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ABSTRACT 
 
This work shows the usefulness of state-space models to adjust and forecast daily 

time series, and the technique of periodic cubic spline regression to model annual 
seasonality. A structural model is used to analyzed the series of daily average demand of 
electricity in Argentina. This model considers the trend, the weekly and annual seasonal 
component, the effect of public holidays, two cycles, and the temperature as explanatory 
variable. The method gave satisfactory results, both at the adjustment level as well as in 
the forecasting and interpretability of its components. Alternative methods are 
recommended when the future temperature values are unknown. 
 

KEY WORDS 
 

Daily time series, electricity demand, Kalman filter and smoothing, periodic cubic 
spline, state space approach, structural model. 
 

1. INTRODUCTION 
 

The Wholesaler Electrical Market (MEN in Spanish) of our country happens to be 
regulated by law. According to it the MEN is the real place where you can find both the 
supply and the demand of electric energy in our country. All the energy generators must 
be MEN’s agents just like the firms that act in the market, with the only exception of 
small consumption. These agents provide all the information that is needed to create the 
database that belongs to the Wholesaler Electrical Market Administrator Company 
(Cammesa in Spanish). This agency builds up such a database and makes it available to 
such agents. More than 90% of the electric energy demand is provided by the MEN, 
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being Cammesa the one assigned to determine which power station will operate, besides 
supervising a few items. 

 

One of the most important goals of any electrical system is supplying the market 
with the least interruptions and keeping the quality of the energy offered. Therefore, it is 
necessary to have an efficient system. 

For all these reasons, this paper tries to find a parsimonious model in order to: 

a) Describe the behaviour of the daily average demand series of electrical energy 
for Argentina. 

b) Carry out short run predictions. 
 
 To do this we use tools such as the structural models and the state space approach. 

The main drawback we find in modelling daily time series is fitting the seasonal 
component, due to the fact that we have two kinds of seasonality: weekly and annual. In 
the first case, it is enough to use a basic structural model where the seasonal component 
is modelled in trigonometric terms or we can use “dummy” variables. In the second case, 
the problem we have is much more complex, because traditional models would require a 
larger number of parameters, not fulfilling the parsimony principle. 

To solve this problem we propose to use structural time series models (see Harvey, 
Koopman and Riani, 1996) which can be interpreted as regressions over functions of time 
with varying parameters. This allows us to treat seasonal patterns that vary in a complex 
way. When we adjust a convenient model, the seasonal component can be estimated by 
some smoothing algorithm. In other words, we can generalize a deterministic component 
in order to get a stochastic one. 

We use a highly recommended technique called “spline” (see Poirier, 1973) to treat 
the annual seasonality, because it is quite simple implement and because it permits a non-
linear effect to change into a multiple lineal regression allowing the estimation. Besides, 
it is possible to work with periodical “splines” and make some restrictions that ensure all 
seasonal components to add up zero. In this way, there is no confusion between the 
seasonal and the trend components. In some cases, it is useful to add to the model one or 
more explanatory variables related to the phenomenon of our interest. In this case we 
include the daily average temperature series, to help explaining the behaviour of the daily 
average demand of energy. 

Once the model is set up, it is relative easy the statistical handling under the state 
space approach. The characteristic of the space state form for modelling any system over 
time is that includes two very different stochastic processes. In one the distribution of the 
data at each point of time is conditional to a set of parameters indexed by time. A second 
process describes the evolution of the parameters over time. 

To sum up, forecasting daily time series is a hard task that has to be developed in a 
permanent way. The main characteristic of many daily time series is that the seasonal 
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pattern changes persistently over time. State space modelling with its recursive estimation 
techniques and its statistic methodology is an attractive way to deal with the mentioned 
problem. 

The proposed models are very similar to those used before by Harvey and Koopman 
(1993) in order to forecast the Puget Sound Power and Light (USA) hourly demand series 
and by Gordon (1996) in order to model the daily energy demand series by three 
Brazilian companies LIGHT, CEMIG and COPEL. Very good results of fitting and 
prediction were obtained in both works, which encouraged us to use a similar method in 
the case of Argentina. In Section II we make a brief description of the series. In Section 
III we introduce the state space models for the daily series. In Section IV we present the 
spline technique applied to daily time series. In Section V we introduce the complete 
model with its estimations, goodness–of–fit tests and forecasts. Finally, we conclude our 
discussion in Section VI. 

 
2. CHARACTERISTICS OF THE SERIES 

       

The information we have is the argentinian energy daily average demand measured 
in Gigawath (Gwh) for the period between August 1st 1995 and September 12th 1999 that 
was provided by Cammesa. We also have the daily average temperature series measured 
in degrees centigrade (ºC) for the same period of time, provided by the same source. 

Figure 1: Daily Average Demand of Energy in Argentina
(01-08-95 - 12-09-99)
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The energy demand series presents a smooth growth and a clear seasonal behaviour 
(Figure 1). This last kind of behaviour is characterised by two very neat periodical parts: 
one annual (Figure 2) and the other weekly (Figure 3). 

The annual seasonal component is due to a combination of factors, among which are: 
temperatures, wind, sunlight hours; economic factors just like productive cycle, price 
(this variable is not very important in the case of a daily measure) and demographic 
factors (this is also not very important when we treat daily series). These graphics show a 
very distinctive behaviour between the demand on working days (Monday to Friday) and 
on Saturdays (where the demand diminishes) and Sundays (which is the lowest 
demanding day).  It is also remarkable that in holidays the demand diminishes and this 
reduction can vary according to the day we have a holiday (Figure 3). 

Figure 2: Daily Average Demand of Energy in Argentina
(1-8-98 - 31-7-99)
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Figure 3: Daily Average Demand of Energy in Argentina. 
August 1998
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 All the 
stated in the previous paragraphs show us that it is a highly difficult task to find a 
parsimonious model (with few parameters) that capture all the behaviours present in the 
demand series. 

 
3. STRUCTURAL MODELS 

 
 Structural models can be interpreted as regressions over functions of time in which 
the parameters are allow to vary in time. This makes them a natural vehicle to treat 
complex stationary behaviour. 
 
3.1 Basic state space model 
 

The basic state space model (BSSM), also known as Gaussian lineal space state 
model can be expressed as, 

 

 ( )
( ) ,,0,

,,0,

1 ttttttt

tttttt

QNIDRT

HNIDZy

∼ηη+α=α
∼εε+α=

−

 (1) 

 

where ty  is a 1×p  vector of observations, tα  is an 1×m  vector called “state 

vector”, the matrixes tZ  (of order p × m), tT  (of order m × m) and tR  (of order m × g) 

are assumed known and the error terms tε  (of order p × 1) and tη  (of order g × 1) are 

assumed serially independent and independent among them at all time moments. We 

introduce the matrix tR  as a selection matrix formed only by zeros and ones whether the 

corresponding element of tη  is random or deterministic. 

The first equation in (1) is usually called the measurement equation and the second 
one, the transition equation. In the following section we will specify a structural model 
for daily time series. 

 
3. 2  Basic structural model 

Structural time series models are set up explicitly in terms of components that have a 
direct interpretation (see Abril, 1999 and Harvey, 1989). Suppose we have the following 

time series Tyy ,,1 K . The basic structural model (BSM) is formulated in terms of 
trend, seasonal and irregular components. The model can be expressed as, 

 ( ) ,,,1,,0, 2 TtNy tttttt K=σ∼εε+γ+µ=  (2) 

where t and , εγµ tt  represent the trend, seasonal and irregular components 

respectively, and are in principle stochastic. In some cases the components combine 
multiplicatively, but taking logarithm and working with the logarithm of the series it is 
possible to obtain the additive form given in (2).  The main idea in these models is 
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that the trend and the seasonal components conform the principal aspects of the time 
series. That is why the construction of the model is oriented to the estimation and analysis 
of these components. 

The specification of t and , εγµ tt  is based on the knowledge we have about the 

process we are analysing and on basic statistics techniques. The seasonality is usually 

represented by stochastic trigonometric functions in the seasonal frequencies 2s  (where 

s is the seasonal period), or by “dummy” variables. The key point is that even though the 
seasonal component is not stationary it has the property that the expected value of the 
sum over the s previous periods is zero. This ensures that the seasonal effect will not be 
confused with the trend and it also means that the forecasts made of the seasonal 
component must add up zero over any annual period. On the other hand, in classical 

models tµ  is generally defined as a polynomial in time, tγ  is specify using “dummy” 

variables or trigonometric functions and tε  as an ARMA process (see Box and Jenkins, 

1971). That is, the trend and the seasonal effects are supposed to be deterministic. In 
many situations these assumptions are not true, therefore the structural models are very 
useful. 

 
3.3 Model specification for a daily energy series 
 As we mentioned earlier, the primary component in fitting daily time series is 
the seasonal, due to the fact that we have two kinds of seasonality: 

I. Weekly II Annual 
 

In the following section we will deal with point I, leaving point II for later treatment 
when we will use the “spline” technique in order to incorporate this component to the 
structural model. It is also important to have in mind the influence of holidays in the 
series. Besides, we can include explanatory variables to the model in order to understand 
the problem of our interest. 
 
3.3.1. Weekly seasonality 

In daily time series it is generally presented a weekly periodical behaviour ( )7=s  

which can be treated in two ways: a) with “dummy” variables, or b) using trigonometric 
functions. In this work we focus on point a). 

Suppose we have the seasonal parameters .7,,1, K=γ jj  If we consider the 

seasonality to be deterministic, we have to say that the sum of all effects must be zero, 
that is, 

 ,0
7

1

=γ∑
=j

j  (3) 
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or 0
7

1

=γ∑
=

−
j

jt . In this case 

 .,8,7
6

1
∑

=
− =γ−=γ

j
jtt t K  (4) 

On the other hand, there are many situations where the seasonality varies over time, 
in which case we say that it is stochastic. A simple way to deal with this is to add up an 
error term to the previous expression, that is, 

 ( ).,0,,,1, 2
6

1
wtt

j
jtt NIDwTtw σ∼=+γ−=γ ∑

=
− K  (5) 

 
In this case, instead of considering the sum to be zero, we have to suppose that the 

expected value is zero, which make the “dummy” variables flexible to change over time. 
 

3.3.2. Holidays 
 

In daily time series there is usually a holiday effect that act upon the series. We can 
set a “dummy” variable to treat this situation. Holidays can be considered as an annual 
periodical component, whose effects must add up to zero every year. That is, “dummy” 

variables can be represented by ,,,1, qiji K=θ  where i represent the day or the set of 

days of the week where we can find the holiday, and mj ,,1K= , where j represents 

the year. 
  

 jiη  is defined as the number of times that jiθ  can be found in year j. In order that 

the holiday effect has no influence on the level, it should satisfy 

 ,0
1

∑
=

=θη
q

i
jiji   (6) 

in consequence, 

 ,1 1

1
ji

q

i
ji

jq
jq θη

η
−=θ ∑

−

=

 (7) 

Due to the kind of holidays we have in Argentina and its influence on energy 
consumption, we can define the following variables that measure the holiday effect: 

 

1θ  if the holiday is on Monday. 

2θ  if the holiday is from Tuesday to Friday. 

3θ if the holiday is on Saturday. 

4θ  if the holiday is on Holy Thursday. 

5θ if there is no holiday. 
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Then 

 ,0
5

1
∑

=

=θη
i

jiji  

in consequence, 

 .
1 4

15

5 ji
i
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j

j θη
η

−=θ ∑
=

 

 
3.3.3 Explanatory variables 

 Explanatory variables and intervention effects can easily be incorporated into 

structural models. For instance, if we suppose that there are k  regressors tkt xx ,,1 K , 

they can be incorporated directly into the equation of the model, adding the term 

∑
=

δ
k

j
tjj x

1

 to the equation (2) of the structural model. We have to act on a similar fashion 

if we add intervention variables because of the presence of  “outliers” o structural 
changes. In the case of the energy demand there is a quadratic relation with the 
temperature, because the energy consumption rises on very cold days as well as on hot 
days. Regarding the variables that measure the productive cycle, we cannot study any 
specific relation with the energy demand because there is no daily record of them. The 
price variables do not have much effect on the daily energy demand since in these cases 
the changes are imperceptible. 

3.4 Estimation of unobservable components 

 In the previous section a state space model was proposed, where unobservable 
components intervene in the state system. The next step consists in the estimation of 
those components. The whole process is as follows, 
 

I. Filtering: it is an operation where the system is updated every time a new 

observation ty  is available. This filtering process is made using the Kalman 

filter technique. 
II. Initiation: We must specify how we start the filtering process, that is, we specify 

the initial values of the components. 
III. Smoothing: This considers the estimation of the components using the complete 

sample information. 
 
The smoothing and the filtering processes must be done at the same time. Two set of 

estimates are obtained by these two processes, the very best by Fisher’s point of view is 
the smoothed set because it uses all the information in the sample. 
 



Blaconá and Abril 361 

3.5 Estimation of the hyper-parameter by maximum likelihood 
The parameters in state space models are usually called hyper-parameters probably 

to distinguish them of from the elements of the state vector that can be considered as 
stochastic parameters. Suppose we have the hyper-parameter vector ϕ , that is going to 

be estimated using maximum likelihood (ML). In time series the observations are not 
independent, therefore for the construction of the likelihood we use properties of the 
conditional distribution like the following, 

 ( ) ( ),,/,
1

1∏
=

− ϕ=ϕ
T

t
tt YypYL  (8) 

where ( ) ( )ttttt FZNYyp ,,/ 1 α∼−  and Yt-1 is the information up to moment 1−t . 

So if we take logarithm we have, 
 

 ( ) , log
2
1

2log
2

 log
1

1

1
∑∑

=

−

=

′−−π−=
T

t
ttt

T

t
t vFvF

pT
L  (9) 

where tttt aZyv −=  is the prediction error distributed as ( )tFNID ,0 . This last 

equation is named prediction error decomposition of the log likelihood and it must be 
maximized with respect to the elements in the vector ϕ  of unknown hyper-parameters. 

 

When 00  and Pa  are not known, it is supposed that τ  is the lowest value of t for 

which ( )tt Yp /α  exists. Then, we take the conditional likelihood with τY  fixed and 

obtain, 
 

 ( ) ( ) ,F log
2
1

2log
2

 log
1

1
T

1t
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+τ=

−

+τ=

′−−π
τ−

−=
T

t
ttt vFv

pT
L  (10) 

 
Expressions (9) and (10) are maximized by a maximization algorithm. The optimal 

method used by STAMP 5.0 (software employed in this work) is based on a method 
called BFGS Quasi-Newton (see Koopman, Harvey, Doornik and Shephard, 1995). The 
probes we make to see if a certain model is correct are based on the estimated standarized 

innovations TdtFv tt ,,1,ˆˆ 21 K+=−  (see Koopman, Harvey, Doornik and 

Shephard, 1995) calculated from the smoothed residual tv̂ . If the model is well specified, 

these residuals have the advantage of being approximately non-correlated. 

The basic measure of the goodness of fit is called PEV, that is  the prediction error 

variance, or 2~σ . Another measure of the goodness of fit is the average deviation of the 
residuals which is defined as, 

 ,
~

1
∑

+=−
σ

=
T

dt
tv

dT
md  
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and, if the model is well specified the ratio, 

 
( )2

2~2

md
c

π
σ

=  

is close to one. 

There are many techniques to probe the goodness of a certain model. We will display 
those that help us see if the model is satisfactory. 

• Heteroscedasticity: It is based on a non-parametric bilateral test of heteroscedasticity, 

1, hhF , where we build the statistic, 

 ,/)(
1

1

1

22∑ ∑
+−=

++

+=

=
T

hTt

hd

dt
tt vvhH  

being h the closest integer to (T - d)/3. 

• Residual correlation: There are basically two kinds of statistics to probe if the 
residuals are correlated: 

I. Durbin-Watson statistic: This help us probe if the residuals present a first order 
autocorrelation, and it is given by 

 ;))1(1(2)( 2
1

2

rvvDW t

T

dt
t −≅−= −

+=
∑  

if the model is well specified DW is distributed as N(2, 4/T). 

II. Box- Ljung Q statistic: this allows us to probe if the first P autocorrelations are 
equal to zero and it is given by 

 ∑
=

−+=
P

j
j jTrTTkPQ

1

2 ),/()2(),(  

under the hypothesis that the residuals are not correlated it is distributed as 2
kχ , 

where k  = P − n + 1, and n is the number of hyper -parameters. 

 A useful measure to check how good the fitting is happens to be the determination 
coefficient. In the case when we analyse seasonal series with a trend, like daily time 
series, we use an adjusted coefficient given by 

 
SSDSM

dT
Rs

2~)(1 σ−−
=  

where SSDSM is the sum of square obtained deducting the seasonal mean to the first 
difference of yt. 
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To compare models with different number of parameters the PEV is not convenient. 
A more proper coefficient called Akaike Information Criterion (AIC), which penalize the 
PEV by the number of estimated parameters on the model is defined as, 

 ,/2log TmPEVAIC +=  

where m is the number of hyper-parameters plus the number of unobservable parameters. 
In consequence, the lowest the value the AIC the better is the fitting. 

Besides all the goodness of fit measures we mentioned, it is important to remind that: 

I. The estimation of the hyper-parameter allows us to know if the components 
move in a stochastic way. Nevertheless, a zero value of  hyper-parameter 
indicates a deterministic behaviour. 

II. The graphic of the smoothed components helps us to see if the decomposition 
made by and adjusted model was useful. In terms of prediction the estimated 
trend is the part of the series that indicates a future movement in the long run 
(see Harvey, 1989), for that it is important that it does not have a periodical 
behaviour. 

 
3.6 Prediction 

In the Gaussian model defined in (1), the Kalman filter leads to Ta , the minimum 

quadratic error estimator of Tα , based on all the observations. Besides, it is known that, 

 TTTT aTa 1/1 ++ = ,  (11) 

 
 and so the one step ahead prediction is given by 
 

 TTTTT aZy /11/1
~

+++ = ,  (12) 

 Now, if we consider the problem of predicting several steps ahead, that is 
predicting future values for the moments hTTT +++ ,,3,2 K , where h is the 

prediction horizon, replacing repeatedly on the transition equation, at the moment T+h 
we have, 

 ,...3,2,))(()(
1

1 11

=η+η+α=α ++++

−

= +=
+

=
++ ∑ hRRTT hThTjTjT

h

i

h

ji
iT

h

j
TjThT CC  (13) 

On the other hand, it is known that the estimator MMSE of hT +α  at the moment T is 

the conditional expected value of hT +α . Applying conditional expectation at time T to 

(13) we have 

 .)()/(
1

/ T

h

j
jTThThT aTaTE C

=
+++ ==α  (14) 
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The conditional distribution of hT +α  is Gaussian and its variance and covariance 

matrix ThTP /+  can be obtained from (13) and (14). In the case that it does not change 

over time, the right expression would be 

 ∑
−

=
+ =+=

1

0
/ ,...2,1,'''

h

j

jjh
T

h
ThT hTRQRTTPTP . (15) 

The MMSE estimator of hTy +  can be obtained directly from hTy + , taking 

conditional expected values to the measure equation at time T+h, being 
 ,...2,1,~)/( // === ++++ haZyTyE ThThTThThT . (16) 

The MSE matrix is  

 MSE ,...2,1,)~( '
// =+= +++++ hHZPZy hThTThThTThT . (17) 

 We have to remind that the MSE matrixes ThTP /+  do not take into account the error 

that comes from estimating unknown parameters from the system matrixes Tt and other 
parameters. 

To probe if a model is right not only we have to keep in mind the goodness of fit but 
also it is very important to probe its goodness to predict because it is well known that not 
every model that fit well are also useful to predict. 

Using all these residuals we calculate the CUSUM and we build the Chow test inside 
the sample. When we carry out a post–sample predictive test, the estimations of the 
explanatory variables or intervention variable coefficients are the same of those in the 
final state of the sample. The corresponding standardized residuals are called 

.,,1for  LTtv t K+=  A characteristic post–sample test is given by 

 ,
1

2/1 ∑
=

+
−=

L

j
jTvLcusumt   (18) 

which is distributed as a *dLT
t

−−
. 

Other two very useful measures to probe the predictive behaviour of the models are: 
a) For the sample period, the MAPE (“Mean absolute percentage error”). 
b) For the post–sample period, the PSMAPE (“Post-sample absolute percentage 

error”). 
 

4. “SPLINE” TECHNIQUE 
The original idea is owe to Schoenberg (1946), and it is useful when we have to 

represent non-linear behaviour in the data. In daily time series, the non-linear periodical 
annual behaviour requires a large number of parameters in order to be adequately 
represented. But structural change that takes place slowly can be represented by a 
regression in several steps using a cubic “spline” (Poirier, 1973). The principal 
advantages of this technique are: 
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I. It preserves the continuity of the estimated function by step functions. 
II. It is very easy to use in computer systems. 

 
4.1 “Spline” and regression models 

In a non-linear regression model we suppose that, 

 ( ) ( ).0,IID~,,,1, 2σε=ε+= tttt Ttxfy K  (19) 

Instead of adjusting ( ).f  for only one curve, we approximate this using a cubic 

“spline” ( )xg . We define k  cubic functions based on ( )kxx ,,0 K  (those individual 

points x are known as “knots”) and the corresponding level values 
( ) kjxf jj ,,0, K=γ=  in the observed points. In the case of a periodical “spline” 

( ) ( ) ( ) ( )22
01010  and, kkkkk xdxdxdxd ==γ=γ . 

 
Given the “knots” and the values associated with the level, it can be shown that any 

point over the “spline” function” is a lineal combination of jγ  in a way,  

 ( ) ,'' γ= wxg   (20) 

 vector1 a is ×kw j which depends on the location of the “knots” and the distance 

between 1−−= jjj xxh  and the values of jx . The algebra involving this is quite 

simple. 

The jγ  are estimated by ordinary least squares 

 ( ) ( ).ˆ 1' ∑∑ −
=γ

t
tt

t
tt ywww  (21) 

Therefore, an estimation of the non-linear effects is transformed into a regression 
problem using cubic “splines”. 
 
4.2 “Spline” technique applied to daily time series 

For time series with daily observations, let tψ  be the annual seasonal component. 

To make a parameterization of tψ  by a cubic “spline” means that we have, 

1) sjjx j ,,2,1, K== , for the case of daily series sks <=  and365 . In this 

situation we have .365 and 1,6 0 === kxxk   

2) jt ψ=ψ  when the j-th seasonal effect is present. 

3) øjt w ′=ψ . 

jw  is the weighting vector that depends on the “knots” and the index j and 

( )61 ,, ψψ=′ Kø  is the parameter vector that we have to estimate. 

 To avoid any trouble we need to have, 
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 .0
6

1

'
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=′==ψ ∑∑
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øø ww
j

j
j

j  (22) 

 

This restriction is equivalent to, 
 

 ( ) ,
5

1

***
i

j
kij ww ψ−=ψ ∑

=

  (23) 

where 

 ,
6

1

* ∑
=

=
i

iww   (24) 

the seasonal component is expressed as a function of ( )1−k  parameters. 

 Then we have 

 ,*ψ=ψ ii z   (25) 

where 

 ( ),,, 11
*

−ψψ=ψ kK  

 

jz  is a 1)1( ×−k  vector whose i-th element is given by 

 

 ( ),**
kjjkjiji wwwwz −=  (26) 

where jiw  is the i-th element of jw . 

 In the case of the energy demand we pick 6,,1,1 K=− jx j : 

365,325,237,137,71,1 543210 ====== xxxxxx . 

 
Which implies 
  

 40,88,100,66,70 54321 ===== hhhhh . 

To calculate the series 1461,,1 and4,,1with KK == tjz jt , we use the IML 

procedure of SAS package. Once we calculate jtz  this will act as explanatory variables 

in the state space model. For the leap year 1996 we repeat twice the value of z for 28th  
February. 

 

5. STATE SPACE MODEL FOR THE DAILY ENERGY DEMAND SERIES  
 
The selected model turns out to be, 

 t1

4

1i
iti

2
t12t11

4

1i
itttt )1(ARzxxy χ++ψ+δ+δ+θ+γ+µ= ∑∑

==

 

 ,1461,,1t,OOOOO t5544332211 K=ε+υ+υ+υ+υ+υ+  
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are the random effects and are mutually independent. 
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Table 1: Model components estimation of final state vector at the end of the period 
 

Coefficient Estimate t-value p-value 
µt 225.21 66.606 0.0000 
χ1t -2.2796   
χ1t

* -0.1400   
γ1t -11.247 -19.987 0.0000 
γ2t 9.8745 17.703 0.0000 
γ3t 9.1415 16.406 0.0000 
γ4t 9.1976 16.549 0.0000 
γ5t 9.3016 16.727 0.0000 
γ6t 5.8841 10.52 0.0000 
AR(1) -1.9964   
θ1 -32.403 -46.594 0.0000 
θ2 -35.040 -48.994 0.0000 
θ3 -12.451 -7.3214 0.0000 
θ4 -5.9580 -3.9769 0.0001 
δ1 -2.9310 -17.591 0.0000 
δ2 0.0960 22.318 0.0000 
ψ1 -6.6402 -3.96 0.0001 
ψ2 -2.8927 -1.3919 0.1642 
ψ3 -6.3385 -3.7472 0.0002 
ψ4 9.7487 6.2248 0.0000 
Outlier 8/12/95 -25.389 -8.5888 0.0000 
Outlier 28/9/96 12.165 4.1352 0.0000 
Outlier 24/12/96 -12.852 -4.3021 0.0000 
Outlier 15/8/97 8.0946 2.7514 0.0060 
Outlier 31/12/98 -12.677 -4.2728 0.0000 

 

This model indicates that there is a random level. The weekly stochastic seasonality 
is represented by “dummy” variables and the annual seasonality is represented by 
“spline” functions. The temperature appears in a linear as well as in a quadratic way, the 
holiday effect is quite important. We have two cycles; one of them is autoregressive and 
there are five “outliers”. The estimation of the model can be seen in the Table 1. All the 
coefficients are significant, except those corresponding to the second “spline”. 

The goodness of fit measures are shown below in Table 2 being all of them adequate. 

 
Table 2: Goodness of fit measures of the model 

 

H σ~  C DW Q(37,30) Rs AIC 

1.071 3.885 1.16 1.944 42.24 0.8271 2.7539 
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 The estimation of the seasonal coefficients at the end of the period are highly 
significant. These can be seen on the following Table 3. 
 

Table 3: Estimation of the weekly seasonal coefficients at the end of the period 
 
 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 
γ̂  5.884 9.302 9.198 9.142 9.874 -11.250 -32.150 

 
There is a different behaviour on Mondays from the rest of the days of the week, and 

there is also a rapid descend of the demand of energy during the weekend. 
The Figure 4 shows the estimated trend of the model. 

 
5.1 Predictive goodness of the model 

It is as important to verify the predictive goodness of the model as it is to probe its 
goodness of fit. Therefore we present the following tests performed on the model. 

Firstly we made prediction tests inside the sample. The CUSUM graphic (Figure 5) 
shows that the values for the last year of observation are within the confidence bands. 
Chow test and t test are not significant (see Table 4), in consequence the model 
overcomes these predictive tests. 
 

Figure 4: Estimated trend of the model 
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Table 4: Predictive tests within sample 
 

         Chow F test               t-test Period 
     d.f.               F-value    d.f.                  t-value 

01-08-98 to 31-07-99 
(1 year) 

 (364, 1089)         1.166  (1089)                  0.822 

01-02-99 to 31-07-99 
(6 months) 

 (180, 1274)         1.022 (1274)                  0.604 

01-05-99 to 31-07-99 
(3 months) 

 (90, 1364)          0.810  (1364)                  0.819 

01-07-99 to 31-07-99 
(1 month) 

 (30, 1424)          1.337  (1424)                0.1645 

25-07-99 to 31-07-99 
(1 week) 

 (7, 1447)          1.242 (1447)               -1.4937 

 
The values of the MAPE coefficients are less than 2 (see Table 5), therefore we can 

say that the average forecast error, made one step ahead, is less than 2% of the predictive 
value in all the periods under study. 
 

Table 5: MAPE coefficients of the model 
 

               Period          Coefficient 
01-08-98 to 31-07-99 
(1 year)  

              1.54    

01-02-99 to 31-07-99 
(6 months) 

              1.46 

01-05-99 to 31-07-99 
(3 months) 

              1.35                      

01-07-99 to 31-07-99 
(1 month) 

              1.68 

16-07-99 to 31-07-99 
(15 days) 

              1.54 

25-07-99 to 31-07-99 
(1 week)  

              1.87 

  

 The post-sample forecast with its confidence interval for the horizon h = 1 to h = 
43 are represented in the Figure 6 below.  

 
Figure 5: CUSUM for the last year of observation 
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Figure 6: Post-sample forecast and confidence bands
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The values of the PSMAPE coefficient are less than 2.5 (see Table 6), this 
indicates that the forecast errors in the post-sample period, up to 43 steps ahead do not 
overcome the 2.5% of the predicted value. The real values are mostly in the confidence 
interval, and only for horizons 22 to 24 are above the upper limit. 

 
Table 6: PSMAPR coefficients 

 
Period          Coefficient 

01-08-98 to 31-07-99 
(1 year)  

              1.54    

01-02-99 to 31-07-99 
(6 months) 

              1.46 

01-05-99 to 31-07-99 
(3 months) 

              1.35                      

01-07-99 to 31-07-99 
(1 month) 

              1.68 

16-07-99 to 31-07-99 
(15 days) 

              1.54 

25-07-99 to 31-07-99 
(1 week)  

              1.87 

 
All the results found show that the model can be considered as highly satisfactory to 

make predictions. 
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Despite that, we must realise that the entire forecast are made knowing the future 
values of the temperature variable. This, in general, is not fulfilled in real life because 
when we make that prediction those values are not available. 
 
5.2.  Alternative model when the temperature is unknown 

It can be harder to predict future temperature values than predict the energy demand 
series. To solve this problem we propose the following two solutions: 

I. Make predictions for different settings according to possible temperature values, 
because the rank of those possible values is pretty narrow in the short run. 

II. Propose forecasts for different settings knowing that only extreme temperatures 
affect the energy demand. Therefore we can introduce “dummy” variables that 
reflect this kind of behaviour. Since the forecasts for daily series are only for the 
short run, it is easier to determine if the temperature will be extreme in the following 
days. 

In our case, we use a model with three “dummy” variables; one for temperatures 
above 28º C, one for temperatures below 8º C and one for standard temperatures. We 
incorporate them to the model instead of the polynomial of second degree we are using 
for temperature. 

The only crucial and significant variable is the one that reflect temperatures above 
28º C. Despite the fact that the goodness of fit statistics are lower than the corresponding 
to the previous model, we have to say that the trend has not periodical components. The 
predictive goodness inside the sample is very good, the CUSUM for the last year of 
observations is inside the confidence interval, the MAPE coefficient is 1,63 and Chow 
test is unimportant. In consequence, we can make use of this model when we do not 
know the exact values of the temperature. 

6. CONCLUSIONS 
 

This work shows the usefulness of space state models in fitting and predicting daily 
time series, as well as the convenience of using the “spline” technique for the treatment 
of annual seasonality. 

The proposed model happens to be highly satisfactory and its most important 
features are: 
1) The fitting explains more than 80% of the series variability. 
2) The “spline” technique allows us to find the behaviour of the trend component free 

of any periodical component. 
3) The forecast errors inside the sample (one step ahead) for different values are less 

than 2% of the original ones. 
4) The post-sample forecast errors made up to 43 periods ahead are less than 2,5% of 

the original values. 
5) The model allows us to interpret in a simple fashion the weekly seasonal effect that 

shows the different behaviour of Mondays and weekends. 
6) The holiday effect changes according to the day of the week the holiday occurs. 
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7) The relation with temperature shows its non-linear effect, increasing the energy 
demand when we have extreme temperatures, and even more when the temperatures 
are high. 

 
 We also recommend alternative methods when future temperature values are 
unknown. In the literature there are models to fit and forecast daily series; among them 
we have ARIMA models or regression models. We can use them for future studies. 
Another line of research would be to find models for other frequencies, and compare their 
behaviour. We can try models for different regions, because it is likely that they have 
different behaviours. 
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