k
′
1, k2, k

′
2) ≡ {F (1)(k1, k

′
1) + F (1)(k2, k

′
2) + 2D (t) [C (k1, k

′
2) +C (k2, k

′
1)−C (k1, k2)−C (k′1, k

′
2)]},

and

F (1)(k, k′) ≡
[
−i
ℏ
(Ek−Ek′)+2D(t) (C (k, k′)−1)

]
,

is the one-particle infinitesimal generator in the Fourier representation [13], with Ek ≡ Ω {1− cos k} and C (k1, k2) ≡
cos (k1−k2). Note that F(k1, k1, k2, k2) = 0 leading to a momentum-like conservation law: ⟨k1, k2|dρ(t)dt |k1, k2⟩ = 0.
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Elements of ρ(t) can be calculated in the Wannier basis by simple inversion

|s1, s2⟩ =
1

2π

∫ π

−π

∫ π

−π

dk1dk2 e
−ik1s1e−ik2s2 |k1, k2⟩.

After some algebra and using Bessel’s function properties we can write an analytical formula for ρ(t) in Wannier
representation ⟨s1, s2|ρ(t)|s′1,s′2⟩. To simplify the notation we use the definitions:

tΩ ≡ Ωt

ℏ
, (33)

tD ≡ 2D (t) , (34)

with

D (t) ≡
∫ t

0

dτ

∫ τ

0

Φ(τ − t′) dt′., (35)

whenever it is necessary. Here the function Φ (t) is characterized by the pdf ψ(t), see appendix B.
From (32) the exact solution in the Wannier representation can be written in the form

⟨s1, s2|ρ(t)|s′1, s′2⟩= i(s1−s′1+s2−s′2)e−2tD
∑

{n1,n2,n3,n4,n5,n6}∈Z

(−1)n4+n5 (36)

× Js1+n1+n2+n5
(tΩ) Js′1+n1+n3+n4

(tΩ)

× Js2+n3−n5+n6(tΩ) Js′2+n2−n4+n6
(tΩ)

6∏
ni=1

Ini(tD) , {sj , s′l} ∈ Z,

and Jn and In are Bessel’s functions of integer order n ∈ Z. These functions satisfy that

J−n(t) = (−1)nJn(t), Jn(−t) = (−1)nJn(t),

and

I−n(t) = In(t), In(−t) = (−1)nIn(t).

This solution is symmetric under the exchange of particles (preserving the symmetry of the IC), is Hermitian and
fulfills normalization in the lattice Tr[ρ(t)] =

∑
{s1,s2}∈Z⟨s1, s2|ρ(t)|s1, s2⟩ = 1, ∀t. The positivity is assured because

of the CP structure of the infinitesimal generator. The probability of finding one particle in site s1 and another in
s2 is given by the profile: Ps1,s2(t) ≡ ⟨s1, s2|ρ(t)|s1, s2⟩ and shows the expected reflection symmetry in the plane:
s1 − s2 = 0.

The behavior of D(t) controls the dynamics of the evolution of the DQW, and the waiting-time time-scale is
λ = ℏ/kBT (see appendix B). Therefore we can check that in the case b = 1 we recover the Markovian limit [12, 13].
In what follows we are going to use b as the non-Markov control parameter.

For a quantum closed system, without dissipation, we recover the solution for two free QWs:

⟨s1, s2|ρ(t)|s′1, s′2⟩D=0 =

2∏
j=1

i(sj−s′j)Jsj (tΩ)Js′j (tΩ) , (37)

this is the well known tight-binding result, this means that from an uncorrelated initial condition ρ(0) the solution
ρ(t ≥ 0) is written as the direct product of two independent particles. As we mentioned before a classical random

walk regime [23] cannot be recovered. Calling D̃ = 1/λ we see that for D̃ ≫ Ω/ℏ the two-body density matrix

ρ(t) ̸= ρ1(t)⊗ ρ2(t). From Eq.(36) it can be proved that when D̃ ≫ Ω/ℏ we get

lim
D̃≫Ω/ℏ

Ps1,s2(t) ̸= Ps1(t)× Ps2(t) = e−2tD Is1 (tD) Is2 (tD) ,

here Psj is the classical probability profile for each particle. So a classical regime [for t → ∞] cannot be obtained.
This means that the profile for two DQWs will not be a Gaussian bell-shape in 2D. In addition, we note that there
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exist an important competition between building correlations vs inducing dissipative decoherence, which can now be
studied in terms of the non-Markov control parameter b.

The one-particle density matrix is recovered tracing-out the degrees of freedom of the second one, say j = 2:

ρ(1)(t) ≡ Tr2[ρ(t)],

then

⟨s1|ρ(1)(t)|s′1⟩ = i(s1−s′1)e−tD
∑
n∈Z

Js1+n(tΩ) Js′1+n(tΩ) In(tD) ,

solution that indeed shows asymptotically a random walk behavior [14]. In addition we note that for b = 1 the classical

random walk solution is recover Pt(s) = e−2D̃t Is

(
2D̃t

)
, and from this expression it is simple to get the Gaussian

profile in the lattice continuous limit s→ x [23].

IV. QUANTUM COHERENCE WITHIN A NON-MARKOVIAN DESCRIPTION

A. Quantum coherence (cross terms of the two-body ρ(t))

To quantify (indirectly) the building of bath-induced correlations between particles, we can calculate the total
coherence contribution from the cross-terms of the two-body density matrix. This object is defined as

G (t) =
∑

(s1 ̸=s′1)(s2 ̸=s′2)

|⟨s1, s2|ρ(t)|s′1, s′2⟩| ,

here we have taken a localized initial condition for ρ (0), see (31). This measure G (t) has recently been used to
quantify the quantum coherence (QC) [27, 28].

In order to calculate elements of ρ(t) we now adopts the Gamma waiting-time model, and to characterize the
disorder we use b ≥ 1, see Appendix B.

In figure 2 we chose as free parameters ⟨t⟩ = bλ and b ≥ 1, then we maintain the mean waiting-time ⟨t⟩ = 1.5 fixed
and varies the non-Markovian parameter b. We can see an inflexion point at time tc ∼ 0.7 showing that building of
correlations are delayed with respect to the Markovian case (b = 1, as in reference [13]), after this point the behavior
of QC is almost linear. This is so because D (t) is in the regime where D (t) ∼ t/λb. For t > tc off-diagonal elements
of ρ (t) are dominated by the J-Bessel functions.

B. Negativity (mixed IC for the two-body ρ(t))

Another measure to quantify bath-induced correlations between particles can be achieved calculating the Negativity
N(ρ) defined in terms of the partial transpose of the density matrix [29]. This correlation can easily be calculated
for bipartite systems ρAB ≡ ρ, where the partial transpose of ρ in the space A or B is required. Partial transpose (in
space A) of the two-body density matrix ρ is calculated as:

⟨iA, jB |ρTA |i′A, j′B⟩ ≡ ⟨i′A, jB |ρ|iA, j′B⟩, (38)

where the orthonormal product basis |iA, jB⟩ ≡ |iA⟩ ⊗ |jB⟩ ∈ HA ⊗HB is used, with HA(B) representing the Hilbert
space in A(B) respectively. Using (38) the Negativity function N(ρ) gets:

N(ρ) =
∥ρTA∥ − 1

2
, (39)

where ∥.∥ represents the trace norm. From (39) the negativity can also be expressed in the form:

N(ρ) =
∑
i

|µi|, (40)

where µi is any negative eigenvalue of ρTA . This is a simpler procedure to obtain a measure of quantum correlations
for a bipartite mixed state.
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FIG. 2: Quantum coherence G (t) as function of the dimensionless time t → tΩ , for several values of b ≥ 1 and fixed value of
mean waiting-time ⟨t⟩ = bλ = 1.5.

In this section we are going to introduce an IC characterized by a mixed initial state, so we can investigate how
the non-Markov effect changes the temporal behavior of the Negativity. We chose as the IC of our two-body density
matrix:

ρ (0) =

(
4a− 1

3

)
|Ψ−⟩⟨Ψ−|+

(
1− a

3

)
I, (41)

where I is the identity matrix and

|Ψ−⟩ = 1√
2
[|s0,−s0⟩ − | − s0, s0⟩] .

Note that for t = 0 the Negativity is a function of the parameter a, in the present study we chose a = 0.9, so the
Negativity at t = 0 is N (ρ) = 0.4. In the figure (3) we show N(ρ) of our bipartite system for a mixed IC in the
Wannier basis (41). Here, we have plotted N (ρ (t)) as a function of the dimensionless time t = tΩ and for several
values of the non-Markov control parameter b(= 0.5, 1, 2) for fixed λ = 1. We conclude that Negativity is more
preserved (in time) for higher values of the non-Markovian control parameter b > 1. Note that in the time-asymptotic
regime, t ≫ λ, and for larger values of b > 1 the dissipation factor D (t) decreases, see figure 1, then the rate of the
lost of coherence decreases too, justifying the behavior of the Negativity as a function of b.

In figure (3) we also show the case b < 0.5 which can be associated to an anomalous subdiffusive regime [22] (see
appendix B), this case has been plotted just for comparison. In the present paper we are only interested in the weak
disorder case which corresponds to b > 1.

V. CONCLUSIONS

We have introduced a non-Markov approach to analyze two free particles (in a lattice) interacting with a thermal
bath, the method is founded in the concept of random interventions of the environment. This method is based on the
idea of the applications of a CP map E [•] at discrete times n. Then using the Renewal theory we extend this model
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FIG. 3: Quantum correlation (Negativity) calculated from Eq. (39) as function of dimensionless time t → tΩ, and several
values of b and for fixed λ = 1.

to the continuous-time representation, where the key element is the random time elapsed between each application
of E [•], i.e., the waiting-time function ψ (t). The evolution equation for the density matrix ρ (t) is a generalization
of the classical CTRW approach [21]. Our general result (8) or (11) is not restrictive of the dissipative tight-binding
model that we have solved in the present paper.

The evolution equation for the two-body density matrix ρ (t) is characterized by a non-local in time completely
positive KL infinitesimal generator which has not counterpart in the classical two random walk problem. In the
interaction representation the non-Markov evolution equation for density matrix σ (t) can easily be solved when von
Neumann’s superoperator L0 [•] commutes with the completely positive map E [•]. To solve the evolution in the
original representation: ρ (t) = e+tL0σ (t), we introduced a perturbation expansion assuring the positive condition
on the density matrix at all times. The present application (DQW) gives support to our perturbative analysis for
solving, in general, memory-kernel CP dynamics.

As in the classical approach, here the non-Markovian character of the evolution of ρ (t) has been modeled introducing
a non-exponential waiting-time function: the Gamma pdf. This model for ψ (t) allow us to study the evolution of ρ (t)
at all time. Wannier elements of the two-body density matrix have been obtained, in particular its short and long time
regimes have been analytically solved. We have shown that for a weak non-Markovian model, ρ (t) has an important
time-structure in its short-time evolution, while in the long-time regime the behavior of ρ (t) is Markovian with a
renormalized dissipative coefficient. The elements of ρ (t) have been used to analyze correlation functions against
non-Markovian effects. In particular we have studied the behavior of the Quantum Coherence and the Negativity
as a function of time. We show (for a localized IC of ρ (0)) that for a fixed mean waiting-time ⟨t⟩ = bλ of the
random interventions of B, the bath-induced Quantum Coherence is delayed until a critical time tc with respect to
the Markovian case. For the analysis of the Negativity we have used a mixed IC of ρ (0), then we can conclude that
Negativity is more preserved in time for longer values b with respect to the Markovian case b = 1; that is, initial
entanglement is less efficiently destroyed under a non-Markovian dynamics.

The present approach can also be used to analyze intermittent bath interventions, leading to a strong non-Markovian
structure in the evolution of the density matrix work in that direction is in progress.

Acknowledgments. M.O.C and M.N. thank grant PIP 112-201501-00216 CO, Argentina.
Author contribution statement
Both authors contributed equally to this paper.
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Appendix A: Systematic perturbation in KL [•]

Now we introduce a systematic perturbation in the intensity of the environment interventions B. In the particular
case when KL [•] commutes with L0 [•], from (18) we can write a Dyson perturbation, starting with the O (0) we
have

∂tρ (t) = L0 [ρ (t)] + · · · . (A1)

Then to O (1) we get

∂tρ (t) ≃ L0 [ρ (t)] +

(∫ t

0

Φ(t− τ) dτ

)
KL [•] ρ (t)

= L0 [ρ (t)] + χ (t)KL [•] ρ (t) + · · · . (A2)

Thus to O (2) we can write

∂tρ (t) ≃
{
L0 [•] +

∫ t

0

Φ(t− τ)KL [•] exp (D (τ)KL [•]) dτ
}
ρ (t)

≃ L0 [ρ (t)] + χ (t)KL [•] ρ (t) +
(∫ t

0

Φ(t− τ)D (τ) dτ

)
KL [•]KL [•] ρ (t)

≃ {L0 [•] + χ (t)KL [•] + β (t)KL [•]KL [•] + · · · } ρ (t) , (A3)

where β (t) ≡
∫ t

0
Φ(t− τ)D (τ) dτ . Therefore calling

W (t) ≡
∫ t

0

β (τ) dτ and D (t) ≡
∫ t

0

χ (τ) dτ

we can write the formal solution to O (2) in the form:

ρ (t) ≃ exp
(
tL0 [•] +D (t)KL [•] +W (t)KL [•]2 + · · ·

)
ρ (0) , (A4)

where D(t) is a time-dependent (positive) dissipative coefficient. The nature of the function W (t) can be studied in
terms of the waiting-time model that we may have used. Introducing the Laplace transform of the function χ (t), we
write χ (u) = Φ (u) /u, then we can get a general expression for D (t) and W (t) in the from:

D (u) =
χ (u)

u
=

Φ(u)

u2
(A5)

W (u) =
Φ (u)

2

u3
. (A6)

Up to second order in the intensity of the map E [•] the non-Markovian evolution is dictated by an equation which

involves the superoperator KL [•]2, producing a complex dynamics in the elements of the density matrix. In the O (2)
approximation a second dissipative function β (t) appears to characterize the evolution of the density matrix, which
is now dictated by the equation (A3). We note that in the Markovian limit: Φ (t) → δ (t) /λ, so functions D(t) and
W (t) are powers of time: D (t) → t/λ,W (t) → t2/2λ.

Appendix B: Weak-disordered bath disruptive interventions

A suitable model controlling the random interventions of the bath can be modeled using the Gamma pdf:

ψ (t) =
1

λ

(
t

λ

)b−1
exp (−t/λ)

Γ (b)
, λ > 0, b > 0, t ≥ 0. (B1)

For values b < 1 the waiting-time (B1) diverges in the limit t → 0, while for b > 1 goes to zero. All moments of this
Gamma waiting-time pdf are well defined in particular: ⟨t⟩ = λb and

⟨
t2
⟩
= (1 + b) bλ2, indicating that the dispersion

of the ”elapsed times” between disruptive bath interventions is σ2
t ≡

⟨
t2
⟩
− ⟨t⟩2 = bλ2. For b > 1, the most likely
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”elapsed-time” is the mean waiting-time ⟨t⟩ and the shape of the ψ (t) is unimodal and skewed. Note that we can use
λ as the control parameter for the limit of a dense point Renewal process, as we mention in Section 1.5.

The Laplace transform of the Gamma waiting-time function is

ψ (u) =
1

(1 + λu)
b
. (B2)

Normalization can be checked noting that ψ (u = 0) = 1, distinctive types of random-time pdf (bath interventions)
can be obtained by changing the free parameters b, λ. The parameter b measures the withdrawal from the exponential
behavior, which corresponds to the case characterizing the Markovian limit (b = 1); λ is a scale of time. For λ =fixed
and in the case 0 < b≪ 1 the Gamma pdf ψ (t) has an integrable divergence at the origin indicating a strong departure
from the exponential function, this singular behavior leads to the fact that its dispersion σ2

t gets smaller and smaller
when b → 0, then ψ (t) becomes sharp. In our work, for the present application, we only will be interested in values
b ≥ 1.
We note that from a classical point of view this Gamma waiting-time represents a weak disorder model with a

strength that depends on the quantity ⟨t⟩ [21]. In the limit {b→ ∞ and λ→ 0} with ⟨t⟩ = λb→constant the waiting-
time pdf becomes singular ψ (t) → δ (t− λb) (the random interventions occurs at fixed regular intervals τ = n ⟨t⟩,
then a resonance frequency ω = 2πn/ ⟨t⟩ appears in the model). On the other hand, for fixed λ and if b > 1 the
mean waiting-time ⟨t⟩ = λb turns to be the inverse of a renormalized diffusion coefficient, so for b ≫ 1 the diffusion
coefficient get smaller than in the Markovian case. For fixed ⟨t⟩ and in the limit ⟨t⟩ /λ = b→ 0 the waiting-time pdf
ψ (t) turns to be very wide and this pdf can be used for modeling anomalous diffusion [22].
As we mention before for b = 1 we recover the Markovian description for the QME [20, 23], in this case the Renewal

process is characterized by a Poisson number of events during a given time interval. That is, the probability of having
n−events during the time interval [0, t] is given by P (n, t, 1) = et/λ 1

n!

(
t
λ

)n
. In general for b ̸= 1 the expression for

P (n, t, b) can be written in the Laplace representation as:

P (n, u, b) =

∫ ∞

0

P (n, t, b) e−utdt

=
1− ψ (u)

u
ψ (u)

n
.

Then, all moments for the number of events can analytically be calculated: ⟨n (u)q⟩ =
∑∞

n=0 n
q P (n, u, b), for example:

⟨n (u)⟩ =
ψ (u)

u (1− ψ (u))
=

1/u

(1 + λu)
b − 1⟨

n (u)
2
⟩

=
ψ (u) (1 + ψ (u))

u (1− ψ (u))
2 =

1

u

(1 + λu)
b
+ 1(

(1 + λu)
b − 1

)2 ,

from which (after Laplace inversion) the dispersion for the numbers of disruptive bath interventions σ2
n (t) ≡

⟨
n (t)

2
⟩
−

⟨n (t)⟩2, can be studied in time for several values of the non-Markov parameter b. In the same way, and in general for
any b > 0, all cumulants: ⟨⟨n (u)p⟩⟩ can be calculated showing the departure from the linear behavior for the Poisson
case: ⟨⟨n (t)p⟩⟩|b=1 = t/λ, ∀p ≥ 1. In Figure (4) we have plotted P (n, t, b) as a function of n for several values of b.
In the inset we show σ2

n (t) as a function of dimensionless time t→ t/λ for the same values of parameter b.
Going back to the non-Markov QME evolution, the memory kernel of the KL infinitesimal generator (9) is using

(B2) given by:

Φ (u) =
u

(1 + λu)
b − 1

. (B3)

From this expression it is also possible to see that λ is a macroscopic characteristic time scale and b the non-Markov
control parameter. At short-time the behavior of the dissipative function (A5) is controlled by the value of b, for
example we get the asymptotic limits

D (u) ≃


1

λbub+1

(
1

1−(1/λu)b

)
, if 0 < b < 1

1
λbub+1

(
1

1+b(1/λu)

)
, if 1 < b < 2

, λu≫ 1,
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FIG. 4: (a) Probability P (n, t, b) as a function of the number of events n for dimentionless time t → t/λ = 7 and for several
values of b. The inset shows σ2

n (t) as a function of dimentionless time as in (a) the arrow indicates the increase of the value of
b.

therefore, at very short-time we get the nonlinear behavior

D(t) ≃
(
t

λ

)b

+ · · · , b > 0, t≪ λ. (B4)

While at the long-time limit D(t) is characterized by a linear regime

D(t) ≃ t/(bλ), t≫ λ (B5)

We note that in the present paper we will be interested in the case b ≥ 1 in order to consider that the dispersion
(σ2

t = bλ2) of the ”elapsed times” between disruptive bath interventions gets larger if the non-Markov dynamics is
enlarged b≫ 1.
Other models for the random disruptive interventions of the CP map can be worked out in a similar way. The

main difference being that for weak disorder models, at long-time the behavior can always be renormalized to a
Markovian one [20]. While in the strong disordered case, for example from a fractional dynamics or for intermittent
bath interventions, at any time (short and long regimes) the evolution character of the Quantum Master Equation
remains always non-Markovian [20, 23].
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