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Abstract
We have investigated the time evolution of a free particle in interaction
with a phonon thermal bath, using the tight-binding approach. A dissipative
quantum walk can be defined and many important non-equilibrium decoherence
properties can be investigated analytically. The non-equilibrium statistics of
a pure initial state have been studied. Our theoretical results indicate that
the evolving wave-packet shows the suppression of Anderson’s boundaries
(ballistic peaks) by the presence of dissipation. Many important relaxation
properties can be studied quantitatively, such as von Neumann’s entropy and
quantum purity. In addition, we have studied Wigner’s function. The time-
dependent behavior of the quantum entanglement between a free particle—in
the lattice—and the phonon bath has been characterized analytically. This result
strongly suggests the non-trivial time dependence of the off-diagonal elements
of the reduced density matrix of the system. We have established a connection
between the quantum decoherence and the dissipative parameter arising
from interaction with the phonon bath. The time-dependent behavior of
quantum correlations has also been pointed out, showing continuous transition
from quantum random walk to classical random walk, when dissipation
increases.

PACS numbers: 02.50.Ga, 03.67.Mn, 05.60.Gb

(Some figures may appear in colour only in the online journal)

1. Introduction

The need to understand the evolution of a wave-packet (for instance, one particle in a one-
dimensional lattice) has been motivated by many problems in solid-state physics [1], quantum
information [2], quantum open systems [3–6] and quantum optics [5, 7], among others. In
solid-state physics, in particular, the spread of a wave-packet from a highly localized initial
state in the tight-binding lattice approximation [1, 8] has drawn the attention of many authors
[9, 10]. Interestingly, the concept of quantum walk (QW), borrowed from classical statistics
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[11–14], has the same properties as a tight-binding free particle [14, 15]. Two kinds of QW
are considered in the literature: discrete-time quantum-coined walk [7, 9, 11, 13, 16–23] and
continuous-time QW [10, 14, 15, 24–27]. In the former (proposed by Aharonov et al [11]),
a two-level state, the so-called coin, rules the unitary discrete-time evolution of a particle
moving in a lattice. On the other hand, the evolution of the particle in the continuous-time QW
is determined by a tight-binding-like Hamiltonian [15, 27]. It is not difficult to see, by simple
comparison, that a mapping between the tight-binding Hamiltonian and the QW model can be
established (see appendix A).

There are some important differences between a classical random walk (CRW) and a
QW and these differences are well known in the literature [6, 9, 10, 28]. The most important
of these differences is the fact that for a tight-binding free particle the deviation σ (t) of
the wave-packet becomes linear in time σ (t) ∼ t (QW), in contrast to the CRW result that
becomes similar to σ (t) ∼ √

t. This issue can be resolved straightforwardly by analyzing,
in the Heisenberg picture, the time evolution of the second moment of the position of the
free particle [26]. QWs have been studied for possible applications in quantum information
and quantum computation algorithms [2, 13]. Discrete-time evolution in random media has
recently been used to study entanglement and quantum correlations in order to understand the
role of noise and the mechanism of decoherence between the internal and spatial degrees of
freedom in a QW [17].

The study of a QW subjected to different sources of decoherence is an active topic that
has been considered by several authors, in particular, due to their interest in understanding
laser cooling experiments [29], modeling blinking statistics [30] and carrying out quantum
simulations [18]. Experimental study of quantum decoherence in discrete-time QW using
single photons in the space was performed in [19]. These authors considered pure dephasing
as a decoherence mechanism and they could explore the quantum to classical transition by
means of tunable decoherence. In other theoretical studies [10, 16, 20–22], the authors analyzed
discrete-time and continuous-time QW in a random environment, and they could also study the
quantum–classical transition. In [31], the authors study QW with decoherence by analyzing a
non-unitary evolution in QW. Experimental analysis of QW in a random environment led to
the study of quantum optical devices [7, 9, 23–25]; interestingly, these experiments also show
the non-classical behavior in dissipative QW (DQW).

In classical statistics and via the central limit theorem, the Gaussian distribution plays
a fundamental role in all random walks with finite mean-square displacement per step
[6, 28]. In quantum statistics, however, this analysis is much more complex because quantum
thermal average must be taken using the reduced density matrix. On the other hand, in the
Markov approximation, the time evolution for the reduced density matrix requires a much
more complex infinitesimal generator, and in fact this generator has been studied extensively,
for many years, and is nowadays called the Kossakoski–Lindblad generator [32, 33]. One of
the most interesting facts that distinguishes quantum mechanics from classical mechanics is
the coherent superposition of distinct physical states. Many of the non-intuitive aspects of the
quantum theory of matter can be traced to the coherent superposition feature. Related to this
issue, an interesting question arises: how does coherent superposition operate in the presence
of dissipation? These subjects have been important issues of research since the pioneer works
of Feynman and Vernon [34, 35] and Caldeira and Leggett [36], among others, see for example
[5, 6, 37–39].

An important fact in modeling a realistic QW is the inclusion of the quantum thermal bath
B from the very beginning in order to get a dissipative open system [4–6]. To emphasize
this fact we call this continuous-time model a DQW, and this may be a mechanism of
decoherence in a QW. Nevertheless, there are many other mechanism of decoherence, see
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for example [31]. To our knowledge this pioneer problem was well posed in van Kampen’s
paper [12], but many other related approaches have also been presented in the literature
[15, 40]. The propagation of photons in waveguide lattices has been studied in recent years
[24, 25], and they are possible scenarios where our present results can be applied.

In this paper, we study an open system in the Markov approximation to continuous time
[26, 41], i.e. a quantum mechanical particle that moves along a lattice by hopping while
interacting with a thermal phonon bath B. We have chosen an interaction Hamiltonian with
the bath in such a way that this interaction produces the hopping in the tight-binding particle.
Therefore, we highlight some of the issues of interpretation of the coherent superposition
by tackling a soluble hopping model. The asymptotic long-time regime of the quantum
probability, Wigner’s function, quantum entropy, quantum purity, etc are characterized as a
function of the dissipation. The long-time decoherent behavior is also explained in terms of the
present dissipative hopping model. This model analytically reproduces the (non-equilibrium)
continuous transition from DQW to CRW when the diffusion coefficient goes to infinity (i.e.
when the temperature of the bath T → ∞).

1.1. A tight-binding open model

We have considered a free-particle model (tight-binding approximation, for example see [8])
constrained to a one-dimensional regular and infinity lattice (in one band side) in interaction
with a thermal bath of phonon B. The total Hamiltonian for this problem can be written in the
form [12]

HT =
(

E01 − �
a + a†

2

)
+

2∑
ν=1

Vν ⊗ Bν + HB. (1)

The first term corresponds to the tight-binding Hamiltonian HS, where a and a† are
translational operators in the Wannier bases |s〉 (it is easy to write these operators in second
quantization, for more details see appendix A) and 1 is the identity operator. The second term
is the interaction Hamiltonian and corresponds to a linear coupling between phonon operators
B1 = B†

2 = ∑
k vkBk and system operators V1 = V †

2 = ��a, here � > 0 is the coupling
parameter. The third term is the phonon Hamiltonian written in terms of boson operators∑

k �ωkB
†

kBk [26, 41, 42]. Here E0 is the tight-binding energy of site and � is the associated
next-neighbor hopping energy.

The quantum master equation (QME) for our DQW model can be obtained by eliminating
the variables of the quantum thermal bath and assuming for the initial condition of the total
density matrix ρT (0) = ρ(0)⊗ρ

eq
B , where ρ

eq
B is the equilibrium density matrix of the quantum

bath B. Then, in the Markov approximation, using [a, a†] = 0 and a†a = 1, the evolution
equation for the reduced density matrix is [26, 41]

ρ̇ ≡ dρ

dt
= −i

�
[Heff, ρ] + D

(
aρa† + a†ρa − 2ρ

)
, (2)

with a trivial effective Hamiltonian: Heff = HS − �ωc1. The diffusion constant is given in
terms of the quantum thermal bath temperature and the coupling constant in the form

D ∝ �2kBT/�,

the additive energy �ωc is related to the Caldeira and Legett frequency cut-off in the ohmic
approximation [36]. For simplicity, we can add an additive constant to the tight-binding
Hamiltonian −E0 + ωc� + �. This assumption does not change the general results and finally
we can write

Heff = �

(
1 − a + a†

2

)
, (3)
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as was presented in [12, 26, 41]. It can be noted from equation (2) that as D → 0 (T → 0 ),
the von Neumann equation is recovered (unitary evolution).

1.1.1. On the second moment of the DQW. From the QME equation (2), we can obtain
the dynamics of any operator; in particular, here we are interested in the evolution of the
dispersion of the position operator q, which in the Wannier basis has the matrix elements (s is
an eigenvalue of q)〈

s |q|s′〉 = s δs,s′ , (4)

note that q is defined as a dimensionless position operator with lattice parameter ε = 1.
Then the quantum thermal time evolution of the first and second moments can be calculated
straightforwardly. In the Heisenberg representation, we obtain

d

dt
q(t) = −i

�

[
q, Heff

]
(5)

d

dt
q2(t) = −i

�

[
q2, Heff

] + 2D1, (6)

where we have used that [q, Heff] = �
2

(
a − a†

)
and that a(t) = a(0), a†(t) = a†(0), then we

obtain for the time evolution of the position operator

q(t) = −i�

2�
(a − a†)t + q(0).

It is simple to realize, just from a physical point of view, why there is no dissipative
term in the equation of motion for q(t). Taking the thermal average in equation (5) we obtain
d
dt 〈q(t)〉 = �

�

∑s=∞
s=−∞ Im[ρs,s−1(t)], then introducing the explicit solution for the density

matrix, equation (13), and using the properties of the Bessel function (with integer indices)∑s=∞
s=−∞ Js+n (x) Js+m (x) = δn,m. We obtain that d

dt 〈q(t)〉 = 0 indicating the conservation of
reflection symmetry at the localized initial condition; otherwise, if d

dt 〈q(t)〉 �= 0, this would
destroy the reflection symmetry principle.

The quantum thermal statistical average—of any operator—in the Heisenberg picture can
be written as 〈A(t)〉 = Tr [A(t)ρ(0)]. Then for the variance of the DQW we obtain

σ (t)2 = 〈
q(t)2

〉 − 〈
q(t)

〉2 = 1

2

(
�t

�

)2

+ 2Dt, (7)

which is the expected dissipative result [6, 12, 26, 41]. From equations (5) and (6), it is possible
to see that von Neumann’s term gives a contribution of the form ∝ t2 for the time evolution of
the second moment, this is a well-known quantum result. In fact for the null dissipation case,
D = 0, we obtain that Anderson’s boundaries (ballistic peak) movement is controlled by the
linear law of the deviation of the wave-packet:

σ (t) =
√〈

q(t)2
〉 − 〈q(t)〉2 = 1√

2

�t

�
, if D = 0.

Therefore, we can associate the quantityVA = 1√
2

�
�

with the velocity of Anderson’s boundaries
in a one-dimensional regular lattice.

In the appendix C, we have calculated the second moment of the position operator by
using the characteristic function, which is useful for calculating all quantum thermal moments.

In the next section we will present, in detail, results concerning the probability profile
of our quantum open model (D �= 0), i.e. a dissipative tight-binding free particle. We will
study the time evolution of the reduced density matrix [42, 43], characterize its decoherence,
and solve, analytically, some correlation functions associated with the coherent superposition
feature.
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2. Time evolution of the DQW

2.1. General properties

In order to consider the evolution of our free particle in interaction with the quantum thermal
bath B, we have to solve the QME, equation (2), for any time. This can be done in the Fourier
representation. Let the Fourier ‘bra-ket’ be defined in terms of the Wannier ‘bra-ket’ in the
form

|k〉 = 1√
2π

∞∑
s=−∞

eiks|s〉,

〈k| = 1√
2π

∞∑
s=−∞

e−iks〈s|.

Then, the QME adopts an explicit form:

〈k1|ρ̇|k2〉 =
[−i

�
(Ek1 − Ek2 ) + 2D(cos(k1 − k2) − 1)

]
〈k1|ρ|k2〉, (8)

where Ek = � {1 − cos k}. Note that the diagonal elements ρk,k(t) ≡ 〈k|ρ(t)|k〉 are constant in
time, ρ̇k,k(t) = 0, for example, for a localized initial condition ρ(0) = |s0〉〈s0| (with s0 = 0)
we obtain

ρk,k(t) = ρk,k(0) = 1

2π
, ∀t, (9)

even so, we can define a pseudo-momentum operator p ≡ m
i� [q, Hs], where m represents the

mass of the free particle in the model. We can calculate any moment of the pseudo-momentum
operator, 〈p j〉 = Tr[p jρ(t)] for j = 1, 2, . . .. For the case j = 1, we obtain 〈p〉 = 0 and for
j = 2, we obtain 〈p2〉 = 1

2 (�
�
)2m2. Then, we can define the quantum thermal second moment

of the velocity v in the following way: 〈v2〉 = 1
2 (�

�
)2 and so we re-obtain the velocity of

Anderson’s boundariesVA = 1√
2

�
�

(see subsection on the second moment of the DQW).
To solve equation (8) we define the function:

F (k1, k2) = i
�

�
(cos(k1) − cos(k2)) + 2D(cos(k1 − k2) − 1), (10)

the general solution of the QME can be written as

〈k1|ρ(t)|k2〉 = ρ(0)k1k2 exp(F (k1, k2)t). (11)

In order to study the suppression of Anderson’s boundaries by the presence of dissipation,
it is convenient to go back to the Wannier representation (|s〉 = 1√

2π

∫ π

−π
dk e−iks|k〉). Adopting

equation (9), as initial condition for the density matrix, we obtain

〈s1|ρ(t)|s2〉 = 1

2π

∫ π

−π

dk1

∫ π

−π

dk2 ei(k1s1−k2s2 )〈k1|ρ(t)|k2〉

=
(

1

2π

)2 ∫ π

−π

dk1

∫ π

−π

dk2 e[i(k1−k2 )(s1−s2 )] eF (k1,k2 )t . (12)

We can solve equation (12) analytically if we consider Bessel’s function properties:
eiz cos θ = ∑∞

n=−∞ inJn(z) einθ ; ez cos θ = ∑∞
n=−∞ In(z) einθ , where Jn and In are Bessel functions

of integer order. Using the following relations J−n(x) = (−1)nJn(x), Jn(−x) = (−1)nJn(x)

and I−n(x) = In(x), In(−x) = (−1)nIn(x), where n is an integer [44, 45], we have obtained an
analytical expression for 〈s1|ρ(t)|s2〉 (for more details, see appendix B):

〈s1|ρ(t)|s2〉 = i(s1−s2 )e−2Dt
∞∑

n=−∞
Js1+n

(
�t

�

)
Js2+n

(
�t

�

)
In(2Dt). (13)

5
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Using
∑∞

n=−∞ J2
n (x) = 1 and

∑∞
−∞ In(x) = ex [44], we can check that equation (13)

fulfils the normalization condition Tr[ρ(t)] = ∑∞
s=−∞〈s|ρ(t)|s〉 = 1, ∀D , and the probability

of finding the particle in the site s in the lattice is

Ps(t) ≡ 〈s|ρ(t)|s〉 = e−2Dt
∞∑

n=−∞

[
Js+n

(
�t

�

)]2

In(2Dt), DQW. (14)

It is straightforward to note that equation (13) contains all the information concerning the
transition from DQW to CRW. In fact, this transition is a genuine non-equilibrium one because
any behavior characterizing the quantum to classical transition will be given in terms of the
time evolution of the density matrix, which of course is not a Gibbsian density matrix [3–5].

If D = 0 (without dissipation, i.e. a closed system), we recover the QW and in this case
the matrix elements 〈s1|ρ(t)|s2〉 reduce to the form (using In(0) = δn,0, where n is an integer)

〈s1|ρ(t)|s2〉D=0 = i(s1−s2 )Js1

(
�t

�

)
Js2

(
�t

�

)
, QW. (15)

In the case D → ∞, we can re-obtain exactly the classical probability [6, 28], where the
off-diagonal elements of ρ(t) in Wannier basis are equal to zero. Alternatively, consider the
limits � → 0 and � → 0 in such a way that

lim
�→0,�→0

�

�
→ 0,

then from equation (14) and using Js+n(0) = δs+n,0, where s + n is an integer it follows (for
any finite time t) that

lim
�→0,�→0

〈s|ρ(t)|s〉 → e−2Dt
∞∑

n=−∞
[δs,−n]2In (2Dt) = e−2Dt Is (2Dt) ,

which is just the probability of the CRW, i.e.

Ps(t) = e−2Dt Is(2Dt), CRW. (16)

We note from equation (16), when t → ∞ that we re-obtain the well-known Gaussian
asymptotic scaling for the CRW probability Ps(t → ∞) → t−1/2√

4πD
(we have used the asymptotic

limit of In(x) ≈ ex√
2πx

, for x → ∞ [44]).

Here, we have considered it appropriate to define a new parameter such that rD = 2D
�/�

(rate of characteristic energy scales in the system) and t ′ = �
�

t a dimensionless time, in
order to plot the analytical expression (14). In figure 1, we show the probability at the site s
Ps(t) = 〈s|ρ(t)|s〉, for different values of the dissipative parameter rD (see, equation (14)).
Similar plots for the probability profile in the presence of dissipation have been analyzed by
Esposito et al [15].

Note from figure 1 that for D = 0 (rD = 0), the system is not interacting with the phonon
bath; in this case, we get a closed system, and therefore the evolution of the wave-packet is
not diffusive but is ballistic, equation (15). So for t ′ = 31.8 we observe two maximum peaks
in sp ≈ ±29, which correspond to ballistic peaks (Anderson’s boundaries), and far away from
these peaks for |s| > sp the probability quickly goes to zero. In the case that |s| < sp, we easily
see oscillatory behavior because of the quantum behavior of the system. If the dissipative
term is small rD � 1 (rD = 0.05) the oscillatory behavior starts to decrease and when the
dissipation is of the order of the hopping energy (rD = 1) or larger (rD = 5, 10, see figure1),
the dissipation dominates in the system and the quantum character vanishes. In this case, the
wave-packet tends to a Gaussian form. This is the regimen for the CRW, equation (16).

In the remainder of the paper, we are going to study the probability profile of the DQW,
the quantum purity, the Wigner function and von Newmann’s entropy as a function of the

6
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Figure 1. Probability Ps(t ′) for an initial condition ρ(0) = |s0〉〈s0| (where s0 = 0) as a function
of position s, for rD = 0, 0.1, 0.5, 1, 5, 10 and t ′ = 31.8, where we have defined the new variables
rD = 2D

�/�
and t ′ = �

�
t (dimensionless time).

dissipative parameter rD. In the Wigner section, we are also going to introduce a criterion
to describe the quantum–classical transition (see inset of figure 5). In a future work, we will
present analytical and numerical results such as the concurrence, negativity, etc as a function
of rD in order to study the decoherence and the entanglement in a bipartite system related to
our DQW.

In figure 2, we show the same facts as in figure 1 (for some values of rD) but in three
dimensions (3D); i.e. we have included an extra axis for the time t ′ (this kind of graphic
representation is usually called quantum carpet). We cut the axis of the probability for
convenience (for example we do not show the probability for t ′ = 0, Ps(0) = 1). In this
quantum carpet, we observe the transition from quantum regimen (figure 1 (a)) to classical
regimen (figure 1 (d)). Oscillatory behavior for small values of D (rD � 1) is observed, and
the oscillations in the probability start to disappear when rD is larger than one.

On the other hand, the quantum purity [2] (PQ(t) ≡ Tr[ρ(t)2]), a quantity that provides
information about whether the state is pure (PQ = 1) or mixed (PQ < 1), can be calculated
analytically. In the present model, quantum purity can be calculated using Bessel properties
[44–46]

PQ(t) = Tr[ρ(t)2] =
∞∑

s1=−∞

∞∑
s3=−∞

〈s1|ρ(t)|s3〉〈s3|ρ(t)|s1〉

= i(s1−s3 )e−2Dt
∞∑

n=−∞
Js1+n

(
�t

�

)
Js3+n

(
�t

�

)
In(2Dt)

× i(s3−s1 )e−2Dt
∞∑

n′=−∞
Js3+n′

(
�t

�

)
Js1+n′

(
�t

�

)
In′ (2Dt).

Using the relations
∑∞

n=−∞ Jn+m(x)Jn+m′ (x) = δm,m′ and
∑∞

n=−∞ I2
n (x) = I0(2x), we

obtain

PQ(t) = e−4DtI0(4Dt).

7
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Figure 2. Representation in 3D of probability Ps(t ′) for an initial condition ρ(0) = |s0〉〈s0| (where
s0 = 0) as a function of position s and t ′, for rD = 0, 0.05, 1, 10 (a)–(d), where the blue regions
indicate, approximately, value zero and red regions have high value for probability. The variables
rD and t ′ are the same as in figure 1.

The quantum purity takes the value one for D = 0 (without dissipation) for all time, and
for the case D �= 0 the quantum purity takes values smaller than one for t > 0 (mixed state).
For D �= 0, the quantum purity takes on the asymptotic power-law behavior PQ(t) ∼ t−1/2, for
t → ∞ (using In(x) ≈ ex√

2πx
, for x → ∞ [44]), in agreement with previous results presented

in [41].
Another important measure that will indicate the presence of quantum behavior is the

Wigner function. In the next subsection, we will study this function.
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2.2. The Wigner function

The Wigner function was originally formulated as a quasi-probability for the position and
momentum of the particle in quantum mechanics. For continuous variables X and K,
representing position and momentum in the phase space, the Wigner function is given by
[47, 48]

W (X, K, t) = 1

π

∫
dY 〈X + Y |ρ(t)|X − Y 〉e2iKY , (17)

where ρ(t) is the time-dependent density operator. The Wigner function could have negative
values whereby it is considered a quasi-joint probability of X and K, and the marginal
distribution for X and K can be obtained in the usual form∫

dKW (X, K, t) = 〈X |ρ(t)|X〉, (18a)

∫
dXW (X, K, t) = 〈K|ρ(t)|K〉, (18b)

where 〈X |ρ(t)|X〉 and 〈K|ρ(t)|K〉 are the time-dependent probability densities for X and K.
The normalization condition for ρ(t) can be checked from equation (17):∫

dX
∫

dKW (X, K, t) = Tr[ρ(t)] = 1. (19)

In our DQW model, the space is an infinite one-dimensional regular lattice. Thus, in this
case, we propose the Wigner function as

W (s, k, t) = 1

2π

∞∑
s′=−∞

〈s + s′|ρ(t)|s − s′〉eiks′
, (20)

where |s〉 is a Wannier basis. This definition fulfils the required conditions for the Wigner
function, see equations (18) and (19), using

∑
s instead of

∫
dX , where k ∈ [−π, π ] (first

Brillouin zone).
Using equation (13) in equation (20), we can write the Wigner function as follows:

W (s, k, t) = e−2Dt

2π

∞∑
n,s′=−∞

i2s′
eiks′

Js+s′+n

(
�t

�

)
Js−s′+n

(
�t

�

)
In(2Dt), (21)

then, after some algebra and using Bessel’s properties [44–46] (
∑∞

n=−∞ einγ Jn+m(x)Jn(x) =
Jm(2x sin(γ /2)) eiβm, where β = π/2 − γ /2), we find

W (s, k, t) = e−2Dt

2π

∞∑
n=−∞

J2s+2n

(
2
�t

�
sin

k

2

)
In(2Dt). (22)

Using equations (18a) and (18b) in equation (22), we recover the probability densities for
position s and momentum k respectively (see, equations (14) and (9)).

Interestingly, the Wigner function has information about the transition from DQW to
CRW. Analyzing the case D = 0 (without dissipation in the system), the Wigner function
adopts the following form:

W (s, k, t)QW = 1

2π
J2s

(
2
�t

�
sin

k

2

)
, D = 0. (23)

In the pure diffusive regimen (� = 0, i.e. the CRW), the Wigner function can be written
as

W (s, k, t)CRW = e−2Dt

2π
Is(2Dt), � = 0. (24)
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Figure 3. Normalized Wigner function W (s, k, t ′)/Wmax as a function of position s and momentum
k, for rD = 0, 0.05, 1, 10 (a)–(d) and t ′ = 30, where Wmax is the maximum value of Wigner
function for each value of rD. We have considered rD = 2D

�/�
and t ′ = �

�
t (dimensionless). The

regions in blue indicate negative values, the ones in sky blue indicate, approximately, zero value
and the red regions have the highest values of the Wigner function.

Then from equations (23) and (24), the Wigner function can be re-written as

W (s, k, t) = 2π

∞∑
n=−∞

W (s + n, k, t)QW W (n, k, t)CRW, (25)

then, changing n → −n and considering that I−n(x) = In(x), we obtain

W (s, k, t) = 2π

∞∑
n=−∞

W (s − n, k, t)QW W (n, k, t)CRW, (26)

this expression shows that the Wigner function of the DQW is given in terms of a non-trivial
space convolution operation between the QW (D = 0) and the CRW (� = 0). For the case
D �= 0, this expression shows the non-locality of the quantum mechanics of a free particle
interacting with the quantum thermal B.

In figure 3, we show the Wigner function from equation (22) or equation (26). We have
normalized the Wigner function with respect to its maximum value Wmax for each value of
rD (i.e. we use W (s, k, t ′)/Wmax, where t ′ = �

�
t and rD = 2D

�/�
). Similar Wigner’s quantum

carpets have been analyzed for a QW on a ring without dissipation in [49]. In figure 3(a), we
observe the quantum behavior for rD = 0. In this case the Wigner function has negative and
positive values, and it shows remarkable oscillatory behavior (see equation (23)). In the case
of small values of the dissipation, rD � 1, we observe (figure 3(b), with rD = 0.05 � 1)
that the oscillatory behavior starts to diminish, and for values of rD � 1 (figures 3(c) and
(d)) the dissipative term is dominant. In this case, the Wigner function takes only positive

10
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Figure 4. Normalized Wigner function W (s, k, t ′)/Wmax as a function of position s and momentum
k, for t ′ = 1, 10, 20, 30 (a)–(d) and rD = 0.05, in this case Wmax is the maximum value of Wigner
function for each value of t ′.

values, therefore it is a well-defined joint probability, and the system resembles a CRW when
rD tends to infinity. In this case, the system is diffusive (see equation (24)).

In a complementary way, we now show the Wigner function (similar to figure 3), but we
have fixed the parameter rD = 0.05 and changed the dimensionless time t ′. In figures 4(a)–(d),
we observe the Wigner function for t ′ = 1, 10, 20, 30. The time evolution of the Wigner
function also shows the transition from the DQW to the CRW.

In order to define a criterion to indicate when quantum correlations dominate over the
classical correlations, or vice versa, we show in figure 5 the Wigner function W0 = W (0, π, t ′),
as function of time t ′. We note an oscillatory behavior of W0 for rD < 1. In the inset of figure 5,
we show the Wigner function W1 = W (0, π, 1.9) as a function of rD (we consider the value
of t ′ where W0 takes their first minimum). We use this as a criterion to indicate when quantum
correlations are more important than classical correlations, and from figure 5, we note that for
rD � rc

D, with rc
D = 0.52, the Wigner function is W0 < 0, therefore, the quantum correlations

dominate in the system. For the case when rD > rc
D, the Wigner function is non-negative for

all parameters in the system. In this case, the classical correlations dominate over the quantum
correlations. Therefore, in this situation, we could say that the Wigner function is a joint
probability density in the phase space (because W (s, k, t) � 0). This criterion is not unique,
other criteria could also be used.

These results are consistent with the previous results obtained with the probability of
finding the particle in the lattice site (see figures 1 and 2).

11
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Figure 5. The Wigner function W0 = W (0, π, t ′) as a function of time t ′, for rD = 0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 1, 2. The Wigner function W1 = W (0, π, 1.9), as a function of rD, see inset. For
rD � 0.52 the Wigner function is non-negative, and well defined as a joint probability density in
the phase space.

2.3. The long-time limit of the reduced density matrix

In this subsection, we have analyzed the long-time limit behavior of the reduced density matrix.
The equation (12) can be written in the form

〈s1|ρ(t)|s2〉 =
∫ π

−π

dk1

2π
ei �t

�
cos k1I(k1), (27)

where

I(k1) =
∫ π

−π

dk2

2π
e−i �t

�
cos k2 cos

[
(k1 − k2)(s1 − s2)

]
e2Dt(cos(k1−k2)−1). (28)

By symmetry the term proportional to sin [(k1 − k2) (s1 − s2)] cancels out. Noting that in the
long-time limit I(k1) can be calculated by using the stationary phase approximation [50], we
obtain (in the limit: �/� � 2D and t → ∞)

I(k1)�
√

2π�

�t

{
e−2Dt(1−cos k1)−i( �t

�
−π/4) cos k1s1 + e−2Dt(1+cos k1)+i( �t

�
−π/4) cos(k1s1 − πs2)

}
.

Introducing this expression in equation (27) we can apply once again the stationary phase
approximation (taking care that the saddle point (0, 0) in the bi-dimensional integration does
not contribute), then for the reduced density matrix in the asymptotic limit ((�/�)t → ∞) we
obtain

〈s1|ρ(t)|s2〉 → 2�

π�t

{
cos π(s1 + s2) + cos π(s1 − s2)

+ e−4Dt

[
sin

(
2
�

�
t

)
cos(s1 + s2)

π

2
cos(s1 − s2)

π

2

]

− ie−4Dt

[
cos

(
2
�

�
t

)
sin(s1 + s2)

π

2
sin(s1 − s2)

π

2

]}
. (29)
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This result is in agreement with the asymptotic approximation of the Bessel function when it is

replaced in the equation (13) (for x → ∞, Jn(x) ≈
√

2
πx cos(x − π

4 − nπ
2 )). Thus, we see that

for long time, terms proportional to e−4Dt will contribute to the quantum entropy production
associated with the reduced density matrix. In fact, this contribution is proportional to the
following matrix (in Wannier representation):

· · · · · · · · · − 1, 0, +1 · · · · · · · · · · · ·
...
...
...

−1
0

+1
...
...
...

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . · · · · · · · · ·
· A −iB A −iB A −iB A ·
· iB A iB A iB A iB ·
· A −iB A −iB A −iB A ·
· iB A iB A iB A iB ·
· A −iB A −iB A −iB A ·
· iB A iB A iB A iB ·
· A −iB A −iB A −iB A ·
· · · · · · · · · . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(30)

where A = 2�

π�t (1 − sin(2�t/�)e−4Dt ), B = 2�

π�t cos(2�t/�) e−4Dt . This means that
asymptotically the probability profile ρss(t) goes to zero uniformly in the lattice, similar
to ∼ 2�

π�t (1 − sin(2�t/�) e−4Dt , and the off-diagonal elements form a time-dependent
coherent binary structure of {A,±iB} (in the Wannier representation) that also goes to zero
asymptotically as ∼ 1/t. Due to the fact that Anderson’s boundaries move at a finite velocity
VA = 1√

2
�
�

away from the initial condition (state |s0〉 〈s0|), we expect that the DQW will be

always inside a (time-dependent) finite domain of maximum size L ∼
√

〈q(t)2〉 − 〈q(t)〉2 � ε

(ε is the lattice parameter, we take ε = 1), which increases linearly in time. Then, we can
calculate the asymptotic eigenvalues of 〈s1| ρ(t) |s2〉 by approximating ρ(t) to be a L × L
finite-domain matrix.

It is simple to calculate the non-null eigenvalues of a matrix of dimension L × L of the
form (30). For D = 0 (without dissipation) there is only one non-null eigenvalue:

λ = 2�

π�t

[
L − sin

(
2
�

�
t

)]
. (31)

On the other hand, for the case D �= 0, but �/� � 2D, we obtain only two non-null eigenvalues
for the reduced density matrix. These eigenvalues are as follows:

λ± = 2�

π�t

{
L − sin

(
2
�

�
t

)

±
√

1 + (L2 − 1) e−8Dt − 2L e−4Dt sin

(
2
�

�
t

)
+ e−8Dt sin2

(
2
�

�
t

)}
. (32)

As expected, we observe from this expression that if we take D = 0, we recover the
equation (31). These results allow us to calculate the long-time behavior of the von Neumann
entropy.
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3. Quantum entanglement in the DQW

3.1. Time evolution of von Neumann’s entropy

In order to study the irreversibility behavior of a free particle in interaction with a
quantum thermal bath B, i.e. our DQW model, we have calculated von Neumann’s entropy
corresponding to non-equilibrium situations, assuming that the system is prepared in a highly
localized state (i.e. we adopt the initial condition ρ(0) = |s0〉 〈s0|, with s0 = 0).

S(t) = −Tr[ρ(t) ln ρ(t)]. (33)

In an open quantum system the reduced density matrix evolves in a Markovian
approximation, following the QME (equation (2)). Due to the dissipation, the reduced density
matrix ρ(t) will not be diagonal at any time t > 0. The information of the quantum
entanglement between the quantum thermal bath and our free particle—in the lattice—can be
obtained from the reduced density matrix given in equation (13). Due to the fact that the total
system is a pure state, the von Neumann entropy for the reduced density matrix can be used
to measure the entanglement. Then we should calculate von Neumann’s entropy numerically
using ρ(t) in the Wannier base. We have fixed the size of the chain to be L, with L ≈ VAt
where VA = 1√

2
�
�

, thus we have diagonalized the reduced density matrix. Then we can use the
following expression for the quantum entropy:

S(t) = −
∑

i

�i ln �i, (34)

where �i is an eigenvalue of the reduced density matrix 〈s1|ρ(t)|s2〉 in the domain [−L, L] .

We expect that for finite times (even in an infinite lattice) S(t) �= ∞. We have carried out this
calculation numerically and we have shown in figure 6 S(t) as a function of time t ′ = �

�
t for

different values of the dissipative parameter rD = 2D
�/�

.
In figure 6(a), we observe the quantum entropy as a function of rD and t ′ (3D visualization).

As expected for rD = 0 (D = 0), the quantum entropy is S(t ′) = 0 for all t ′ � 0. In this
case the quantum entanglement between the free particle in the lattice and the phonon bath
is zero, which means we can write the wavefunction of the total system as a product of one
state of the free particle in the lattice and one of the phonon bath (separable state). Another
trivial result is the case that t ′ = 0, where the quantum entropy is zero for rD � 0 (in this case
ρ(t ′ = 0) = |s0〉〈s0|). In the presence of dissipation the total system is no longer a separable
state between the particle in the lattice and environment. The reduced density matrix ρ(t) is a
mixed state (for D > 0), and the quantum entropy starts increasing in time for a fixed value of
rD. We also note that for a fixed value of t ′, the magnitude of the quantum entropy increases as
rD increases. The quantum entropy gives information about the transition from the DQW to the
CRW, which is consistent with the results obtained above concerning the probability profile
and the Wigner function. Finally, in figure 6(b), we show results of the quantum entropy as a
function of t ′ and different values of rD.

Similar analyses to measure quantum correlations have been carried out by considering a
free particle (in a lattice) with an additional internal degree of freedom: the quantum ‘coin’.
Thus, the correlation between the coin and the spatial degree of freedom has been studied
in detail, and these models share some similarities with our results despite the fact that by
considering the quantum coin as the thermal bath, the latter has a finite Hilbert space [17, 51].

Interestingly, by introducing the stationary phase approximation in equation (12), it is
possible to obtain asymptotic behavior for 〈s2| ρ(t) |s1〉, then we can study the time dependence
of S(t) in the long-time regime analytically.
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Figure 6. von Neumann’s entropy as a function of t ′ and rD (a). This function measures the
quantum entanglement between the particle in the lattice and the phonons bath. We show a plot in
2D (b) of quantum entropy as a function of t ′ for different values of rD = 0, 0.01, 0.05, 0.1, 0.5,
1, 2.

3.1.1. The long-time limit of von Neumann’s entropy. Having the result of equation (29) we
can re-write von Neumann’s entropy in the long-time regime in the form

S(t) = −
∞∑

s1=−∞

∞∑
s2=−∞

〈s1|ρ(t)|s2〉〈s2| ln ρ(t)|s1〉

� −
L∑

j=1

λ j ln λ j, (35)

here λ j are the eigenvalues associated with the asymptotic long-time regime of the reduced
density matrix 〈s1| ρ(t) |s2〉. Using equation (32) in equation (35) and considering L � 1 (for
simplicity, we re-normalized the eigenvalues of ρ(t)), we obtain (when �

�
� 2D and �

�
t � 1)

S(t) � −
(

1 − e−4Dt

2

)
ln

(
1 − e−4Dt

2

)
−

(
1 + e−4Dt

2

)
ln

(
1 + e−4Dt

2

)
. (36)

In addition, another asymptotic approximation to S(t) can be made if we consider D ∼ 0
(with Dt � 1), so we can approximate e−4Dt → 1 − 4Dt and replacing this expression in
equation (36) we get a simpler expression for the quantum entropy in the form

S(t) � −2Dt ln(2Dt), Dt � 1.
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Note that in the limit D → 0 (even when t � 1) the quantum entropy S(t) → 0. We
have checked this analytical result with our numerical calculation using equation (34) and the
agreement is excellent, see figure 6.

4. Conclusions

A free particle—in an infinite regular lattice—in interaction with a thermal phonon bath has
been studied by tracing out the degree of freedom of the bath. We then worked out the quantum
master equation for a dissipative tight-binding model.

We have solved the master equation analytically by using Bessel functions, and obtained
the reduced density matrix ρ(t) as a function of the scale energies of the system (�/�, D). We
have also studied the transition from dissipative quantum walk (DQW) to classical random
walk (CRW) in terms of parameters D and �/� (or rD = 2D

�/�
). In the case when 2D � �/�

(rD � 1), the quantum behavior is more important than the dissipation in the system. In
the opposite case, we re-obtain the CRW 2D � �/� (rD � 1) because in this case the
dissipation creates decoherence in the system. We have studied the Wigner function to analyze
the pseudo-probability densities in the phase space. This function is very useful as an indicator
of this quantum–classical transition.

As an alternative approach to the study of the transition from DQW to CRW we have used
tools from quantum information theory (as a function of dissipative parameter) to analyze the
reduced density matrix. To describe this transition we have used von Neumann’s entropy S(t)
to measure the quantum entanglement between the free particle—in a lattice—and the phonon
bath. We observed that for D = 0 the quantum entropy is S(t ′) = 0 for t ′ � 0 (closed system),
and when D increases we show that quantum decoherence starts to appear and therefore the
quantum entropy increases in time with a law which is slower than that from classical statistics
(S(t)CRW ∼ ln t) [6, 28]. Asymptotically for D → 0, the quantum entropy turns out to be
only a function of the dissipative parameter D. This fact also indicates the beginning of the
transition from the DQW to the CRW.

This analytical model allows us to study the effect of decoherence in the DQW as a
function of the two typical energies of the system. We can conclude that in the present this
model there are two characteristic time scales: the dissipative time τD ∼ 1/D and the hopping
time τH ∼ �/�; the competition between these time scales controls the decoherence and
correlation mechanism in the system. For example, the quantum purity PQ(t) is controlled by
τD, but in general the entropy and the interference phenomena appearing in the probability
profile or in the Wigner phase space pseudo-distribution are controlled by the competition
between these time scales.

The interesting problem of the propagation of photons in waveguide lattices is possible
scenarios where our present results can be applied, also the analysis of the entanglement of
a bipartite system can be studied in the present framework, works along these lines are in
progress. In this way, the present model gives insight into the effect of dissipation in more
complex quantum systems, for instance, the analysis of quantum correlations between two
particles—in a regular lattice—in interaction with a phonon bath.
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Appendix A. On the second quantization and the one-particle tight-binding
Hamiltonian

A free Hamiltonian in the tight-binding approximation for spinless particles (fermion) can be
written in second quantization in the form [52]

HS = E0

∞∑
s=−∞

c†
s cs − �

2

( ∞∑
s=−∞

c†
s−1cs + c†

s+1cs

)
, (A.1)

where c†
s and cs are creation and destruction operators in the site s of the lattice respectively

(| . . . , 0, 1s, 0, . . .〉 = c†
s |0〉, where |0〉 is the empty state). Then considering only one particle

it is straightforward to compare equation (A.1) with HS in equation (1), if we replace a and a†

with a combination of c†
s′ and cs′ , in the following way:

a ⇒ R =
∞∑

s=−∞
c†

s−1cs, a† ⇒ R† =
∞∑

s=−∞
c†

s+1cs, (A.2)

where cs are acting in the Fock space. Therefore, we can also check that R and R† commute in the
general case for many particles (where R†R = RR† = ∑∞

s=−∞ c†
s cs − ∑∞

s,s′=−∞ c†
s+1c†

s′−1cscs′ ),
and for one particle in the lattice we obtain RR† = 1.

Equation (A.2) shows the expected mapping from Fock’s space into the Winner basis. Then
the connection between the tight-binding Hamiltonian and the QW model can be established.

Appendix B. Reduced matrix density

Here, we show how to obtain equation (13). Replacing the following relations for the Bessel
function eiz cos θ = ∑∞

n=−∞ inJn(z) einθ ; ez cos θ = ∑∞
n=−∞ In(z)einθ in equation (12), where Jn

and In are a Bessel functions of integer order [44, 45], we find

〈s1|ρ(t)|s2〉 =
(

1

2π

)2

e−2Dt
∞∑

m1,m2,n=−∞
Jm1

(
�t

�

)
Jm2

(
�t

�

)
In(2Dt)

× im1+m2

∫ π

−π

dk1ei(s1+m2+n)k1

∫ π

−π

dk2e−i(s2−m1+n)k2 .

Using the definition of Kronecker delta: δs,s′ = 1
2π

∫ π

−π
eik(s−s′ ) in the previous expression,

we finally obtain

〈s1|ρ(t)|s2〉 = i(s1−s2 )e−2Dt
∞∑

n=−∞
Js1+n

(
�t

�

)
Js2+n

(
�t

�

)
In(2Dt).

Appendix C. Moments of the position operator—the characteristic function

We have defined a characteristic function [6] for calculating moments of position operator q
in the following way:

G(ξ ) = Tr[ρ(t) eiξq] =
∞∑

l=−∞
〈l|ρ(t)|l〉eiξ l, (C.1)
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thus the quantum moments of q can be obtained using the following expression:

〈q(t)m〉 = 1

im
dm

dξm
G(ξ )

∣∣∣∣
ξ=0

, (C.2)

Using equation (13) in equation (C.1), we can write the characteristic function in the form

G(ξ ) = e−2Dt(1−cos ξ ) J0

(
2t

�

�
sin

ξ

2

)
, (C.3)

here we have said that
∑∞

n=−∞ einγ Jn+m(x)Jn(x) = Jm(2x sin(γ /2)) eiβm, where β =
π/2 − γ /2. From this characteristic function all the moments of the position operator can
be calculated straightforwardly. In particular, we can re-obtain the variance of the DQW (see
equation (7)). Note that in the classical limit � = 0 we recover the expected characteristic
function associated with the CRW [6, 28]. In general, equation (C.3) shows that the non-
equilibrium behavior of the characteristic function of the DQW is the product of the classical
one and the quantum characteristic function J0

(
2t �

�
sin ξ

2

)
.
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