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In this paper we present a method for estimating an unknown parameter that appears in

a two dimensional non-linear reaction–diffusion model of cancer invasion. This model con-

siders that tumor-induced alteration of micro-environmental pH provides a mechanism for

cancer invasion. A coupled system reaction–diffusion describing this model is given by three

partial differential equations for the 2D non-dimensional spatial distribution and temporal

evolution of the density of normal tissue, the neoplastic tissue growth and the excess H+ ion

concentration. Each of the model parameters has a corresponding biological interpretation,

for instance, the growth rate of neoplastic tissue, the diffusion coefficient, the re-absorption

rate and the destructive influence of H+ ions in the healthy tissue.

The parameter is estimated by solving a minimization problem, in which the objective func-

tion is defined in order to compare both the real data and the numerical solution of the cancer

invasion model. The real data can be obtained by, for example, fluorescence ratio imaging

microscopy.

We apply a splitting strategy joint with the adaptive finite element method to numeri-

cally solve the model. The minimization problem (the inverse problem) is solved by using

a gradient-based optimization method, in which the functional derivative is provided through

an adjoint approach.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Cancer is one of the diseases causing the most deaths in the world, despite the best efforts of medicine. Human and financial

resources are devoted for cancer research, and on several occasions these efforts are successful [1–6].

Some comments on the importance of mathematical modeling in cancer can be found in the literature. In the work [4] the

authors say “Cancer modelling has, over the years, grown immensely as one of the challenging topics involving applied math-

ematicians working with researchers active in the biological sciences. The motivation is not only scientific as in the industrial

nations cancer has now moved from seventh to second place in the league table of fatal diseases, being surpassed only by car-
diovascular diseases.”
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Fig. 1. Loss of normal cell layers in the tumor–host interface that facilitates tumor invasion [7, Fig. 4a].
We use the analysis proposed by Gatenby and Gawlinski in [7], which supports the acid-mediated invasion hypothesis. There-

fore, it can be represented mathematically as a reaction–diffusion system which describes the spatial and temporal evolution of

the tumor tissue, normal tissue, and excess H+ ion concentration.

The model simulates a pH gradient extending from the tumor–host interface. The effect of biological parameters that control

this transition is supported by experimental and clinical observations [8].

Some authors [7] model tumor invasion in order to find an underlying mechanism by which primary and metastatic cancers

invade and destroy normal tissues. They do not attempt to model the genetic changes that lead to the transformation and seek to

understand the causes of these changes. Likewise, they do not attempt to model the large-scale morphological aspects of tumor

necrosis such as central necrosis. Instead, they concentrate on the interactions of microscopic scale populations that occur at the

tumor–host interface, arguing that these processes influence the clinically significant manifestations of invasive cancer.

Moreover, in [7], the authors suppose that transformation-induced reversion of neoplastic tissue to primitive glycolytic

metabolic pathways, with resultant increased acid production and the diffusion of that acid into surrounding healthy tissue,

creates a peritumoral micro-environment in which the tumor cells survive and proliferate, while normal cells may not remain

viable. The following temporal sequence would derive: (a) a high concentration of H+ ions in tumors will diffuse chemically as

a gradient to adjacent normal tissue, exposing these normal cells to an interstitial pH like in the tumor, (b) normal cells, imme-

diately adjacent to the edge of the tumor, are unable to survive in this chronically acid environment, and (c) progressive loss of

normal cell layers in the tumor–host interface facilitates tumor invasion, see Fig. 1. Key elements of this mechanism of tumor

invasion include low pH due to primitive metabolism and reduced viability of normal tissue in an acidic environment.

This model depends only on a small number of cellular and sub-cellular parameters. The analysis of the equations shows that

the model simulates a crossover from a benign tumor to a malignant invasive tumor when some combination of parameters turn

over some threshold value.

We follow the PDE-based model by Gatenby and Gawlinski [7] (a coupled nonlinear system of partial differential equations),

in a two-dimensional tissue and estimate one of its model parameters: the destructive influence of H+ ions in the healthy tissue.

In this paper we propose a method to estimate the mentioned parameter via a PDE-constrained optimization problem. The

objective function is defined as the difference between the real data and the numerical solution of the model in the Lebesgue

measure. It is possible to get data of excess H+ ion concentration [8] via fluorescence ratio imaging microscopy.

We solve the minimization problem using the trust-region-reflective method where the functional derivative is computed

using the adjoint method.

The numerical solution of the model is obtained with a splitting strategy to divide the original problems in two simpler ones:

(a) the first problem, consisting in a system of ordinary differential equations, corresponding to the reaction process, and (b) the

second problem, consisting in a system of PDEs representing the diffusion process. This strategy allows a parallelization of the

reaction problem. The PDE system is solved by the adaptive finite element method (AFEM).

This kind of minimization problem constitutes a particular application of the so-called inverse problems, which are being

increasingly used in a broad number of fields in applied sciences. For instance, problems referred to structured population dy-

namics [9], computerized tomography and image reconstruction in medical imaging [10,11], and more specifically tumor growth

[12–14], among many others.

This work follows the ideas in [15] where the space variable was in a one dimensional space. The extension of the model to

two dimensional space allows us to approach the results to more realistic biological hypotheses. The differences of this work

with respect to [15] are: (a) we take advantage of a more complex geometry in 2D instead of 1D, for the implementation of the

finite element method (FEM); (b) we compute the a posteriori error estimation in order to use the adaptivity technique; (c) we

use the splitting method to transform the original problem into two simpler problems, one of these is a linear problem, and the

other one is nonlinear but parallelizable.

Regarding the novelty with existing literature, we cite two papers. Namely, Hogea et al. [13] model gliomas growth and their

mechanical impact on the surrounding brain tissue. The model is a reaction–diffusion equation where the unknown is the local

density of tumor cells. In our paper we have a coupled system of reaction–diffusion equations that considers competition terms.
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The unknowns are tumor and health cell densities, and the excess H+ ion concentration. The strategy in [13] to calculate the

functional derivative is similar to ours, by using the adjoint approach. Additionally, we use adaptivity in order to control the

discretization error.

On the other hand, Paruch and Majchrzak [16] solve an inverse problem where the PDE-constraint is the Pennes’ equation. The

minimization problem is solved by using evolutive and gradient-based algorithms. We shall stress that due to costly evaluation

of our particular objective function, evolutionary algorithms are computationally more expensive that gradient-based methods.

The contents of this paper, which is organized into five sections, are as follows. Section 2 consists in some preliminaries about

the model, the definition of variational form of the direct and adjoint problems, and the minimization problem. Section 3 deals

with suitable numerical algorithms to solve the direct and adjoint problems. In particular, we use the splitting method and the

adaptive finite element method with a computation of a posteriori error. In Section 4 we present numerical simulations of the

retrieved parameter and the effectiveness of a parallel scheme. Section 5 presents the conclusions and some future work related

to the contents of this paper.

Some words about our notation. We use 〈 ·, ·〉 to denote the L2 inner product (the space is always clear from the context) and

we consider the sum of inner products for a Cartesian product of spaces. For a function F : V × Uad → Z such that (u, δ) �→F(u, δ),

we denote by F′(u, δ) the full Fréchet-derivative and by ∂F
∂u

(u, δ) and ∂F
∂δ

(u, δ) the partial Fréchet-derivatives of F at (u, δ). For a

linear operator T : V → Z we denote T ∗ : Z∗ → V ∗ the adjoint operator of T.

2. Some preliminaries about the model

A mathematical model of the tumor–host interface based on the acid mediation hypothesis of tumor invasion due to [7] is

given by the following system of partial differential equations (PDEs):

∂N1

∂t
= r1N1

(
1 − N1

K1

)
− d1LN1,

∂N2

∂t
= r2N2

(
1 − N2

K2

)
+ ∇ ·

(
DN2

(
1 − N1

K1

)
∇N2

)
,

∂L

∂t
= r3N2 − d3L + DN3

�L,

where the variables are in � × [0, T], with � ⊂ R
2. These equations determine the spatial distribution and temporal evolution

of three fields: N1, the density of normal tissue; N2, the density of neoplastic tissue; and L, the excess H+ ion concentration.

The units of N1 and N2 are cells/cm3 and L is expressed as a molarity (M). The space x and time t are given in cm and seconds,

respectively.

The biological meaning of each equation can be seen in [7], and the non-dimensional mathematical model is:

∂u1

∂t
= u1(1 − u1) − δ1u1u3,

∂u2

∂t
= ρ2u2(1 − u2) + ∇ · (D2(1 − u1)∇u2), (1)

∂u3

∂t
= δ3(u2 − u3) + �u3,

where the four dimensionless quantities which parameterize the model are given by: δ1 = d1r3K2/(d3r1), ρ2 = r2/r1, D2 =
DN2

/DN3
and δ3 = d3/r1.

The interaction parameters between different cells (healthy and tumor) and concentration of H+ are difficult to measure

experimentally. In particular, it is known that δ1 < 1 for noninvasive tumors and δ1 > 1 for frankly invasive malignant tumors.

Hence, in this work we propose a technique to estimate the parameter δ1.

The initial and boundary conditions considered for the non-dimensional system are:

u1(x, 0) = u0
1(x), u2(x, 0) = u0

2(x), u3(x, 0) = u0
3(x), ∀ x ∈ �,

∂u1

∂n
(x, t) = 0,

∂u2

∂n
(x, t) = 0,

∂u3

∂n
(x, t) = 0, ∀ x ∈ ∂�.

From now on, Eqs. (1) with the initial and boundary conditions will be referred to as the direct problem.

2.1. Variational form for the direct problem

Using the variational techniques for obtaining the weak solution of the direct problem [17–19], it can be written as E(u, δ1) = 0

where E: V × Uad → V∗ such that

〈E(u, δ1), λ〉 =
∫ T

0

∫
�

(
∂u1

∂t
λ1 − u1(1 − u1)λ1 + δ1u1u3λ1

)
dxdt

+
∫ T

0

∫
�

(
∂u2

∂t
λ2 − ρ2u2(1 − u2)λ2 + D2(1 − u1)∇u2 · ∇λ2

)
dxdt
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+
∫ T

0

∫
�

(
∂u3

∂t
λ3 + δ3u3λ3 − δ3u2λ3 + ∇u3 · ∇λ3

)
dxdt,

=
〈
∂u

∂t
, λ

〉
−

〈
F(u), λ

〉
−

〈
A(u),∇λ

〉
,

where V = W 3, u, λ ∈ V, u = (u1, u2, u3), λ = (λ1, λ2, λ3) with

W =
{

v : v ∈ L2
(
0, T ; H1(�)

)
and

∂v
∂t

∈ L2(0, T ; H1(�))

}
,

and L2(0, T ; H1(�)) =
{
v : v(·, t) ∈ H1(�) and ‖v( · )‖H1(�) ∈ L2((0, T))

}
.

We use F: V → V∗, A: V → V∗ with

〈F(u), λ〉 =
∫ T

0

∫
�

(u1(1 − u1) − δ1u1u3)λ1dxdt

+
∫ T

0

∫
�

ρ2u2(1 − u2)λ2dxdt

+
∫ T

0

∫
�

δ3(u2 − u3)λ3dxdt,

〈A(u),∇λ〉 = −
∫ T

0

∫
�

D2(1 − u1)∇u2 · ∇λ2dxdt −
∫ T

0

∫
�

∇u3 · ∇λ3dxdt. (2)

A weak solution u ∈ V is a function that satisfies 〈E(u, δ1), λ〉 = 0 for all λ ∈ V.

2.2. Formulation of the minimization problem

As described above we propose to use an inverse problem technique in order to estimate δ1. Function u represents the solution

of the direct problem (the components of u are the state variables of the problem) for each choice of the parameter δ1.

Let us assume that experimental information is available during the time interval 0 ≤ t ≤ T. Then, the inverse mathematical

problem can be formulated as:

minimize
(u,δ1)

J(u, δ1)

subject to E(u, δ1) = 0,

δ1 ∈ Uad,

(3)

where the objective functional J : V × Uad → R is

J(u, δ1) = 1

2

∫ T

0

∫
�

[u3(x, t) − û3(x, t)]2dxdt,

with u3(x, t), the excess H+ ion concentration obtained by solving the direct problem for a certain choice of δ1 and û3(x, t), the

excess concentration measured experimentally (real data). One of the experimental methods to obtain values of û3 is by using

fluorescence ratio imaging microscopy [8] (see Fig. 2).

The constraints are given by Uad, the set of admissible values of δ1 and E is the weak formulation of the direct problem.

From a physical point of view, the parameter δ1 must lie in the interval (0, ∞). However, according to the literature (for

example, please refer to [7]), the parameter never reaches values greater than 12.5. Values of δ1 greater than 12.5 implies a very

fast destruction of the healthy cells.

We remark that, in general, there is a fundamental difference between the direct and the inverse problems. In fact, the latter

is usually ill-posed in the sense of existence, uniqueness and stability of the solution. This inconvenient is often treated by using

some regularization techniques [10,21,22]. In order to overcome instabilities we will use the Tikhonov regularization [23], thus

we will consider:

J(u, δ1) = 1

2

∫ T

0

∫
�

[u3(x, t) − û3(x, t)]2dxdt + ε

2
(δ1 − δref

1 )2, (4)

where ε > 0 and δref
1

∈ Uad are fixed parameters.

2.3. Formulation of the reduced and adjoint problems

In the following, we will consider the so-called reduced problem

minimize
δ1

J̃(δ1) = J(u(δ1), δ1)

subject to δ1 ∈ Uad,
(5)
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Fig. 2. A map of peritumoral H+ flow using vectors generated from the pH distribution around the tumor [20, Fig. 4].
where u(δ1) is given as the solution of E(u(δ1), δ1) = 0. In order to find a minimum of the continuously differentiable function J̃,

it will be important to compute the derivative of this reduced objective function. Hence, we will show a procedure to obtain J̃ ′
by using the adjoint approach. According to the theory exposed in [24,25], the derivative of J̃ is given by

J̃ ′(δ1) = ∂ J

∂δ1

(u(δ1), δ1) +
(

∂E

∂δ1

(u(δ1), δ1)

)∗
λ, (6)

where λ solves the so-called adjoint problem

∂ J

∂u
(u(δ1), δ1) +

(
∂E

∂u
(u(δ1), δ1)

)∗
λ = 0. (7)

Note that in order to obtain J̃ ′(δ1) we need first to compute u(δ1) by solving the direct problem, followed by the calculation of

λ by solving the adjoint problem. For computing the second term of (6) it is not necessary to obtain the adjoint of ∂E
∂δ1

(u(δ1), δ1)

but just its action over λ.

Thus, the adjoint problem (7) consists in finding λ ∈ V satisfying

0 =
〈
∂ J

∂u
(u(δ1), δ1), η

〉
+

〈
∂E

∂u
(u(δ1), δ1)η, λ

〉

=
∫ T

0

∫
�

(
−∂λ1

∂t
η1 − η1(1 − 2u1)λ1 + δ1η1u3λ1 − D2η1∇u2 · ∇λ2

)
dxdt

+
∫ T

0

∫
�

(
−∂λ2

∂t
η2 − ρ2η2(1 − 2u2)λ2 + D2(1 − u1)∇λ2 · ∇η2 − δ3η2λ3

)
dxdt

+
∫ T

0

∫
�

(
−∂λ3

∂t
η3 + δ3η3λ3 + ∇λ3 · ∇η3 + δ1u1η3λ1

)
dxdt

+
∫ T

0

∫
�

η3(u3 − û3)dxdt

=
〈
−∂λ

∂t
, η

〉
+

〈
G(λ), η

〉
+

〈
B(λ),∇η

〉
, (8)

where G and B are defined in a similar way as in (2), for all η ∈ V and λ(x, T) = 0. Then, since ∂ J
∂δ1

= ε(δ1 − δref
1

), (6) can be written

as

J̃′(δ1) = ∂ J

∂δ1

(u(δ1), δ1) +
(

∂E

∂δ1

(u(δ1), δ1)

)∗
λ = ε(δ1 − δref

1 ) +
∫ T

0

∫
�

u1u3λ1dxdt. (9)

3. Designing an algorithm to solve the minimization problem

It is worth stressing that obtaining model parameters via minimization of the objective functional J̃ is in general an iterative

process requiring the value of the derivative. To compute J̃′ we just solve two weak PDEs problems per iteration: the direct and
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Fig. 3. In this 3D figure we plot the tumor and healthy cells density that are greater than 64% and its projection, for δ1 = 12.5 and t = 10. Note the gap between

the healthy and tumor cells.

Fig. 4. Schematic picture of a temporal mesh for the splitting process [27, Section 2].
the adjoint problems. This method is much cheaper than the sensitivity approach [25] in which the direct problem is solved many

times per iteration. We develop an implementation in MATLAB that solves the direct and adjoint problems. We use the splitting

method in order to separate the direct problem in two new problems. The first one consists in a system of ordinary differential

equations that contains the reaction terms of the original PDE. The second one is a PDE that contains the diffusion terms of the

original PDE. The ODEs are solved by using the Runge–Kutta method (ode45 MATLAB built-in function). Since we have an ODE

system for each spatial point, its resolution can be parallelized accelerating the time execution. The PDE is solved by the adaptive

finite element method. In the next subsections we will explain the splitting method and the adaptive procedure of the FEM.

It is well-known [26] that gradient-based optimization algorithms require the evaluation of the gradient of the functional. The

optimization problem is solved with a trust-region-reflective method, using the MATLAB built-in function fmincon.

For the direct problem, Fig. 3 shows the density of health cells, tumor cells and excess H+ ion concentration at fixed time

(t = 10) in terms of x variable.

3.1. Solving the direct problem

3.1.1. Splitting method

A multiscale operator splitting. We proceed like in [27, Section 2]. For the time discretization, we introduce a theoretical frame-

work in which each component (the reaction component ur and the diffusion component ud) is solved exactly. We define a

piecewise continuous approximate solution:

u(x, t) = tn − t

τn
un−1(x) + t − tn−1

τn
un(x)

for tn−1 ≤ t ≤ tn, with the nodal values un(x) obtained from the following procedure. We first discretize [0, T] into 0 = t0 < t1 <

. . . < tN = T with diffusion time step τ , τ = tn − tn−1 for n = 1, . . . , N. For each diffusion step, we choose a (small) time step

τsn = τ/Mn where Mn ∈ N, with τs = max1≤n≤N{τsn}, and the nodes tn−1 = s0,n < s1,n < . . . < sMn,n = tn (see Fig. 4). We associate

the time intervals In = (tn−1, tn] and Im,n = (sm−1,n, sm,n] with these discretizations. Then, for 1 ≤ n < N do the following steps.

3.1.2. Algorithm

STEP 0: Given un−1(x) and on the uniform mesh T , do the following steps to compute un(x).

STEP 1: Compute ur(x, t) satisfying the reaction equation:〈
∂ur

∂t
, φ

〉
In

=
〈
F(ur), φ

〉
In

ur(x, t+
n−1) = un−1(x)

for s0,n < t ≤ sM ,n and for all φ ∈ L2(tn−1, tn; H1(�)).

n
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STEP 2: Compute ud(x, t) satisfying the diffusion equation:〈
∂ud

∂t
, φ

〉
In

=
〈
A(ud), φ

〉
In

ud(x, t+
n−1) = ur(x, tn)

for tn−1 < t ≤ tn and for all φ ∈ L2(tn−1, tn; H1(�)).

STEP 3: Set un(x) = ud(x, tn),

where F and A are defined in (2). The equation in the Step 1 is a nonlinear, coupled system of first order ODE. In the Step 2 the

equation is a second order PDE.

3.1.3. Adaptive FEM

The adaptive procedure for FEM consists in a four step loop: (a) solve the PDE using the FEM discretization, (b) estimate the

a posteriori error of the discrete solution, (c) mark the elements to be refined according to the error size of the local a posteriori

error, and (d) refine the marked elements keeping the mesh conformity (for more details see [28]).

Given a mesh Tn at time tn, for all element K ∈ Tn, the element residual RK(un) and the jump residual JS(un) are defined

as:

RK(un) = un − un−1

τ
− A(un), K ∈ Tn (10)

JS(un) = −A(un) · ν+ − A(un) · ν−, S ∈ Sn (11)

were Sn are the edges of Tn, A is the right-hand side of (1) and the ν are the normals to the left and right of the corresponding

edges.

We define the local error indicator η(K) by

η(K)2 = H2
K‖RK(un)‖2

L2(K) +
∑

S∈∂K

HS‖JS(un)‖2
L2(S),

were HK is the diameter of K and HS is the length of the edge S. If S is an edge of an element, then

η(S)2 = HS‖JS(un)‖2
L2(S).

The residual-type error estimator of � with respect to the mesh Tn is

η(�)2 =
∑
K∈Tn

η(K)2.

In this work we follow the technique proposed in [29], we use the bulk algorithm to mark (item (c)) and the RedGreenBlue
algorithm to refine (item (d)). The bulk algorithm defines the set E of marked edges such that∑

E∈E
η(E)2 ≥ θ

∑
S∈Sn

η(S)2,

or it contains all the edges of marked elements K ∈ W ⊂ Tn that satisfy∑
K∈W

η(K)2 ≥ θ
∑
K∈Tn

η(K)2,

where Sn is the set of edges of Tn and θ ∈ [0, 1]. In order to choose these edges we will use the following strategy: the local error,

for edges or elements, is sorted in a descending form and are successively summed until the sum reaches the desired bound.

Therefore those edges are chosen to be marked.

The RedGreenBlue can be briefly described as follows: elements with no marked edges are not refined, elements with one

marked edge are refined green (divide the original triangle in two new triangles by using the midpoint of the marked edge and

the opposite vertex), elements with two marked edges are refined blue (choose one of the marked edges and apply the green

procedure, then apply green again on the triangle with the other marked edge) and elements with three marked edges are refined

red (define a triangle with the midpoint of the edges).

Note that after the RedGreenBlue refinement for each K ∈ Tn−1, we have T�|K = {K̃ ∈ T� | K̃ ⊂ K} for all � ≥ n.

3.1.4. Algorithm

STEP 0: Set an initial condition u0(x) = u(x, 0) on the coarse uniform mesh T0. Set εTOL > 0 and n = 1.

STEP 1: Given un−1(x) and a mesh Tn−1, compute un(x) by using Algorithm 3.1.2.

STEP 2: Compute the a posteriori error η(�). If η(�) < εTOL, set Tn = Tn−1 and either stop if n = N or set n = n + 1 and go to

STEP 1.

STEP 3: Mark and refine Tn−1, and go to STEP 1.

In STEP 1, we compute ur, the reaction component, by using the ode45MATLAB built-in function for each node of the current

mesh, allowing a parallelization strategy. The diffusion component is solved by using FEM. In STEP 3, after the refinement process

we obtain the values of un−1 at the new nodes by using linear interpolation.
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3.2. Solving the adjoint problem

In order to solve the adjoint problem we shall use FEM. The spatial discretization is the coarse mesh used for the initial mesh

in the direct problem. We denote λn(x) = λ(x, tn) for n = 0, . . . , N.

3.2.1. Algorithm

STEP 0: Set the final condition λN(x) = λ(x, T) = 0 on the initial mesh T0, and set n = N.

STEP 1: Given λn(x), compute λn−1(x) by solving an implicit Euler step in time and FEM in space:〈
λn − λn−1

τ
, η

〉
=

〈
G(λn−1), η

〉
+

〈
B(λn−1),∇η

〉
,

where B and G are defined in (8).

STEP 2: Set n = n − 1 and go to STEP 1.

3.3. Solving the minimization problem

The fmincon MATLAB built-in function was used to solve the minimization problem. The chosen algorithm in the fmincon
function was the trust-region-reflective method, where the derivative of the objective function J̃ was computed according to 9.

3.3.1. Algorithm

The method we will use for minimizing the functional J̃ can be summarized as follows:

STEP 0: Give an initial guess δ0
1

for the parameter.

STEP 1: Call the fmincon function and obtain the solution δ∗
1, providing the value of the objective function J̃(δ) and its

derivative J̃′(δ) according to (5) and (9), respectively.

In order to compute J̃(δ) and J̃′(δ) is necessary to solve the direct and adjoint problems.

4. Numerical experiments

The goal of this section is to test and evaluate the performance of an adjoint-based optimization method, by executing some

numerical simulations of Algorithm 3.3.1 for some test cases. The experiments were run in MATLAB, in a PC running Linux, with

four quad-cores of 2.4 GHz.

In our case we will consider the space domain � = [0, 1] × [0, 1], the time domain [0, 10] (i.e., T = 10), and the following

model parameters: ρ2 = 1, D2 = 4 × 10−5 and δ3 = 1.

In a real case, we need experimental data provided by measurements. That is, a series of values û3(x, t) should be provided at

a coarse space mesh T0 and at a time mesh 0 = t0 < t1 < . . . < tN = T .

Numerical experiments are performed with û3(x, t) generated via the direct problem for some δ̂1 in a coarse mesh T0 having

512 triangular elements covering �, and ti = ti−1 + 0.1, i = 1, . . . , 100. Thus, the evaluation of the functional defined in (5) is

performed by integrating over this spatial and time discretization. In order to get a representative value of the objective functional

without regularization, we set c0 = J̃(δ0
1
) choosing ε = 0. For an appropriate scaling of the regularization term we take the value

of the Tikhonov regularization parameter as ε = 10−5c0, and the reference point is δref
1

= 0 to avoid the function flatness for large

values of δ1 as observed in the experiments. For numerical considerations, we will work with the scaled functional J̃/c0.

Regarding Algorithm 3.1.4 we have used the following parameters: εTOL = 10−5 and θ = 1/2. In the STEP 1, we have to call

Algorithm 3.1.2 to go forward in time. This is done solving a system of ODEs for each node of the current mesh. A parallel strategy

(each processor solves a system of ODEs for one node) is the best and natural option to reduce time execution. For example,

Fig. 5(a) shows how many seconds takes to solve the direct problem, and Fig. 5(b) shows the speed-up. This parallel strategy is

very useful since the optimization solver could call Algorithm 3.1.4 many times.

The time step τ in Algorithm 3.2.1 is set to 0.1. Regarding Algorithm 3.3.1 we have set the feasible set Uad = [0, 20] in the

minimization problem (5). Besides that, the method used in the fmincon routine (STEP 1) is the trust-region-reflective method

[30,31], where the option GradObj is on (the gradient of the objective function must be supplied) and the maximum of function

evaluations of J̃ is 100. If we use an algorithm where the gradient is estimated by finite differences, the procedure will become

computationally more expensive due to costly evaluation of the objective function. That is the reason for which we compute the

exact derivative of the functional using the adjoint method.

Let us consider an optimization problem that consists in minimizing the functional defined in (5) for different û3 correspond-

ing to δ̂1 = 4, 12.5, 16. The choice of these values is associated with different behaviors of tumor invasion, according to [7]. The

idea of these test cases is to investigate how close the original value of the parameter can be retrieved (even in the presence of

noise), and how efficiently these computations can be done.

Fig. 6(a) shows the graph of the functional J̃ defined in (5) takes with respect to δ1, for û3 generated with δ̂1 = 12.5. It is worth

mentioning that, even when we do not know in advance if the optimization problem has a unique solution, J̃ looks convex with

respect to δ .
1



366 A.A.I. Quiroga et al. / Applied Mathematics and Computation 270 (2015) 358–368

0 0.5 1 1.5 2 2.5
500

1000

1500

2000

2500

3000

3500

4000

4500

Log2(number of cores)

T
im

e 
in

 s
ec

on
ds

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Number of cores

S
pe

ed
−

up

(a) (b)

Fig. 5. (a) Time in seconds of the direct problem execution, (b) graph of the speed-up for solving the direct problem.
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Fig. 6. Graph of functional J̃ with and without regularization for û3 generated with some δ̂1 and error σ . (a) δ̂1 = 12.5, σ = 0. (b) δ̂1 = 4, σ = 0.1. (c) δ̂1 = 12.5,

σ = 0.15. (d) δ̂1 = 16, σ = 0.2.
We have run Algorithm 3.3.1, with J̃ without regularization, for each of the chosen values of δ̂1 taking the initial condition δ0
1

randomly. It is worth stressing that the retrieved parameter is obtained very accurately, independently of the value of δ0
1

. Aver-

aging the different solutions, obtained for different choices of δ0
1
, and taking the standard deviation of all of these experiments,

we get Table 1. Thus, in the next experiment we will consider a fixed value for δ0
1

.

It is well-known that the presence of noise in the data may imply the appearance of strong numerical instabilities in the

solution of an inverse problem [32]. As it is well-known, measurements are often affected by perturbations, usually random
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Table 1

Experiments for randomly initial data δ0
1 .

δ̂1 δ̄1 S

4 4.2666 ±7.0640 ×10−3

12.5 12.4937 ±7.1875 ×10−4

16 16.6246 ±1.8826 ×10−5

Table 2

Experiments for δ̂1 = 4.

σ δ̄1 S eδ1

0.1000 3.2500 ±1.0000 0.1875

0.1500 3.9167 ±1.0104 0.0208

0.2000 3.3333 ±1.1273 0.1667

Table 3

Experiments for δ̂1 = 12.5.

σ δ̄1 S eδ1

0.1000 12.2500 ±2.1360 0.0200

0.1500 13.5833 ±3.6257 0.0867

0.2000 13.5000 ±2.8831 0.0800

Table 4

Experiments for δ̂1 = 16.

σ δ̄1 S eδ1

0.1000 15.3333 ± 4.2303 0.0417

0.1500 14.8333 ± 2.0966 0.0729

0.2000 16.8333 ± 3.7109 0.0521
ones. Then we perform numerical experiments where û3 is perturbed by using Gaussian random noise with zero mean and

standard deviation σ = 0.1, 0.15, 0.2. Considering δ0
1

= 8 in all cases, Tables 2–4 show the average δ̄1 (over 10 values of δ∗
1), the

standard deviation S and the relative error eδ1
= |δ̄1 − δ̂1|/|δ̂1| for each value of σ .

5. Final conclusions and future work

In this paper we have solved a parameter estimation problem following the model proposed by [7] in a two-dimensional

space. The inverse problem is formulated as an optimization problem in order to find the parameter δ1 (the destructive influence

of H+ ions in the healthy tissue).

The direct problem was solved by the splitting technique together with adaptive finite element method, for the purpose of

controlling the numerical error and defining a parallel strategy. A gradient-based method was used to solve the optimization

problem. The derivative of the objective functional was computed using the solution of the adjoint problem.

The experiments were run in MATLAB recovering several values of the parameter δ1 representing different scenarios. Also, a

stability analysis was performed using random noise to simulate perturbations in the experimental data.

We consider that the results are accurately enough. In most cases the parameters are retrieved with a relative error less than

20%.

As a future work we propose to consider the possibility to find optimal parameters related to therapeutic procedures like in

[33,34].
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