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Abstract

Process network problems can be formulated as generalized disjunctive programs where a logic-based representation is used to deal with
the discrete and continuous decisions. A new deterministic algorithm for the global optimization of process networks is presented in this
work. The proposed algorithm, which does not rely on spatial branch-and-bound, is based on the logic-based outer approximation that exploits
the special structure of flowsheet synthesis models. The method is capable of considering non-convexities, while guaranteeing globality in
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he solution of an optimal synthesis of process network problem. This is accomplished by solving iteratively reduced NLP subpr
lobal optimality and MILP master problems, which are valid outer approximations of the original problem. Piecewise linear u
verestimators for bilinear and concave terms have been constructed with the property of having zero gap in a finite set of points.
ptimization of the reduced NLP may be performed either with a suitable global solver or using the inner optimization strategy that is

n this work. Theoretical properties are discussed as well as several alternatives for implementing the proposed algorithm. Sever
ere successfully solved with this algorithm. Results show that only few iterations are required to solve them to global optimality.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

The synthesis of process networks can be formulated as
eneralized disjunctive programming (GDP) problems. GDP

s an alternative to mixed integer non-linear programming
MINLP) for modeling problems where both continuous and
iscrete decisions are involved. GDP allows the combina-

ion of algebraic and logic equations to represent a synthesis
roblem in a more natural way.

GDP problems can be solved as MINLP problems by
eplacing each disjunction with its big-M or its convex hull
eformulation (Lee & Grossmann, 2003). Major methods
or MINLP problems include branch-and-cut, which is a

∗ Corresponding author. Tel.: +1 41 22 68 3642; fax: +1 41 22 68 7139.
E-mail address: grossmann@cmu.edu (I. Grossmann).

generalization of the linear case (Stubbs & Mehrotra, 1999)
generalized benders decomposition (GBD) (Geoffrion,
1972), outer approximation (OA) (Duran & Grossmann
1986; Fletcher & Leyffer, 1994) and extended cutting pla
(ECP) method (Westerlund & Petterson, 1995). GBD and
OA are iterative methods that solve a sequence of alte
NLP subproblems with all the discrete variables fixed,
MILP master problems that perform the optimization
the discrete space. The ECP method relies on succe
linearizations to build MILP approximation problems.

There are also specific algorithms that exploit the disj
tive structure of the model. In the solution method byHooker
and Osorio (1999)for linear problems, a search tree
created by branching on the logic expressions. A contin
relaxation of the problem is solved at each node of
tree.

098-1354/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
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Lee and Grossmann (2003)presented an optimization
algorithm for solving general non-linear GDP problems.
This algorithm consists of a branch-and-bound search that
branches on terms of the disjunctions and considers the
convex hull relaxation of the remaining disjunctions.Türkay
and Grossmann (1996)proposed a logic-based outer ap-
proximation algorithm that solves non-linear GDP problems
for process networks involving two terms in the disjunction.
Since the NLP subproblem only involves the active terms of
the disjunctions, this algorithm overcomes difficulties that
arise in the synthesis of process network problems, such as
singularities that are due to zero flows. This algorithm has
been implemented in LOGMIP, a computer code developed
by Vecchietti and Grossmann (1999).

All the methods mentioned above assume convexity to
guarantee convergence to a global solution. Therefore, when
applied to non-convex problems, these algorithms may cut
off the global optimum.

Viswanathan and Grossmann (1990)proposed a heuristic
modification to the OA algorithm for MINLP in order to
reduce the likelihood of cutting-off part of the feasible
region. They introduced slacks in the linearization of
non-convex constraints, and included them in an augmented
penalty function. The search is stopped when there is no
improvement in the NLP subproblems.

Rigorous global optimization methods for addressing
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and primal and primal bounding NLP problems. The bound-
ing problems are constructed replacing the non-convex func-
tion by known underestimating functions. Solution of primal
problems involves the application of NLP global optimiza-
tion algorithm.

In this work, we propose a new algorithm for solving
non-convex GDP problems that arise in process synthesis.
It exploits the particular structure of this kind of model, as
in the case of the Logic-Based OA algorithm byTürkay
and Grossmann (1996). The proposed modifications make
the algorithm capable of handling non-convexities, while
guaranteeing the global optimum of the synthesis of
process networks. This is accomplished by constructing a
master problem that is based on valid piecewise bounding
representations of the original problem and by solving the
NLP subproblems to global optimality. An NLP global
optimization strategy is also proposed in this work.

Theoretical properties are discussed as well as several al-
ternatives for implementing the proposed algorithm. Several
numerical examples are presented to illustrate the perfor-
mance of this method.

2. Background
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on-convexities in NLP problems have been develo
hen special structures are assumed in the continuous

Horst & Tuy, 1996; Floudas, 2000; Quesada & Grossman
995; Ryoo & Sahinidis, 1995; Visweswaran & Flouda
996; Zamora & Grossmann, 1999). Tawarmalani an
ahinidis (2002)have developed the Branch-And-Redu
ptimization-Navigator (BARON), a software for gene
urpose global optimization that implements a spatial bra
nd-bound method combined with reduction technique

he variables bounds. For non-convex MINLP proble
djman, Androulakis, and Floudas (2000), Kesavan an
arton (2000), Smith and Pantelides (1999), and
awarmalani and Sahinidis (2004)have proposed glob
ptimization algorithms based on spatial branch-and-b
earch.Lee and Grossmann (2001)proposed a two-leve
ranching scheme for solving non-convex GDP probl

o global optimality and specialized the algorithm to G
roblem with bilinear equality constraints (2002).

Spatial branch-and-bound methods can be computa
lly expensive, since the tree may not be finite (excep
-convergence). For the case of process networks, th
he added complication that the NLP subproblems are
lly difficult and expensive to solve. Thus, there is a str
otivation for developing a decomposition algorithm for

lass of problems that does not rely on spatial branch-
ound.

An outer-approximation strategy for addressing the gl
ptimization of non-convex MINLP problems was recen
roposed byKesavan, Allgor, Gatzke, and Barton (2004). The
lgorithm solves alternatively relaxed master MILP probl
The GDP model for synthesis of process networks is g
s follows:

min Z =
∑

j

cj + f (x)

s.t. g(x) ≤ 0


Yj

hj(x) ≤ 0

cj = γj


 ∨




¬Yj

Bjx = 0

cj = 0


 j ∈ D

Ω(Y ) = true

x ≥ 0, c ≥ 0, Yj ∈ {true, false}

(O-GDP)

he non-linear GDP model (O-GDP) contains continu
ariablesx and c, and Boolean variablesY. The disjunc
ionsD apply for the processing units. If a process unit ex
Yj = true), the constraintshj describing that unit are enforce
nd a fixed chargeγ j is applied. Otherwise (Yj = false), a sub
et of continuous variables and the fixed charges are
ero. The matrixBj is such that theith row is the unit vecto
j
i = ei, the ith variables must be set to zero forYj = false
nd zero row for variables that must not be set to zero
j = false. For convenience in the presentation, we con

hat the units are modeled with inequalities. This is not a
ere restriction, since it is always possible to relax an equ
onstraint into two inequality constraints. Alternatively, t
ay be relaxed as inequalities if prior analysis is perfor

o determine the sign of its Lagrange multipliers (e.g.
azaraa, Sherali, & Shetty, 1993).
The OA algorithm requires the solution of NLP subpr

ems, which are obtained by fixing the Boolean variables
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MILP master problems. The master problem is formulated by
using hyperplanes that replace the non-linear functions. If the
original problem is convex, these hyperplanes underestimate
the objective function and overestimate the original feasible
region, and therefore, the master problem provides a lower
bound of the optimal solution of (O-GDP) (e.g. seeDuran &
Grossmann, 1986).

The NLP subproblem for fixed values{Yk
j }

j ∈ D
that satisfy

Ω(Yk) = true, is as follows:

min Z =
∑

j

cj + f (x)

s.t. g(x) ≤ 0

hj(x) ≤ 0

cj = γj

}
for Yk

j = true

Bjx = 0

cj = 0

}
for Yk

j = false

x ≥ 0, c ≥ 0

(R-NLP)

This NLP may be non-convex, and therefore, it may not
have a unique local optimum.

As it was mentioned before, the master MILP problem
i 6)
i ply-
i LP
i und-
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i
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min Z = −1.8x6 + c1 + c2 + c3

s.t. x5 = x3 + x4


Y1

x3 = 5x1 − 9

x1 = 2

c1 = 30


 ∨




¬Y1

x1 = x3 = 0

c1 = 0







Y2

x4 = 3x2 − 1

x2 = 1

c2 = 55


 ∨




¬Y2

x2 = x4 = 0

c2 = 0







Y3

x6 + 1 − exp(x5) ≤ 0

c3 = 9


 ∨




¬Y3

x6 = x5 = 0

c3 = 0




Y1 ⇒ Y3 Y2 ⇒ Y3

Y1 ∨ Y2

Yj ∈ {true, false}
x6 ≤ 25

cj, xi ≥ 0, i = 1, . . . , 6, j = 1, 2, 3

If one were to solve this problem with the Logic-Based
OA, one NLP subproblem has to be solved in order to obtain
a feasible point for the linearization of the constraint in the
t ing
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n the Logic-Based OA byTürkay and Grossmann (199
s obtained by linearizing the non-linear terms, and ap
ng the convex hull of the disjunctions. However, if the N
s non-convex, this process does not provide a valid bo
ng relaxation of the original problem, and therefore, the
lgorithm can be trapped in a suboptimal solution. Th

llustrated in the next section.

. Motivating example

Let us consider the following simple GDP problem
llustrate how the Logic-Based OA algorithm can fail to fi
he global solution.

Fig. 1. Feasible region for disjunction 3 at first master.
hird disjunction. Let us consider the first NLP correspond
o Y ={true, true, true}. The optimal solution of this firs
ubproblem isx3 = 1,x4 = 2,x5 = 3,x6 = 19.09,Z = 59.65. The
inear constraint that replaces the non-linear inequality in
hird disjunction is,

6 + 41.17− 20.08x5 ≤ 0

With this inequality, the master problem is now infeasi
ince the discrete decisions that could be taken (Y ={true,
alse, true} andY ={false, true, true}) are both infeasible i
he x-space (Fig. 1) and the algorithm stops. However,
lobal optimum occurs when units 1 and 3 are selected,
5 = 1, x6 = 1.72 andZ = 35.91.

. Lower bounding master problem

The proposed algorithm iterates between the subprob
R-NLP) where all the boolean variables of the GDP
xed, and master problem (MILP-1) that predicts n
alues for the boolean variables. The key point of
lgorithm is the construction of master problem (MILP

hat rigorously overestimates the original feasible reg
o accomplish this a convex GDP is derived, replacing
on-convex terms in the functionsg, f andh by valid convex
nderestimators. The underestimators are constructed
partition of the original domain. This convex GDP

hen linearized and converted into an MILP problem
ormulating the convex hull of the disjunctions. In orde
mprove the outer approximation, the partition is refined



M.L. Bergamini et al. / Computers and Chemical Engineering 29 (2005) 1914–1933 1917

supporting hyperplanes are added to the master problem.
The estimation over a partition of the entire domain will
require additional continuous and discrete variables.

Problems (R-NLP) must be solved to global optimality.
A local lower bounding problem (MILP-2) is constructed to
find rigorous lower bound to the global optimum of problem
(R-NLP).

4.1. Transformation strategies

It will be assumed that the non-convex terms are univariate
concave and bilinear functions. This is not a very restrictive
assumption sinceSmith and Pantelides (1999)have shown
that a suitable reformulation in terms of convex, univariate
concave, bilinear and linear fractional functions can be
applied to any model of process synthesis that involves
algebraic functions. The convex envelopes of these types of
non-convex functions are widely known (McCormick, 1976;
Tawarmalani & Sahinidis, 2002; Zamora & Grossmann,
1999) and they provide the tightest relaxation for the
corresponding function. Moreover, every problem with
concave univariate, bilinear and linear fractional functions
can be reformulated so that it involves only concave and
bilinear functions. This just requires the introduction of a
new variablezij = xi

xj
. The new variablezij replaces every

occurrence of the fractional term and the bilinear constraint
x
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of f with the following property:

sup{f (x) − f u
D(x), x ∈ D} ≤ C δ(D)

whereC is a non-negative constant, independent ofD and
δ is a measure of sets inRm. Note that the convex envelope
of bilinear and concave univariate terms exhibits this prop-
erty (Floudas, 2000). This is the underlying fact that supports
convergence of spatial branch-and-bound algorithms.

Consider a partition{Dk}k∈I of D (Dk ∩ Dk′ = Ø for k 
= k′
and∪k ∈ I Dk = D) and letf u

Dk
be the underestimator off

constructed overDk. Define the piecewise underestimator
f u(x) = ∑

k ∈ I f u
Dk

(x)χk(x), whereχk denotes the charac-
teristic function ofDk in D: χk(x) = 1 if x ∈ Dk, 0 otherwise.
Then,

sup{f (x) − f u(x), x ∈ D}
= max

k ∈ I
{sup{f (x) − f u

Dk
(x), x ∈ Dk}} ≤ C max

k ∈ I
{δ(Dk)}

Thus, it is possible to tighten this underestimator as much as
it may be required by considering an appropriate partition.

Given a partition{Dk}k∈I of D, the estimatorfu is mathe-
matically formulated through the following disjunction:

k


 wk

u



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jzij = xi is added to the model.
However, another alternative for certain terms tha

ot belong to the classes listed before is a variable t
ormation strategy. The idea in variable transformation
xpress the constraints in a different space, such that
ecome convex. An example are exponential transforma
pplied to Geometric Programs to convexify these probl
or Generalized Geometric Programs,Pörn, Björn and
esterlund (2005)propose a single variable transformat

nd approximation of the inverse transformation func
y piecewise linear function. Different transformat

unctions have been proposed by these authors for sign
unctions (Björn, Lindberg, & Westerlund, 2003). These
ransformations will not be explored in this paper.

In the next subsection, special piecewise estimator
erived for concave univariate and bilinear functions.

.2. Under and overestimators for non-convex terms
onstructed on partitions of the original domain

Approximation of non-linear separable functions
iecewise-linear estimators has been addressed fo
arizing a non-linear problem (Dantzig, 1963; Nemhause

Wosley, 1999). Piecewise linear estimators are va
nderestimators for concave terms and valid overestim

or convex terms, but they lack bounding properties for n
oncave and non-convex terms. In this section, valid p
ise underestimators are formulated in disjunctive form
Let f: Rm → R be a non-convex function and letD be the

omain of interest. Letf u
D : Rm → R be an underestimat
∨
∈ I

f u(x) = fDk
(x)

x ∈ Dk


herewk is a Boolean variable for activating/deactivating

th term of the disjunction.
It is interesting to note that whenf is bilinear or concav

nivariate and the underestimatorf u
Dk

is a convex envelop
n Dk, the projection of the convex hull formulation of th
isjunction onto the (x, f)-space (let us denote it byPx,f) re-
overs the convex envelopefce in D. To show this, let us no
rst thatPx,f is a convex set and belongs to the hypographf,
nd therefore,fP(x) = min{y:(x,y)∈Px,f} is a convex functio
atisfyingfP(x) ≤ f(x). Then,fP(x) ≤ f ce(x).

Conversely, Px,f contains the sets φk =
(x, f u

Dk
(x)), x ∈ Dk}, for all k ∈ I (φk is the projection

f the facet defined bywk = 1). Actually,Px,f is the convex
ull of the union∪k ∈ I φk. Then, sincef u

Dk
is the convex

nvelope off on Dk, φk is contained in the epigraph off ce,
nd alsoPx,f is in it. Then,fP(x) ≥ f ce(x).

In the remaining part of this section, the specific piece
nderestimators are obtained.

.2.1. Univariate concave terms
The convex envelope of a univariate concave func

ver an intervalI = [xlo, xup] is the linear function match
ng the original one at the extreme points of the interval.
nderestimator constructed on a partition{Ik}k = 1,. . .,K of I
Ik = [xk,xk+1]) is piecewise linear and matches the functio
+ 1 points{xk}k = 1,. . ., K+1. The mathematical formulatio

n terms of mixed-integer linear constraints is (seeAppendix
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A for derivation):

x =
K∑

k=1

λkx
k + (wk − λk)xk+1

f u =
K∑

k=1

λkf (xk) + (wk − λk)f (xk+1)

0 ≤ λk ≤ wk

K∑
k=1

wk = 1

wk ∈ {0, 1}

4.2.2. Bilinear terms
The convex envelope of bilinear terms on a rectangular do-

mainD is given inMcCormick (1976). It estimates a bilinear
function with zero gap in the boundary ofD and the maximum
approximation gap depends linearly on the area ofD.

Let us consider the bilinear termf(x,y) = xy, defined in
the domainD = [xlo, xup] × [ylo, yup], and consider theK + 1
pointsxlo = x1, x2, . . ., xK+1 = xup. In Appendix B, the deriva-
tion of the piecewise convex underestimator off over the par-
tition {Dk}k=1,. . ., K, Dk = [xk, xk+1] × [ylo, yup] is presented.
The following formulation is obtained,

bi-
s

rm

ue
the
us

as

follows:

f (x) = f o(x) +
∑
i ∈ F

fi
nc(x)

g(x) = go(x) +
∑
i ∈ G

gi
nc(x)

hj(x) = ho
j (x) +

∑
i ∈ Hj

hji
nc(x)

wherefo,ho,go are convex terms andf nc
i ,hnc

i ,gnc
ji are the non-

convex terms (concave univariate or bilinear terms) of the
corresponding function. Given a gridpoint setK, the hybrid
convex bounding GDP problem is as follows:

minZL =
∑

j

cj + α

s.t. α ≥ f o(x) +
∑
i ∈ F

z
f
i

go(x) +
∑
i ∈ G

z
g
i ≤ 0

f u
i,K(x, w, t) ≤ z

f
i i ∈ F

gu
i,K(x, w, t) ≤ z

g
i i ∈ G


Yj

ho
j (x) +

∑
i ∈ H

zh
ji ≤ 0


 ∨




¬Yj

Bj


 x

w


 = 0


 j ∈ D

N on-
c
a They
a
v r
d
t nt set
K nd
t und
t

go-
r

T
t
o

P t
i e
p
f

i

x = υ1 + υ2 + · · · + υK

y = γ1 + γ2 + · · · + γK

f u =
K∑

k=1

max{υkylo

+xkγk − xkylowk, υkyup + xk+1γk − xk+1yupwk}
xkwk ≤ υk ≤ xk+1wk

ylowk ≤ γk ≤ yupwk k = 1, . . . , K

K∑
k=1

wk = 1

wk ∈ {0, 1}

Note thatf u = xy whenx = xk for somek = 1,. . ., K+1 or when
y = ylo or y = yup.

This formulation provides an underestimation for the
linear termxy. Overestimation is required for bilinear term
appearing with negative coefficient, that is,−xy. In such a
case, the previous formulation is applied to the bilinear te
zy, wherez =−x.

Also note that the partition is performed in one uniq
dimension. Partition in both variables is possible, but
formulation requires many more binary and continuo
variables.

4.3. Bounding problem

Assume that the functionsf, g and h in (O-GDP), af-
ter a possible variable transformation, are expressed
hu
ji,K(x, w, t) ≤ zh

ji i ∈ Hj

cj = γj

  
t


cj = 0


Ω(Y ) = true

α ∈ R, x ≥ 0, c ≥ 0, Y ∈ {true, false}m
z
f
i , z

g
i , z

h
ji ∈ R, w ∈ {0, 1}k×s, t ∈ Rp×q

(C-GDP)

ew variableszf
i , zg

i andzh
ij are added, representing the n

onvex terms inf, g andhj, respectively.f u
i,K, gu

i,K andhu
ji,K

re piecewise underestimators of the non-convex terms.
re expressed in terms of the original variablesx, the new 0–1
ariablesw and the continuous variablest that are needed fo
efining the approximation in the grid. The subindexK means

hat these estimators are constructed using the gridpoi
. The problem (C-GDP) is a relaxation of (O-GDP), a

herefore, the optimal solution of (C-GDP) is a lower bo
o the solution of (O-GDP).

The following theorem is important to validate the al
ithm:

heorem. If the optimal solution of (C-GDP) belongs to
he set of grid points, this corresponds to the global solution
f (O-GDP).

roof. Let us denote (x*, w∗, t*, Y*) the optimal poin
n (C-GDP) and assumex∗ is a grid point. Thus, th
iecewise underestimators have zero gap inx∗, that is,
u
i,K(x∗, w∗, t∗) = fi(x∗) for i∈F, gu

i,K(x∗, w∗, t∗) = gi(x∗)
∈G andhu

ji,K(x∗, w∗, t∗) = hji(x∗) for i∈Hj andY∗
j = true.
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Moreover,Bj(x∗, w∗, t∗)T = 0 for Y∗
j = false. Therefore, (x∗,

Y∗) is feasible in (O-GDP). Sincex∗ is an optimal point, the
first and third global constraints in (C-GDP) are active, and
α = f o(x∗) + ∑

i ∈ F f u
i,K(x∗, w∗, t∗). Thus,

ZL∗ =
∑

j

cj + α =
∑

j

cj + f o(x∗) +
∑
i ∈ F

f u
i,K(x∗, w∗, t∗)

=
∑

j

cj + f o(x∗) +
∑
i ∈ F

fi(x
∗) =

∑
j

cj + f (x∗) = Z
∗

This proves that the optimal objective value of (C-GDP) is
equal to the objective value in a feasible point in (O-GDP).
Since the (C-GDP) problem is a relaxation of the (O-GDP),
Z∗ is the best value for the objective in (O-GDP).

It should be noted, however, that if the global optimum of
(O-GDP) is a grid point of (C-GDP), this point might not be
the optimum of (C-GDP), due to the underestimation gap.

The disjunctive problem (C-GDP) is then linearized using
supporting hyperplanes derived at solution points, similarly
as in the OA algorithm, and converted into an MILP prob-
lem, by formulating the convex hull representation of the
disjunctions and replacing the boolean variables with binary
variablesy. The resulting MILP has binary variables of two
d e
u of
u

ed,
w e
o d in
s nc-
t
i m
(

¬Yj

x

w

t


 =

= 0

5. Reduced NLP

Reduced NLP (R-NLP) problems are solved iteratively
with the master problem. Similarly to the Logic-Based OA,
these NLPs are reduced, in the sense that fixing the Boolean
variables means that a set of continuous variables (those re-
lated to non-existent units) is set to zero and removed from
the NLP, as well as the constraints modeling those units. The
NLPs have to be solved to global optimality. Having fixed
unit configurations in the network allows us to contract the
bounds, and therefore, reduce the search region.

In order to solve (R-NLP) to global optimality, the al-
gorithm relies on the local lower bounding problem (C-
MINLP). This problem is obtained from (C-GDP) by fixing
the boolean variablesYj or, in other way, by introducing the
piecewise underestimators in (R-NLP). The local bounding
problem is as follows:

minZ =
∑

j

cj + α

s.t. α ≥ f o(x) +
∑
i ∈ F

f u
i,K(x, w, t)

go(x) +
∑
i ∈ G

gu
i,K(x, w, t) ≤ 0

hj
o(x) +

∑
hu

ji,K(x, w, t) ≤ 0


L the
l 2)
i

sly
d are
o ing
p

sible.
F e as
ifferent types: the variablesw, introduced in the piecewis
nderestimators and the variablesy denoting the existence
nits. Let us denote this problem (MILP-1).

Assume thatL subproblems (R-NLP) have been solv
ith solution points{xl, l = 1, . . ., L}. The convex part of th
bjective function and the global constraints are linearize
uchL points. The convex part of the constraints in disju
ion j is linearized in the subset of points{xl, l ∈ Lj}, whereLj

s the set of iterations withYj = true. Specifically, the proble
MILP-1) is constructed as follows:

minZL =
∑

j

cj + α

s.t. α ≥ f o(xl) + ∇f o(xl)(x − xl) +
∑
i ∈ F

z
f
i

go(xl) + ∇go(xl)(x − xl) +
∑
i ∈ G

z
g
i ≤ 0, l = 1, . . . , L

f u
i,K(x, w, t) ≤ z

f
i , i ∈ F

gu
i,K(x, w, t) ≤ z

g
i , i ∈ G



Yj

ho
j (xl) + ∇ho

j (xl)(x − xl)
∑
i ∈ H

zh
ji ≤ 0 l ∈ Lj

hu
ji,K(x, w, t) ≤ zh

ji i ∈ Hj

cj = γj


 ∨




Bj



cj

Ω(Y ) = true

α ∈ R, x ≥ 0, c ≥ 0, Y ∈ {true, false}m
z
f
i , z

g
i , z

h
ji ∈ R, w ∈ {0, 1}k×s, t ∈ Rp×q
0




j ∈ D

(MILP-1)

i ∈ Hj

cj = γj

 Yj=true

Bj




x

w

t


 = 0

cj = 0




Yj = false

α ∈ R, x ≥ 0, c ≥ 0,

w ∈ {0, 1}k×s, t ∈ Rp×q

(C-MINLP)

et us denote by (MILP-2) the MILP problem that is
inearization of the problem (C-MINLP). Note that (MILP-
s also obtained by fixing the binary variablesy in (MILP-1).

In Fig. 2, the relation between the different previou
efined problems is shown. Upper bounding problems
btained by moving to the right in the figure. Lower bound
roblems appear by moving down.

Note that in some cases some simplifications are pos
or example, in bilinear programs, (C-GDP) is the sam
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Fig. 2. Relations between the original and bounding problems.

(MILP-1) and (C-MINLP) is the same as (MILP-2), since
there are no non-linear convex terms in the original problem
or any possible variable transformation. Certainly, if the orig-
inal problem is convex, problems (O-GDP) and (C-GDP), and
problems (R-NLP) and (C-MINLP) are identical. It may also
be the case that although the original problem is non-convex,
a convex NLP arises by fixing the boolean variables. In such
a case, (R-NLP) and (C-MINLP) are the same problem, per-
haps in different variable spaces (e.g. geometric programs).

6. Algorithm

The algorithm has two main phases as can be seen inFig. 3.

6.1. Outer optimization

This phase calculates a global lower bound (GLB) of the
optimum of problem (O-GDP). The problem (MILP-1) is

solved using an initial grid and initial linearization points,
to predict a new structure in the network and a new global
lower bound. An increasing sequence of global lower bounds
is obtained in the successive iterations of this phase. This is
true because (MILP-1) is modified by adding integer cuts in
Yj that avoid repeating structures and supporting hyperplanes
of the convex functions.

The initial grid can be redefined when solving (MILP-1) or
it can accumulate the grid points generated during the inner
optimization. The cumulative option has the disadvantage
of exponentially increasing the size of the model (MILP-
1), making it very difficult to solve. Both alternatives are
implemented in the numerical examples.

6.2. Inner optimization

A fixed structure is globally optimized. This is performed
by iteratively solving the problems (R-NLP) and (MILP-2)
that bound the global solution of the reduced NLP.
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Fig. 3. Scheme of the algorithm.

Solutions of (R-NLP) provide feasible solutions of (O-
GDP), and allow to update the local and global upper bound
(LUB and GUB, respectively). Tighter local lower bounds
(LLB) arise refining the grid and solving the local bound-
ing problem (MILP-2), which is actually a relaxation of
(R-NLP).

There may be cases where fixing the boolean variables
Y, the resulting NLP problem is convex, or it is known that
it has a unique optimal solution. An example of this kind
of problem is the GDP model for the synthesis and design
of a batch plant formulated byLee and Grossmann (2001).
In such cases, the inner optimization can be accomplished
by simply solving the problem (R-NLP) with a local
solver.

Alternatively, one might resort to a global NLP optimizer
(e.g. BARON,Sahinidis, 1996) that will take advantage of
the tighter variable bounds that arise in a fixed configu-
ration.

6.3. Bound contraction

Since the elimination of non-optimal subregions is crucial
in accelerating the search, an optional bound contraction pro-
cedure is considered in order to reduce the search space in
the global optimization of the NLP subproblems. This con-
traction is performed before the algorithm enters in the inner
optimization phase. The scheme for contraction adopted in
this work is the same as the one proposed byZamora and
Grossmann (1999). Basically, the problem solved at each
contraction step is the following:

min/ max xi

s.t. Z ≤ GUB

constraints in C-MINLP

(CB)

This problem is a convex problem whose feasible region
overestimates the subregion of (R-NLP) where the objective
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function can be improved. The aim of this problem is to
eliminate part of the original feasible region where the global
optimum does not exist.

Note that in general, (CB) is a MINLP problem, since
binary variablesw related to the initial grid are involved.
However, if the initial grid consists of only variable bounds,
and therefore, the original domain is not really subdivided,
(CB) can be solved as an NLP.

The bound contraction is performed on those variables
that are involved in the relaxation so that the underestimators
can be tightened.

6.4. Grid update

The grid is updated for each non-convex term. The idea
in refining the grid is to include in it those points obtained as
optimal points in the relaxed problem.

The decision of adding a new point to the grid is based
on the error between the non-convex termζi

nc and the
substituting variablezζ

i in the solution (x∗, zζ∗
i ) of (MILP-

1) or (MILP-2) whereζ = f, g or h. The following cri-
terion is adopted: If|zζ∗

i − ζnc
i (x∗)| > ε|ζnc

i |, then addx∗
to the grid corresponding toζi

nc, where ε is a specified
tolerance.

An alternative strategy for updating the grid is to include
i ion
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Fig. 4. Feasible region and solution for MILP-1 and MILP-2 in the first
iteration in the illustrative example.

has an optimal solutionZ = 35.91 withx∗
5 = 1 andx∗

6 = 1.72,
which in fact is the global optimum of this configuration.

In the second outer iteration, the new global lower bound
obtained is GLB = 36.38, withY ={false, true, true}. This
bound is greater than the best-known solution; therefore, the
algorithm stops with the global solutionZ = 35.91.

8. Numerical examples

The proposed algorithm was implemented in GAMS
(Brooke, Kendrick, Meeraus, & Raman, 1997) and five ex-
amples were solved on a 1.8 GHz Pentium 4 PC with 256
Mb memory. GAMS/CONOPT2 and GAMS/BARON 5.0
(Sahinidis, 1996) were used with their default options to solve
the reduced NLP problems and GAMS/CPLEX 8.1 for the
MILP problems.

Example 1. A process network problem, which is a vari-
ation of the problem inDuran and Grossmann (1986)was
solved using the proposed algorithm. The problem involves
eight processes, with 25 flow streams (Fig. 5). The objective
function to be minimized considers fixed costscj for selected
units and operating costs for streamxi, with coefficientspi,
w el
n it the middle point of the active subinterval in the solut
f the master problem. If the solution (x∗, zζ∗

i ) of the maste
roblem is such thatxk ≤ x∗ ≤ xk+1 (interval k is active)

hen, the grid corresponding toζi
nc is modified by adding th

oint xk+xk+1

2 .

.5. Convergence

The proposed underestimators are constructed over
ition of the domain, and they involve an approximation e
hat depends on the size of each subdomain. Then, as t
ension of the subdomains is reduced by further partit

he gap of approximation is also reduced.

. Illustrative example

Let us consider again the illustrative example discuss
ection2.
The proposed algorithm starts solving the MILP obtai

y replacing the concave constraint in the third disjunc
ith the piecewise linear relaxation constructed over th

erval defined by the bounds ofx5 and replacing the disjun
ions with their convex hull reformulation. This first mas
roblem (MILP-1) predicts the lower bound GLB = 25.
ith Y ={true, false, true} with x∗

5 = 1, x∗
6 = 7.67 (see

ig. 4). The NLP subproblem corresponding to these boo
alues predicts an upper bound GUB = 35.91. Since
s a gap between the lower and upper bounds, the pro
MILP-2) is solved, includingx∗

5 in the grid. This problem
 hich are shown inFig. 5. The GDP formulation of the mod
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Fig. 5. Superstructure forExample 1.

is as follows:

min
8∑

j=1

cj+122+
∑
i ∈ L

pixi − p2(x2 − 3)2 + p3(x3 − 0.7)2

+ p10

√
15− 0.3(x10 − 4)2 − p19(x19 − 3)2

+ p21

√
10− 0.5(x21 − 1.2)2

s.t. x1 − x2 − x4 = 0

x3 − x5 − x6 − x11 = 0

x13 − x19 − x21 = 0 x10 − 0.8x17 ≤ 0

x17 − x9 − x16 − x25 = 0 x10 − 0.4x17 ≥ 0

x11 − x12 − x15 = 0 x12 − 5x14 ≤ 0

x6 − x7 − x8 = 0 x12 − 2x14 ≥ 0

x23 − x20 − x22 = 0

x23 − x14 − x24 = 0




Y1

ex3 − 1 − x2 ≤ 0

c1 = 25


 ∨




¬Y1

x3 = x2 = 0

c1 = 0







  









Y5

x15 − 2x16 ≤ 0

c5 = 30


 ∨




¬Y5

x15 = x16 = 0

c5 = 0







Y6

ex20/1.5 − 1 − x19 ≤ 0

c6 = 35


 ∨




¬Y6

x20 = x19 = 0

c6 = 0







Y7

ex22 − 1 − x21 ≤ 0

c7 = 20


 ∨




¬Y7

x22 = x21 = 0

c7 = 0







Y8

ex18 − 1 − x10 − x17 ≤ 0

c8 = 25


 ∨




¬Y8

x18 = x10 = x17 = 0

c8 = 0




¬Y6 ∨ ¬Y7

¬Y4 ∨ ¬Y5

xi, cj ≥ 0, Yj ∈ {true, false}, i=1, 2, . . . , 25, j=1, 2, . . . , 8

When the Logic-Based OA algorithm byTürkay and
G er-
m the
N a
s so-
l ion
c e it-
e 18.
H

ing
t
a le-
m n,
Y2

ex5/1.2 − 1 − x4 ≤ 0

c2 = 40

 ∨ 
¬Y2

x5 = x4 = 0

c2 = 0



Y3

1.5x9 − x8 + x10 = 0

c3 = 30


 ∨




¬Y3

x9 = x8 = x10 = 0

c3 = 0




Y4

1.25x12x14 − x13 = 0

c4 = 50


 ∨




¬Y4

x13 = x12 = x14 = 0

c4 = 0



rossmann (1996)is applied in this problem, using the t
ination criterion of no improvement in the objective of
LP solutions, it stops in the third major iteration with
uboptimal solutionZ = 10.627. Also, none of the master
utions is lower than the global optimum. If the terminat
riterion is not applied and we let the algorithm continu
rating, the global solution is found in major iteration
owever, there is no guarantee of globality.

The problem was also formulated as an MINLP us
he Big-M formulation of the disjunctions (withM = 100)
nd solved using the GAMS/DICOPT solver, which imp
ents the AP/OA/ER algorithm (Viswanathan & Grossman
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Table 1
Results using GAMS/DICOPT with different initial points inExample 1

Initialization for variablesx Optimal solution Stopping criterion CPU time (s) Major iterations Units

MIP NLP

x = xup 82.627 3 0.19 0.30 3 7 and 8
x = xlo 117.627 3 0.21 0.20 3 1, 3 and 8
x = xopt 55.627 3 0.24 0.17 3 1, 7 and 8
x = xopt 10.627 0 0.90 0.71 10 1

1990). The solution depends strongly on the initial point. Sev-
eral initial points were used, but none of the runs finds the
global solution. Some results are shown inTable 1. Using
the stopping criterion 3, DICOPT stops when the solutions of
the NLP subproblems have no improvement, and the stopping
criterion 0 forces DICOPT to continue performing a specified
number of iterations (10 iteration in the results ofTable 1).

The algorithm proposed in this work obtains the optimal
structure (units 1, 4 and 7) in two outer iterations. The con-
figuration obtained in the first master (MILP-1) consists of
units 1, 3, 4, 7 and 8, and the lower bound is GLB =−93.53.
This structure is optimized in four inner iterations. The cor-
responding (MILP-2) subproblems are set up adding in the
grid the variable values obtained in the optimal solution of the
master problem, and adding the linearizations of the convex
term in the solution of the NLP subproblem. An integer cut is
added in order to make this configuration infeasible in subse-
quent master problems. The gridpoint set is updated by sim-
ply adding the new point to the grid of the previous iteration.

The optimal structure with objectivef = 7.011 and involv-
ing units 1, 4 and 7 is selected in the next outer iteration,
and it requires one inner iteration to prove globality in the
solution of the subproblem. One additional outer iteration is
required to check convergence to the global optimum.

The algorithm requires less than 1 CPU second in solving
the MILP subproblem and 0.5 CPU second in solving the
N blem
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Fig. 6. Superstructure in theExample 2.

f 3
a = 0.55f 1 + 0.50f 2 f 3

b = 0.45f 1 + 0.50f 2

p1
a = f 8

a + f 10
a + f 6

a p1
b = f 8

b + f 10
b + f 6

b

p2
a = f 9

a + f 11
a + f 7

a p2
b = f 9

b + f 11
b + f 7

b

f 6
a = ξ6f 3

a f 6
b = ξ6f 3

b

f 7
a = ξ7f 3

a f 7
b = ξ7f 3

b

ξ4 + ξ5 + ξ6 + ξ7 = 1

p1
a ≥ 4.0p1

b p2
b ≥ 3.0p2

a

p1
a + p1

b ≤ 15 p2
a + p2

b ≤ 18




Yf

f 4
a = ξ4f 3

a , f 4
b = ξ4f 3

b

2.5 ≤ f 4
a + f 4

b ≤ 25

f 8
a = 0.85f 4

a , f 8
b = 0.20f 4

b

f 9
a = 0.15f 4

a , f 9
b = 0.80f 4

b

cf = 2




∨




¬Yf

f 4
a = f 4

b = 0

f 8
a = f 8

b = 0

f 9
a = f 9

b = 0

ξ4 = 0

cf = 0







Yd

f 5
a = ξ5f 3

a , f 5
b = ξ5f 3

b







¬Yd

f 5
a = f 5

b = 0



LP subproblems. Details of the solution steps and pro
izes can be seen inTable 2. The problem was also solv
ith BARON (Sahinidis, 1996), which required 0.3 CPU
econd and 25 nodes in the branch-and-bound tree, yie
he same solution off = 7.011.

xample 2. The next example was taken fromKocis and
rossmann (1987). It involves the selection of the optim
eparation scheme to be used to separate a multicomp
rocess stream into a set of product streams with given p
pecifications. The superstructure consists of feed and
ct mixers, two possible separation units and a splitter
plits the feed into streams towards the separators or to
he final mixers (Fig. 6). The alternative schemes include
se of flash separation, distillation, or the elimination of
omplete separation process if it is proven to be unprofit
he nonconvex (bilinear) GDP model for this problem i

ollows:

inz = −35p1
a − 30p2

b + 10f 1 + 8f 2 + f 4
a + f 4

b + 4f 5
a

+4f 5
b + cf + cd
2.5 ≤ f 5
a + f 5

b ≤ 25

f 10
a = 0.975f 5

a , f 10
b = 0.050f 5

b

f 11
a = 0.025f 5

a , f 11
b = 0.950f 5

b

cd = 50


∨


f 10

a = f 10
b = 0

f 11
a = f 11

b = 0

ξ5 = 0

cd = 0


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Table 2
Solution steps and problem sizes forExample 1

Outer iteration Inner iteration Solution MILP-1 Solution NLP Solution MILP-2 Binary variables Cont vars

NLP MILP

1 1 −93.530 – – 14 21 68
83.317 71.910 8 74

2 83.317 79.636 10 80
3 83.317 81.647 12 86
4 83.317 82.937 14 92

2 1 6.261 – – 25 14 100
7.011 7.011 18 104

3 10.627 – – 26 – 104

Fig. 7. Optimal solution ofExample 2.

0 ≤ cf, cd; f 1, f 2 ≤ 25; 0≤ ξ4, ξ5, ξ6, ξ7 ≤ 1;

Yf , Yd ∈ {true, false}
The eight bilinear terms are replaced by the proposed piece-
wise underestimators, partitioning the domain through the
split fractionsζ.

The first master problem, using the bound ofζ as ini-
tial gridpoints, predicts a lower bound GLB =−539.66, with
Yf = true,Yd = false. No bound contraction is performed. The
corresponding NLP has a solutionZ =−470.13. Since there
is a gap between the lower and upper bounds, the MILP-2 is
solved, including the solution of the previous master in the
gridpoint set. It takes four inner iterations to converge the
local lower and upper bounds.

The second outer iteration solves the master with the
piecewise underestimator constructed on the accumulated
gridpoints. It provides a new global lower bound of
GLB =−510.39 withYf = true,Yd = true. The corresponding
NLP subproblem has a solution ofZ =−510.08. The global
lower and upper bounds are within 0.5% tolerance and no
inner iterations are required. The algorithm stops with the
global optimal Z =−510.08, involving both column and
flash separator (seeFig. 7). The total time is less than 1.5
CPU second.Table 3shows the progress of the algorithm
through the outer and inner iterations, as well as the model
sizes for this example.

The solution of the first master problem provides a very
weak lower bound for the correspondent NLP solution. It was
noted that in the solution of that MILP problem, the streams
involved in the initial splitter do not maintain the relative
order of component flowrates.Kocis and Grossmann (1987)
propose valid relaxations of the bilinear mass balances in
the multistream splitter that overcomes this weakness.

When these relaxations are added to the master problems
in the algorithm, the optimal configuration is obtained
in the first master problem, providing a lower bound
GLB =−515.55, withYf = true, Yd = true. The global opti-
mization of the NLP subproblem (within 0.5% tolerance)
takes one inner iteration if bound contraction is performed
in the variables involved in bilinear terms (ζ4, ζ5, ζ6, ζ7, f 3,
f ms
( of a
u ner
o

us-
i bal

Table 3
Solution steps and problem sizes forExample 2

Outer iteration Inner iteration Solution MILP-1 Solution N

1 −539.66
1 −470.13
2 −470.13
3 −470.13
4 −470.13

2
08
−510.39
1 −510.
a
3
b ). Bound contraction requires solving 12 LP proble
problem (CB) is linear because the partition consists
nique subinterval). Without bound contraction, the in
ptimization takes three iterations.

The second outer iteration solves the master problem
ng the accumulated grid points. It provides a new glo

LP Solution MILP-2 Binary variables Cont vars

NLP MILP

6 25 71
−481.88 8 89
−476.91 12 107
−473.75 16 125
−471.44 20 167
– 22 167

– 31
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lower bound GLB =−487.512, which is greater than the best
feasible solution found. Then, the global optimum is the
solution obtained in the first outer iteration, with objective
Z =−510.08.

Example 3. The following GDP problem was formulated
by Lee, Colberg, Siirola, & Grossmann (2002)to model a
X-monomer process. The objective of the model is to find
the best reaction path from the given raw materials to the
final product, which minimizes the total annual cost. The
superstructure proposed by the authors of the mentioned
work involves a number of interconnected reaction units
whose selection is modeled with disjunctions. Due to con-
fidentiality reasons, we cannot disclose the details of this
model.

The superstructure consists of two raw materials, eight
intermediate chemicals, one product and two by-products.
There are 14 reaction units and 3 separation units. Linear
mass balances define the input and output streams in each
unit. The objective function takes into account the annualized
cost of raw material, utility, waste treatment, packaging (with
cost coefficient RM, UT, WT and PK, respectively) labor and
capital. The model is as follows:

min Z=
∑

i

{(RMi+UTi + WTi + PKi)pi + LCi + Φi(pi)}

s

I e
v t
a nit
i
a

c-
t ch of
t inear
u

is
p r
y and
n eac-
t ors-
e n. If

we allow the solver to go on the search until a maximum of 20
major iteration, the best-found solution isZ = USM$242.760
and none of the master objective is below this value.

The global optimal reaction path involves five reaction
units and two separation units (seeFig. 8). The production
of X-monomer is 450 Mlb per year with a by-product
production of 26.1 Mlb per year. The total annual cost is
USM$ 214.711 per year.

The sequence of steps for obtaining the global solution us-
ing the proposed algorithm is shown inTable 4, as well as the
progress of the lower and upper bounds. No bound contrac-
tion was performed. Four outer iterations were required to
obtain a global lower bound greater than the best feasible so-
lution. Each NLP subproblem was solved to global optimality
in one inner iteration and the gridpoint sets were updated with
the solution of the MILP problems. The grid was not reset in
the outer iterations but it accumulated all the added points.
Table 5shows the CPU time required in each step and the
size of each solved subproblem. Note that the total CPU time
used is 5.441 s.

This example was also solved using GAMS/BARON in
two ways. In the first one, BARON was used to solve the NLP
subproblems to global optimality instead of performing the
inner loop inFig. 3. The optimal objective values obtained
with this alternative are the same as shown inTable 4for
the problems (MILP-1) and NLP subproblems and the CPU
t is
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Yi

Yieldi × xIN
i = xOUT

i

pi = xOUT
i

LCi = αi

0 ≤ xIN
i , xOUT

i , pi ≤ XUB




∨




¬Yi

xIN
i = 0

xOUT
i = 0

pi = 0

LCi = 0




, ∀i ∈ I

Ω(Y ) = True

0 ≤ xn, xIN
i , xOUT

i , pi ≤ XUB, ∀i ∈ I, ∀n ∈ N

0 ≤ LCi, ∀i ∈ I Yi ∈ {true, false}, ∀i ∈ I

denotes the set of units andN the set of chemicals. Th
ariablesxn represents the molar flowrate of componenn,
ndxIN

i andxOUT
i are the inlet and oulet flowrates in u

. The production of each unit is represented withpi. It is
ssumed that the conversion of uniti, Yieldi, is given.

The capital cost
i(pi) is a concave function of the produ
ion rate. The master problems are set up replacing ea
hese terms with a variable bounded by the piecewise l
nderestimator.

GAMS/DICOPT solves the Big-M reformulation of th
roblem providing a local solutionZ = USM$ 246.342 pe
ear, for a production of 450 Mlb per year of X-monomer
o by-product production. This solution involves seven r

ion units and two separation units. DICOPT stops with w
ning of the NLP solutions at the second major iteratio
ime are shown inTable 6. As can be seen the CPU-time
lightly lower (5.212 s versus 5.441 s). The second way
ARON was used was to directly solve the full problem
BD (its Big-M reformulation). In this case BARON cou
ot solve the problem O-GDP in less than 960 s. At that p

he search was interrupted, and the lower bound that BA
rovided (109.018) was about 50% below the global opt
olution (214.711).

xample 4. This example corresponds to a synthesis p
em of a distributed wastewater multicomponent netw
hich is taken from Example 10 ofGalan and Grossman

1998). Given a set of process liquid streams with kno
omposition, a set of technologies for the removal of po
ants, and a set of mixers and splitters, the objective is to
he interconnections of the technologies and their flow
o meet the specified discharge composition of polluta
inimum total cost. Discrete choices involve deciding w
quipment to use for each treatment unit.Lee and Grossman
2001)formulated the problem as a GDP model.

The superstructure is shown inFig. 9, involving three inle
treams, which are split into streams going into the treat
nits. There are three different equipment available fo
oval of each of the pollutants. Each equipment has diffe

emoval ratio of the pollutants and cost function. The ou
tream of each treatment unit is again split and then a fra
f the stream is recycled, while the rest of the stream is

o the final mixer for discharge. The data for this examp
iven inLee and Grossmann (2001).
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Fig. 8. Optimal solution ofExample 3.

Table 4
Solution steps forExample 3

Outer iteration Solution MILP-1 Solution NLP Solution MILP-2 GUB LUB GLB LLB

1 186.276 216.920 216.920 216.920 186.276 186.276
216.918 216.920 216.918

2 199.702 214.711 214.711 214.711 199.702 199.702
214.710 214.711 214.710

3 210.602 236.567 214.711 236.567 210.602 210.602
236.567 236.567 236.567

4 215.619 214.711 215.619

Table 5
CPU time and model sizes in the solution ofExample 3

Outer iteration Solution MILP-1 Solution NLP Solution MILP-2

CPU time (s) Disc vars/Cont vars CPU time (s) Cont vars CPU time (s) Disc vars/Cont vars

1 0.203 249/34 0.039 67 0.109 283/34
2 0.625 283/51 0.066 59 0.140 317/51
3 1.921 317/68 0.027 71 0.140 341/68
4 2.171 351/85
Total time 4.920 0.132 0.389

Table 6
CPU time using BARON for solving the NLP subproblems inExample 3

Outer iteration MILP-1 NLP

1 0.203 0.060
2 0.640 0.110
3 1.968 0.060
4 2.171
Total 4.982 0.230

The non-linearities in this model are due to the bilinearities
that arise in the component mass balances in the final splitters
and the concave cost functions.

This problem was solved to global optimality with our
algorithm in just under 2 min. Bound reduction was per-
formed in the complicating variables representing the total
flows in the treatment units. These variables are involved in
the bilinear mass balances in the final splitters. The initial
grid for the outer iterations was set up with three points: the
lower and upper bounds and the middle point. Within each
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Fig. 9. Superstructure forExample 4.

inner iteration, the gridpoint sets were updated using the
middle point of the active subinterval. Adding the master
solution point to the grid causes slower convergence to the
global solution of the reduced NLP.

The global optimum solution is shown inFig. 10. Six
outer iterations were necessary to prove globality of the solu-
tion as seen inTable 7. In the third outer iteration (MILP-
1), selected the optimal equipment and obtained a lower
bound within a tolerance of 0.5% requiring five iterations
in the inner optimization.Table 8shows the computing times
and the problem sizes. The total time required by the al-
gorithm was 11.31 s for solving the (MILP-1) problems,
0.54 s for solving (R-NLP) subproblems, 8 s for reducing
bounds in total flows and 117.56 s in solving the (MILP-2)
subproblems.

The most time consuming step in this example is the inner
optimization of the optimal structure. Due to the bound con-
traction procedure, the reduced NLP could be solved to global
optimality with the solver BARON 6.0. It rapidly detected the
infeasibility of the first two NLP subproblems. In the third
equipment selection, BARON found the global optimum of
the NLP in 20 CPU seconds. The (MILP-1) problems in the
following outer iterations detected infeasible structures. The
total time required with this implementation of the method

was approximately 38 CPU seconds, which is considerably
lower than the 118 s with the algorithm ofFig. 3.

Example 5. The next example is a wastewater treatment
network problem where the separation is performed using
nondispersive solvent extraction (NDSX) (seeGalan and
Grossmann, 1998). For NDSX technologies, the outlet con-
centration depends on the inlet concentration of the pollutant
and on the flowrate. However, the flowrate of the inlet stream
is assumed not to change during the treatment, since the con-
centration of the pollutants is low. A short-cut model of the
NDSX is used. The equation for the NDSX treatment is as
follows:

Hejcsj − Coj = exp

(
−atKmHeNM

FLOWT

)
(Hejcej − Coj)

where csj is the outlet concentration of pollutantj, cej the
inlet concentration ofj, at the surface area of the hollow
fiber module (135 m2), NM the number of modules,Km the
membrane transport coefficient (a value of 2.2× 10−8 m/s
was used), Hej the distribution constant of the pollutant be-
tween the organic phase and the aqueous phase, and Coj is
the concentration of the contaminant in the organic phase. In
the simplified case, where extraction and back-extraction are

l solutio
Fig. 10. Optima
 n forExample 4.
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Table 7
Solution steps forExample 4

Outer iteration Inner iteration Solution MILP-1 Solution NLP Solution MILP-2 GUB LUB GLB LLB

1 1 1080714.18 Infeasible Infeasible – – 1080714.18 1080714.18
2 1 1082892.69 Infeasible Infeasible – – 1082892.69 1082892.69
3 1235559.63 1235559.63 1235559.63

1 1992836.21 1449071.22 1992836.21 1992836.21 1449071.22
2 1692583.88 1482263.35 1692583.88 1692583.88 1482263.35
3 1992836.21 1508500.95 1508500.95
4 1692583.88 1635451.81 1635451.81
5 1697253.17 1683607.48 1683607.48

4 1235559.63∗ 1235559.63
5 1235559.63∗ 1235559.63
6 Infeasible

* The selection of the equipment from the MILP-1 is proven to be worse than the best solution in the reduction steps.

Table 8
Model sizes and solution time forExample 4

Outer iteration Inner iteration Solution MILP-1 Solution NLP Solution MILP-2

CPU time (s) Disc vars/Cont vars CPU time (s) Cont vars CPU time (s) Disc vars/Cont vars

1 1 2.062 33/544 0.039 180 1.265 30/616
2 1 1.953 33/544 0.098 180 1.453 30/616

3 3.359 33/544
1 0.059 180 1.593 31/624
2 0.121 180 11.921 41/740
3 0.090 180 15.468 48/820
4 0.095 180 30.670 51/856
5 0.041 180 55.187 57/916

4 1.437 33/544
5 1.218 33/544
6 1.281 33/544
Total time 11.310 0.543 117.557

carried out at the same rate, we can assume that Coj remains
constant.

The superstructure for this problem is identical toExample
4. The data for the equipment, inlet streams and costs are
shown inTables 9–11.

The global optimum (US$ 30,481.13) was found in the
first outer iteration, but the convergence within 1% tolerance
of the global optimum was obtained in 10 outer iterations.
The first selected structure required four inner iterations
each to check globality. The gridpoint sets were updated
in each inner optimization using the middle point of the
active subinterval. Details of the solution in each iteration

Table 9
Distribution of the pollutant Hej and concentration of pollutant in organic
phase Coj

Unit A B C

Treatment X Hej 1900 1700 0
Coj 200 200 0

Treatment XX Hej 0 1700 1900
Coj 0 200 200

Treatment XXX Hej 1700 0 1500
Coj 200 0 200

can be seen inTable 12, as well as the global and local
lower and upper bounds.Fig. 11shows the progress of the
bounds. Note that the global lower bound defines a piecewise
increasing path, and the global upper bounds describes a
piecewise decreasing path, always above the global lower
bound line. This does not occur with the local bounds. Local
bounds involve discontinuities when the inner loop finishes
and outer iteration changes. Also note that inner loop stops
if the local lower bound reaches the global local bound.

(MILP-1) problems have 51 binary and 790 continuous
variables, whilst the (MILP-2) problems have on average 60
binary variables and 973 continuous variables in the first in-

Table 10
Inlet streams data forExample 5

Inlet Stream Flowrate (tonnes/h) Pollutant ppm

1 13.1 A 390
B 100
C 250

2 32.7 A 168
B 110
C 400

3 56.5 A 250
B 100
C 350
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Table 11
Cost and removal ratio data for the equipments inExample 5

Treatment unitk EquipmentH NM Cost function∗ (�F0.6 + �F)

Investment� Operating�

1 EA 15 250.00 0.0180
EB 20 301.40 0.0247
EC 25 348.45 0.0316

2 ED 15 250.00 0.0180
EE 20 301.40 0.0247
EF 25 348.45 0.0316

3 EG 15 250.00 0.0180
EH 20 301.40 0.0247
EI 25 348.45 0.0316

* F is the treated flowrate, given in ton/h.

Fig. 11. Bound progress inExample 4.

ner iteration, and their size grow as the inner iterations pro-
ceed. The fourth (MILP-2) in outer iteration 1 has 114 binary
variables and 1522 continuous variables. The time required
to solve the 10 outer master problems is 0.33 min aproxi-
mately; the bound reduction steps take a total of 0.83 min.
The algorithm spends 2.5 s in solving the NLPs problems
and 18 min in solving the bounding problems (MILP-1). The
optimal values for the flows are shown inFig. 12(flow values
are given in tonnes/h).

Numerical difficulties were experienced with BARON,
which prevented convergence to feasible solutions; and
hence, a comparison of computational times was not possible
for this problem.

Table 12
Solution steps forExample 5

Outer iteration Inner iteration Solution MILP-1 Solution NLP Solution MILP-2 GUB LUB GLB LLB

1 25963.96 – – 25963.96 25963.96
1 30598.67 28773.15 30598.67 30598.67 28773.15
2 30481.13 29051.94 30481.13 30481.13 29051.94
3 30481.13 29809.68 30481.13 29809.68
4 30481.13 30170.21 30481.13 30170.21

2 26070.73 30481.13 26070.73 26070.73
1 35182.82 30167.93 35182.82 30167.93
2 31972.22 31373.77 31972.22 31373.77

3 1 27100.94 30481.13 27100.94 27100.94
35531.09 30351.09 35531.09 30351.09

4 27533.17 .17
1 31488.26 2 .80
2 31796.13 3 .72

5 1 28876.28 .28
1 34882.90 3 .12

6 29038.51 .51
1 37100.28 3 .22

7 29098.96 96
1 36675.09 3 .28

8 29832.45 45
1 40905.71 3 .17

9 29924.85 .85
36071.18 3

10 30191.21
30481.13 27533.17 27533
9830.80 31488.26 29830
0700.72 31488.26 30700

30481.13 28876.28 28876
1494.12 34882.90 31494

30481.13 29038.51 29038
2135.22 37100.28 32135

30481.13 29098.
1969.28 36675.09 31969

30481.13 29832.
1442.17 40905.71 31442

30481.13 29924.85 29924

1369.43 36071.18 31369.43

30481.13 30191.21
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Fig. 12. Global optimal solution forExample 5.

9. Conclusions and future work

A new deterministic algorithm for the global optimization
of synthesis of processes network problems has been pre-
sented. It is based on a new methodology for constructing
underestimators of nonconvex functions based on partitions
of the entire domain. In this work, the derivation of this class
of estimators for univariate concave terms and bilinear terms
has been developed.

The proposed algorithm relies on an outer approximation
methodology. The global solution of the problem is achieved
by solving problems that are relaxations of the original one.
As iterations proceed, the bounding problem approximates
the original problem with more accuracy.

The effectiveness of the proposed algorithm has been
illustrated in several examples as well as comparisons with
other existent algorithm to solve this class of problems. The
computational experience, although still limited, suggests
that this algorithm has several advantages with respect to
spatial branch-and-bound algorithms, particularly in regard
to ease of implementation and potential strengthening of
lower bounds.

For larger problems, however, the relaxed MILP prob-
lems predict bounds with significant gap and convergence
is achieved at high computational cost. A modification
of the algorithm is being studied, involving the solution
o he
c his
i size
o for
o also
b date
a

A

port
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Appendix A. Derivation of piecewise linear
underestimators of concave univariate functions

The convex envelope of a concave function on an interval
I = [xlo, xup] is

f u(x) = λf (xlo) + (1 − λ)f (xup)

whereλ is such thatx = λxlo + (1 − λ)xup.
Given the partition{Ik}Kk=1, with Ik=[xk, xk+1], k = 1, . . .,

K, x1 = xlo, xK+1 = xup, the piecewise underestimator can be
formulated as a disjunction withk terms:

∨
k=1,...,K




Wk

x = λxk + (1 − λ)xk+1

f u = λf (xk) + (1 − λ)f (xk+1)

0 ≤ λ ≤ 1




The mixed-integer formulation based on the convex hull
relaxation (Raman and Grossmann, 1994) is as follows:
f the convexified C-MINLP problem. Also, most of t
omputing time is spent in the inner optimization. T
s due to the iterative procedure and the increasing
f the MILP-2 problems. An alternative methodology
btaining the global solution of the reduced NLPs is
eing investigated. It involves the simultaneous grid up
nd solution of the local bounding problem.
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x =
K∑

k=1

λkx
k + (wk − λk)xk+1

= λ1x
1 + (w1 − λ1 + λ2)x2 + · · · + (wK − λK)xK+1

f u =
K∑

k=1

λkf (xk) + (wk − λk)f (xk+1)

= λ1f (x1) + (w1 − λ1 + λ2)f (x2)

+ · · · + (wK − λK)f (xK+1)

0 ≤ λk ≤ wk

K∑
k=1

wk = 1

wk ∈ {0, 1}
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Let us defineγk =wk−1 − λk−1 + λk, k = 2, . . ., K, γ1 =λ1
andγK+1 =wK − λK. With these weights, the convex com-
bination can be expressed as the equivalent formulation:

x =
K+1∑
k=1

γkx
k

f =
k+1∑
k=1

γkf (xk)

0 ≤ γ1 ≤ w1

0 ≤ γk ≤ wk + wk−1, k = 2, . . . , K

0 ≤ γK+1 ≤ wK

K∑
k=1

wk = 1

This second formulation is the same as the formulation given
in Nemhauser and Wosley (1999).

An interesting discussion about the quality of two formu-
lations of piecewise-linear estimators can be found inPadberg
(2000).

Appendix B. Piecewise underestimators for bilinear
terms
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