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Abstract

Process network problems can be formulated as generalized disjunctive programs where a logic-based representation is used to deal w
the discrete and continuous decisions. A new deterministic algorithm for the global optimization of process networks is presented in this
work. The proposed algorithm, which does not rely on spatial branch-and-bound, is based on the logic-based outer approximation that exploit
the special structure of flowsheet synthesis models. The method is capable of considering non-convexities, while guaranteeing globality i
the solution of an optimal synthesis of process network problem. This is accomplished by solving iteratively reduced NLP subproblems to
global optimality and MILP master problems, which are valid outer approximations of the original problem. Piecewise linear under and
overestimators for bilinear and concave terms have been constructed with the property of having zero gap in a finite set of points. The globz
optimization of the reduced NLP may be performed either with a suitable global solver or using the inner optimization strategy that is proposed
in this work. Theoretical properties are discussed as well as several alternatives for implementing the proposed algorithm. Several example
were successfully solved with this algorithm. Results show that only few iterations are required to solve them to global optimality.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction generalization of the linear cas8t(bbs & Mehrotra, 1999
generalized benders decomposition (GBDebffrion,

The synthesis of process networks can be formulated as1972, outer approximation (OA)Quran & Grossmann,
generalized disjunctive programming (GDP) problems. GDP 1986 Fletcher & Leyffer, 199%and extended cutting plane
is an alternative to mixed integer non-linear programming (ECP) method \(Vesterlund & Petterson, 1995GBD and
(MINLP) for modeling problems where both continuous and OA are iterative methods that solve a sequence of alternate
discrete decisions are involved. GDP allows the combina- NLP subproblems with all the discrete variables fixed, and
tion of algebraic and logic equations to represent a synthesisMILP master problems that perform the optimization in

problem in a more natural way. the discrete space. The ECP method relies on successive
GDP problems can be solved as MINLP problems by linearizations to build MILP approximation problems.
replacing each disjunction with its big-M or its convex hull There are also specific algorithms that exploit the disjunc-

reformulation [Lee & Grossmann, 2003 Major methods tive structure of the model. In the solution methodHyoker
for MINLP problems include branch-and-cut, which is a and Osorio (1999¥or linear problems, a search tree is
created by branching on the logic expressions. A continuous
* Corresponding author. Tel.: +1 41 22 68 3642; fax: +1 4122 68 7139. 'elaxation of the problem is solved at each node of the
E-mail address: grossmann@cmu.edu (l. Grossmann). tree.
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Lee and Grossmann (200@yesented an optimization and primal and primal bounding NLP problems. The bound-
algorithm for solving general non-linear GDP problems. ing problems are constructed replacing the non-convex func-
This algorithm consists of a branch-and-bound search thattion by known underestimating functions. Solution of primal
branches on terms of the disjunctions and considers theproblems involves the application of NLP global optimiza-
convex hull relaxation of the remaining disjunctiofigirkay tion algorithm.
and Grossmann (1996)roposed a logic-based outer ap- In this work, we propose a new algorithm for solving
proximation algorithm that solves non-linear GDP problems non-convex GDP problems that arise in process synthesis.
for process networks involving two terms in the disjunction. It exploits the particular structure of this kind of model, as
Since the NLP subproblem only involves the active terms of in the case of the Logic-Based OA algorithm Byirkay
the disjunctions, this algorithm overcomes difficulties that and Grossmann (1996The proposed modifications make
arise in the synthesis of process network problems, such aghe algorithm capable of handling non-convexities, while
singularities that are due to zero flows. This algorithm has guaranteeing the global optimum of the synthesis of
been implemented in LOGMIP, a computer code developed process networks. This is accomplished by constructing a
by Vecchietti and Grossmann (1999) master problem that is based on valid piecewise bounding

All the methods mentioned above assume convexity to representations of the original problem and by solving the
guarantee convergence to a global solution. Therefore, whenNLP subproblems to global optimality. An NLP global
applied to non-convex problems, these algorithms may cut optimization strategy is also proposed in this work.
off the global optimum. Theoretical properties are discussed as well as several al-

Viswanathan and Grossmann (1990pposed a heuristic  ternatives for implementing the proposed algorithm. Several
modification to the OA algorithm for MINLP in order to  numerical examples are presented to illustrate the perfor-
reduce the likelihood of cutting-off part of the feasible mance of this method.
region. They introduced slacks in the linearization of
non-convex constraints, and included them in an augmented
penalty function. The search is stopped when there is no2. Background
improvement in the NLP subproblems.

Rigorous global optimization methods for addressing  The GDP model for synthesis of process networks is given
non-convexities in NLP problems have been developed as follows:
when special structures are assumed in the continuous terms
(Horst & Tuy, 1996 Floudas, 2000Quesada & Grossmann, Min Z =Y c; + f(x)

1995 Ryoo & Sahinidis, 1995Visweswaran & Floudas, j

1996 Zamora & Grossmann, 1999 Tawarmalani and st. g(x) <0

Sahinidis (2002have developed the Branch-And-Reduce- Y; ~Y;

Optimization-Navigator (BARON), a software for general
purpose global optimization thatimplements a spatial branch-
and-bound method combined with reduction techniques for L ¢j =V cj=0

the variables bounds. For non-convex MINLP problems £(Y) = true

Adjman, Androulakis, and Floudas (2000esavan and ;> g >0, Y; € {true, falsg

Barton (2000) Smith and Pantelides (1999)and

Tawarmalani and Sahinidis (2004ave proposed global The non-linear GDP model (O-GDP) contains continuous
optimization algorithms based on spatial branch-and-boundvariablesx and ¢, and Boolean variable¥. The disjunc-
search.Lee and Grossmann (200pyoposed a two-level  tionsD apply for the processing units. If a process unit exists
branching scheme for solving non-convex GDP problems (¥; =true), the constraintg describing that unit are enforced,

to global optimality and specialized the algorithm to GDP and a fixed chargg; is applied. Otherwiself = false), a sub-
problem with bilinear equality constraints (2002). set of continuous variables and the fixed charges are set to

Spatial branch-and-bound methods can be computation-zero. The matrix’ is such that théth row is the unit vector,
ally expensive, since the tree may not be finite (except for b/ = ¢;, the ith variables must be set to zero figy=false
g-convergence). For the case of process networks, there isand zero row for variables that must not be set to zero for
the added complication that the NLP subproblems are usu-Y; =false. For convenience in the presentation, we consider
ally difficult and expensive to solve. Thus, there is a strong that the units are modeled with inequalities. This is not a se-
motivation for developing a decomposition algorithm for this  vere restriction, since itis always possible to relax an equality
class of problems that does not rely on spatial branch-and-constraint into two inequality constraints. Alternatively, they
bound. may be relaxed as inequalities if prior analysis is performed

An outer-approximation strategy for addressing the global to determine the sign of its Lagrange multipliers (e.g. see
optimization of non-convex MINLP problems was recently Bazaraa, Sherali, & Shetty, 1993
proposed bKesavan, Allgor, Gatzke, and Barton (200Rhe The OA algorithm requires the solution of NLP subprob-
algorithm solves alternatively relaxed master MILP problems lems, which are obtained by fixing the Boolean variables and

hij(x)<0| v |Bix=0| jeD (O-GDP)
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MILP master problems. The master problem is formulated by
using hyperplanes that replace the non-linear functions. If the
original problem is convex, these hyperplanes underestimate
the objective function and overestimate the original feasible
region, and therefore, the master problem provides a lower
bound of the optimal solution of (O-GDP) (e.g. $&eran &
Grossmann, 1996

The NLP subproblem for fixed valuelé}‘}j <D that satisfy
2(Y*) =true, is as follows:

min Z = cj+ f(x)
J

st. gx) <0
hi(x) <0
i) = for YJ’-‘ = true (R-NLP)
cj=7j
Bix=0 "
for Y7 = false
Cj = /

x>0, ¢>0

This NLP may be non-convex, and therefore, it may not
have a unique local optimum.

As it was mentioned before, the master MILP problem
in the Logic-Based OA bylurkay and Grossmann (1996)
is obtained by linearizing the non-linear terms, and apply-
ing the convex hull of the disjunctions. However, if the NLP
is non-convex, this process does not provide a valid bound-
ing relaxation of the original problem, and therefore, the OA
algorithm can be trapped in a suboptimal solution. This is
illustrated in the next section.

3. Motivating example

Let us consider the following simple GDP problem, to
illustrate how the Logic-Based OA algorithm can fail to find
the global solution.

Fig. 1. Feasible region for disjunction 3 at first master.
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min Z=—-18xg+c1+c2+c3
X5 = X3+ X4

[ Y1 _ -
x3=5x1—-9
V |x1=x3=0
x1=2
c1=0
c1=30 | - -
Y T _ _
2 Y,
x4=3x2—1
\ x2=x4=0
x2=1
c2=0
| c2=55 | - -
[ Y3 —Y3
xe+1—expks) <0|V |xg=x5=0
c3=9 c3=0
Y1=Y3 Yo=1T3
Yiv Yo
Y; e {true, falsg
xg <25

¢ xi>0i=1...,6,=123

If one were to solve this problem with the Logic-Based
OA, one NLP subproblem has to be solved in order to obtain
a feasible point for the linearization of the constraint in the
third disjunction. Let us consider the first NLP corresponding
to Y={true, true, trug¢. The optimal solution of this first
subproblemisz=1,x4=2,x5=3,x=19.09,2=59.65. The
linear constraint that replaces the non-linear inequality in the
third disjunction is,

xg+4117—-20.08x5 <0

With this inequality, the master problem is now infeasible,
since the discrete decisions that could be takén {true,
false, trué andy = {false, true, trug) are both infeasible in
the x-space Fig. 1) and the algorithm stops. However, the
global optimum occurs when units 1 and 3 are selected, with
x5=1,x6=1.72 andZ=35.91.

4. Lower bounding master problem

The proposed algorithm iterates between the subproblems
(R-NLP) where all the boolean variables of the GDP are
fixed, and master problem (MILP-1) that predicts new
values for the boolean variables. The key point of the
algorithm is the construction of master problem (MILP-1)
that rigorously overestimates the original feasible region.
To accomplish this a convex GDP is derived, replacing the
non-convex terms in the functiogsy andh by valid convex
underestimators. The underestimators are constructed over
a partition of the original domain. This convex GDP is
then linearized and converted into an MILP problem by
formulating the convex hull of the disjunctions. In order to
improve the outer approximation, the partition is refined and



M.L. Bergamini et al. / Computers and Chemi

cal Engineering 29 (2005) 1914-1933 1917

supporting hyperplanes are added to the master problemof f with the following property:

The estimation over a partition of the entire domain will
require additional continuous and discrete variables.

Problems (R-NLP) must be solved to global optimality.
A local lower bounding problem (MILP-2) is constructed to
find rigorous lower bound to the global optimum of problem
(R-NLP).

4.1. Transformation strategies

Itwill be assumed that the non-convex terms are univariate
concave and bilinear functions. This is not a very restrictive
assumption sinc&mith and Pantelides (1998ave shown
that a suitable reformulation in terms of convex, univariate
concave, bilinear and linear fractional functions can be
applied to any model of process synthesis that involves
algebraic functions. The convex envelopes of these types of
non-convex functions are widely knowkl¢Cormick, 1976
Tawarmalani & Sahinidis, 2002Zamora & Grossmann,
1999 and they provide the tightest relaxation for the
corresponding function. Moreover, every problem with
concave univariate, bilinear and linear fractional functions
can be reformulated so that it involves only concave and
bilinear functions. This just requires the introduction of a
new variablez;; = j—J The new variable;; replaces every

occurrence of the fractional term and the bilinear constraint
V

x;z; =x; is added to the model.
However, another alternative for certain terms that do
not belong to the classes listed before is a variable trans-

sup(f(x) — fp(x). x € D} < C (D)

whereC is a non-negative constant, independenDoénd
8 is a measure of sets RI". Note that the convex envelope
of bilinear and concave univariate terms exhibits this prop-
erty (Floudas, 200 This is the underlying fact that supports
convergence of spatial branch-and-bound algorithms.
Consider a partitioR Dy }rey of D (Dy N Dy =@ fork #k
andU, ¢ D = D) and Ietf,‘jk be the underestimator gf
constructed oveDy. Define the piecewise underestimator
JUx) =Dk e 1 fb, () xk(x), where ;. denotes the charac-
teristic function ofDy, in D: x(x) =1 if x € Dy, O otherwise.
Then,

SUplf(x) - fU(x), x€ D}
= max{supl f (x) — fp, (x). x € Di}} < CMax(s(Dy))

Thus, it is possible to tighten this underestimator as much as

it may be required by considering an appropriate partition.
Given a partition{ Dy }¢; of D, the estimatof is mathe-

matically formulated through the following disjunction:

wi
fUx) = fp, ()

x € Dy

kel

formation strategy. The idea in variable transformation is to Wherewy is aBoolean variable for activating/deactivating the
express the constraints in a different space, such that theykth term of the disjunction.

become convex. An example are exponential transformations

applied to Geometric Programs to convexify these problems.
For Generalized Geometric Progranijrn, Bjorn and
Westerlund (2005propose a single variable transformation
and approximation of the inverse transformation function
by piecewise linear function. Different transformation
functions have been proposed by these authors for signomia
functions Bjorn, Lindberg, & Westerlund, 2003 These
transformations will not be explored in this paper.

In the next subsection, special piecewise estimators are
derived for concave univariate and bilinear functions.

4.2. Under and overestimators for non-convex terms
constructed on partitions of the original domain

Approximation of non-linear separable functions by
piecewise-linear estimators has been addressed for lin-
earizing a non-linear problenD@ntzig, 1963 Nemhauser
& Wosley, 1999. Piecewise linear estimators are valid

It is interesting to note that whefis bilinear or concave
univariate and the underestimatfy, is a convex envelope
on Dy, the projection of the convex hull formulation of this
disjunction onto thex( f)-space (let us denote it 53 ;) re-
covers the convex envelog€ in D. To show this, let us note
firstthatP, ris a convex set and belongs to the hypogragh of
@nd thereforefp(x) = min{y:(x,y)eP,} is a convex function
satisfyingfp(x) < f(x). Thenfp(x) <f°%(x).

Conversely, P,y contains the sets ¢ =
{(x, fp,(x)), x € Dy}, for all kel (¢ is the projection
of the facet defined by, =1). Actually, P, s is the convex
hull of the unionUy ¢ ¢r. Then, sincefgk is the convex
envelope off on Dy, ¢y is contained in the epigraph ¢f€,
and alsaP,is in it. Then fp(x) > f°¥(x).

In the remaining part of this section, the specific piecewise
underestimators are obtained.

4.2.1. Univariate concave terms
The convex envelope of a univariate concave function

underestimators for concave terms and valid overestimatorsover an intervall = [x'°, xUP] is the linear function match-

for convex terms, but they lack bounding properties for non-
concave and non-convex terms. In this section, valid piece-
wise underestimators are formulated in disjunctive form.
Letf: R — R be a non-convex function and IBtbe the
domain of interest. Lef, : R — R be an underestimator

ing the original one at the extreme points of the interval. The
underestimator constructed on a partitigfa}g=1.. x of I

(I, = [x*, ¥*1]) is piecewise linear and matches the functionin
K+1 points{x};=1. . x+1. The mathematical formulation

in terms of mixed-integer linear constraints is (gggendix
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A for derivation):

K
X = Z Ak + (wg — Ak)xk+1
k=1

K
FU=0 T hfO) + (wr — ) £

k=1
0<Ar < wg

K
Z Wk = 1
k=1
Wy € {O, 1}

4.2.2. Bilinear terms

The convex envelope of bilinear terms on a rectangular do-

mainD is given inMcCormick (1976) It estimates a bilinear
function with zero gap in the boundarybfand the maximum
approximation gap depends linearly on the areB.of

Let us consider the bilinear teryfix,y) =xy, defined in
the domainD = [x°, xYP] x [y'°, y¥P], and consider th& + 1
pointsx’®=x1, x2, ..., xK*1 =xUP_|n Appendix B the deriva-
tion of the piecewise convex underestimatof ofer the par-
tition {Dy }=1. ..k, Di = [X, ¥**1] x [y'°, yP] is presented.
The following formulation is obtained,

+ 0K
+ vk

U1+U2+"'
y=ﬁ+ﬁ+m

Z max{vk lo

xkylowk U yUp+xk+1yk — X

k+lwk

X =

+x )/ k+1yupwk}

kak <Uk <Xx

ylowk < )/ < yupwk

Zwk =1
k=1

wk € {0, 1}

k=1 ....K

Note thajf U = xy whenx =x* forsomek=1,. .., K+1 orwhen

y=yPory=y"

This formulation provides an underestimation for the bi-
linear termxy. Overestimation is required for bilinear terms
appearing with negative coefficient, that isyy. In such a
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follows:
HOENE ORI
ieF
g(x) = () + > _ ")
ieG
hj(x) = h9(x) + > hji"(x)
i€Hj

wheref®, h°, g° are convex terms angf*°, ', ¢\ are the non-
convex terms (concave univariate or bilinear terms) of the
corresponding function. Given a gridpoint $&tthe hybrid
convex bounding GDP problem is as follows:

Zc]—l—oz
azf"(x)+2z,f

ieF
)+ <0
ieG
[l w, 1) < zif ieF
ieG

minzZL =

s.t.

gl w, 1) < 2f
Y;
0 h

ho(x)+ Y 2 <0 [

ieH
RS k(e w, 1) < z'}i
Cj=Yi

2(Y) = true

a€R, x>0,¢>0,Y e {true falsg™

o 5.2 e R we (0, 1 e RPX

i€ H; t

(C-GDP)

New varlablesl e andzj are added, representmg the non-
convex terms irf, g andh;, respectivelyf;'y, g;'x andh’; x
are piecewise underestimators of the non-convex terms. They
are expressed in terms of the original variabldhe new 0-1
variablesw and the continuous variablethat are needed for
defining the approximation in the grid. The subind&xeans
that these estimators are constructed using the gridpoint set
K. The problem (C-GDP) is a relaxation of (O-GDP), and
therefore, the optimal solution of (C-GDP) is a lower bound
to the solution of (O-GDP).

The following theorem is important to validate the algo-

case, the previous formulation is applied to the bilinear term rithm:

7y, Wherez = —x.
Also note that the partition is performed in one unique

Theorem. If the optimal solution of (C-GDP) belongs to

dimension. Partition in both variables is possible, but the the set of grid points, this corresponds to the global solution
formulation requires many more binary and continuous of (O-GDP).

variables.

4.3. Bounding problem

Assume that the functiong g and 2 in (O-GDP), af-

Proof. Let us denotex(, w*, ", Y*) the optimal point

in (C-GDP) and assume* is a grid point. Thus, the

piecewise underestimators have zero gaprin that is,
UK(x w*, ) = fi(x*) for ieF, g; He(, w*, 1) = gi(x*)

ter a possible variable transformation, are expressed asieG andh“lK(x w*, %) = h ji(x*) for ieH; andY* — true.
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Moreover,B/(x*, w*, )T =0 for Y = false. Thereforex(,

Y*) is feasible in (O-GDP). Since* is an optimal point, the
first and third global constraints in (C-GDP) are active, and
o= fo*) + > c p filig (6, w*, ). Thus,

zl = ch +a= ch + fo(x*) + Z [, w*, ")
J J

ieF

=D i+ N +D [ =D it fa) =2

j ieF j
This proves that the optimal objective value of (C-GDP) is
equal to the objective value in a feasible point in (O-GDP).
Since the (C-GDP) problem is a relaxation of the (O-GDP),
Z* is the best value for the objective in (O-GDP).

It should be noted, however, that if the global optimum of
(O-GDP) is a grid point of (C-GDP), this point might not be
the optimum of (C-GDP), due to the underestimation gap.

The disjunctive problem (C-GDP) is then linearized using
supporting hyperplanes derived at solution points, similarly
as in the OA algorithm, and converted into an MILP prob-
lem, by formulating the convex hull representation of the

disjunctions and replacing the boolean variables with binary

variablesy. The resulting MILP has binary variables of two
different types: the variables, introduced in the piecewise
underestimators and the variabjedenoting the existence of
units. Let us denote this problem (MILP-1).

Assume that. subproblems (R-NLP) have been solved,
with solution points{x/, /=1, .. ., L}. The convex part of the
objective function and the global constraints are linearized in
suchL points. The convex part of the constraints in disjunc-
tion; is linearized in the subset of points, / € I/}, wherel/
is the set of iterations witli; = true. Specifically, the problem
(MILP-1) is constructed as follows:

min zZL :ch—i—ot
J

st. a > fO(x) 4+ Vo) (x — xf) + Z Z,-f

ieF
g°() + Veo)x —x) + ) " <0, 1=1.....L
ieG
[, w, 1) < . ieF
gk w ) <zf, i€G
Yj _'Yj
N .
hO(x!) + VRO()(x —x) Yl <0 leLd [
ieH vV |B | w
hY g (x,w, 1) < Z?i i€ H, t

2(Y) = true
a€R,x>0,c>0,Y € {true falsg™

zl-f, z5, zifi € R, we {0, 1)k*5 re RP*4
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5. Reduced NLP

Reduced NLP (R-NLP) problems are solved iteratively
with the master problem. Similarly to the Logic-Based OA,
these NLPs are reduced, in the sense that fixing the Boolean
variables means that a set of continuous variables (those re-
lated to non-existent units) is set to zero and removed from
the NLP, as well as the constraints modeling those units. The
NLPs have to be solved to global optimality. Having fixed
unit configurations in the network allows us to contract the
bounds, and therefore, reduce the search region.

In order to solve (R-NLP) to global optimality, the al-
gorithm relies on the local lower bounding problem (C-
MINLP). This problem is obtained from (C-GDP) by fixing
the boolean variableg; or, in other way, by introducing the
piecewise underestimators in (R-NLP). The local bounding
problem is as follows:

minZ = Zc./—i—a
J

st. a> fox)+ Z [k, w, 1)

ieF
g°() + > gl'klx, w,1) <0
ieG
h°(x)+ > Y g(x w, 1) <0
i€Hj Y;=true (C-MINLP)

Cj=VYj

X
Bilw]|=0

; Y; = false
Cj= 0

aeR x>0,¢>0,
w e {0, 1}¥*5 e RP*4

Let us denote by (MILP-2) the MILP problem that is the
linearization of the problem (C-MINLP). Note that (MILP-2)
is also obtained by fixing the binary variablem (MILP-1).

In Fig. 2, the relation between the different previously
defined problems is shown. Upper bounding problems are
obtained by moving to the right in the figure. Lower bounding
problems appear by moving down.

Note that in some cases some simplifications are possible.
For example, in bilinear programs, (C-GDP) is the same as

(MILP-1)

jeD
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O-GDP v* fixed > R-NLP _
Upper bound of O-GDP
Transformation Transformation
convexification convexification
Inner
¥ Optimization
C-GDP  Vfxd ——p | C-MINLP
Lower bound of O-GDP Lower bound of R-NLP
N/ Upper bound of C-GDP
Linearization Linearization
MILP-1 Y* fixed > MILP-2
Lower bound of C-GDP Lower bound of C-
MINLP
Unner bound of MILP-1

Outer Optimization

Fig. 2. Relations between the original and bounding problems.

(MILP-1) and (C-MINLP) is the same as (MILP-2), since solved using an initial grid and initial linearization points,
there are no non-linear convex terms in the original problem to predict a new structure in the network and a new global
or any possible variable transformation. Certainly, if the orig- lower bound. Anincreasing sequence of global lower bounds
inal problemis convex, problems (O-GDP) and (C-GDP), and is obtained in the successive iterations of this phase. This is
problems (R-NLP) and (C-MINLP) are identical. It may also true because (MILP-1) is modified by adding integer cuts in
be the case that although the original problem is non-convex, Y; that avoid repeating structures and supporting hyperplanes
a convex NLP arises by fixing the boolean variables. In such of the convex functions.
a case, (R-NLP) and (C-MINLP) are the same problem, per-  Theinitial grid can be redefined when solving (MILP-1) or
haps in different variable spaces (e.g. geometric programs). it can accumulate the grid points generated during the inner
optimization. The cumulative option has the disadvantage
of exponentially increasing the size of the model (MILP-
6. Algorithm 1), making it very difficult to solve. Both alternatives are
implemented in the numerical examples.
The algorithm has two main phases as can be sddg.if.
6.2. Inner optimization
6.1. Outer optimization
A fixed structure is globally optimized. This is performed
This phase calculates a global lower bound (GLB) of the by iteratively solving the problems (R-NLP) and (MILP-2)
optimum of problem (O-GDP). The problem (MILP-1) is that bound the global solution of the reduced NLP.
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Initialization:
= select relaxation tolerance € and optimality tolerance 1.
=  Set global and local lower and upper bounds GLB, LLB, GUB, LUB.
= Setiter=1, it=0, and K = {x"°, x""}

Outer optimization
= Set original bounds ‘ )
= Set Initial grid K™ = K or cumulative grid K""=K"

SOLVE MILP-1. Solution: Z" in (x", w’, ', )

= Update global lower bound: GLB = Z"

= Setlocal lower bound: LLB =Z"and it = 1
Check global convergence: is GUB — GLB <n?

Add integer cut Yes

iter = frert] Fix binary variables y :y*
lter = 1ter BOUND CONTRACTION (opt): Solve CB for reducible variables
Redefine bound

— Inner Optimization.
SOLVE R-NLP locally. Solution: Z"in x"
= Update global upper bound: GUB = min{GUB, Z"}
= Update local upper bound: LUB = min{LUB, Z"}
Check convergence: is LUB — LLB <n?

it=it+1 ) Yes
Update grid K"

SOLVE MILP-2. Solution: Z" in (x", w", £)
= Update local lower bound: LLB=Z"

Check convergence: is LUB — LLB <1
or LLB > GUB ?

Yes

No

\
Check global convergence: is GUB — GLB <n?

Yes

No

\/
STOP. GUB is the global solution of O-GDP

Fig. 3. Scheme of the algorithm.

Solutions of (R-NLP) provide feasible solutions of (O- 6.3. Bound contraction
GDP), and allow to update the local and global upper bound
(LUB and GUB, respectively). Tighter local lower bounds Since the elimination of non-optimal subregions is crucial
(LLB) arise refining the grid and solving the local bound- in accelerating the search, an optional bound contraction pro-
ing problem (MILP-2), which is actually a relaxation of cedure is considered in order to reduce the search space in
(R-NLP). the global optimization of the NLP subproblems. This con-
There may be cases where fixing the boolean variablestraction is performed before the algorithm enters in the inner
Y, the resulting NLP problem is convex, or it is known that optimization phase. The scheme for contraction adopted in
it has a unique optimal solution. An example of this kind this work is the same as the one proposedZhynora and
of problem is the GDP model for the synthesis and design Grossmann (1999)Basically, the problem solved at each
of a batch plant formulated blyee and Grossmann (2001) contraction step is the following:
In such cases, the inner optimization can be accomplished
by simply solving the problem (R-NLP) with a local ~Min/maxux;
solver. st. Z<GUB (CB)
Alternatively, one might resort to a global NLP optimizer  qnstraintsin C-MINLP
(e.g. BARON,Sahinidis, 199pthat will take advantage of
the tighter variable bounds that arise in a fixed configu-  This problem is a convex problem whose feasible region
ration. overestimates the subregion of (R-NLP) where the objective
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function can be improved. The aim of this problem is to
eliminate part of the original feasible region where the global
optimum does not exist.

Note that in general, (CB) is a MINLP problem, since
binary variablesw related to the initial grid are involved.
However, if the initial grid consists of only variable bounds,
and therefore, the original domain is not really subdivided,
(CB) can be solved as an NLP.

The bound contraction is performed on those variables
that are involved in the relaxation so that the underestimators
can be tightened.

6.4. Grid update

The grid is updated for each non-convex term. The idea
in refining the grid is to include in it those points obtained as
optimal points in the relaxed problem.

The decision of adding a new point to the grid is based
on the error between the non-convex tetfi® and the
substituting variable; in the solution ¢*, z:*) of (MILP-

1) or (MILP-2) where¢=f, g or h. The following cri-
terion is adopted: Iﬂzf* — Mx*)| > el¢, then addx*

to the grid corresponding tg;"¢, where ¢ is a specified
tolerance.

An alternative strategy for updating the grid is to include
in it the middle point of the active subinterval in the solution
of the master problem. If the solution™( zf*) of the master
problem is such that® < x* < x**1 (interval k is active)
then, the grid corresponding ¢g'° is modified by adding the

. xk+xk+l
point ~H—.
6.5. Convergence

The proposed underestimators are constructed over a par
tition of the domain, and they involve an approximation error
that depends on the size of each subdomain. Then, as the di
mension of the subdomains is reduced by further partitions,
the gap of approximation is also reduced.

7. Illustrative example

Let us consider again the illustrative example discussed in
Section2.

The proposed algorithm starts solving the MILP obtained
by replacing the concave constraint in the third disjunction
with the piecewise linear relaxation constructed over the in-
terval defined by the bounds ef and replacing the disjunc-
tions with their convex hull reformulation. This first master
problem (MILP-1) predicts the lower bound GLB =25.19,
with Y= {true, false, trug with x =1, x§ =7.67 (see
Fig. 4). The NLP subproblem corresponding to these boolean
values predicts an upper bound GUB=35.91. Since there

cal Engineering 29 (2005) 1914-1933

Solution of MILP -1

x5

0.5 1

(3]

Solution of MILP -2

x5
3

Fig. 4. Feasible region and solution for MILP-1 and MILP-2 in the first
iteration in the illustrative example.

has an optimal solutioFi=35.91 withxg = 1andxg = 1.72,
which in fact is the global optimum of this configuration.

In the second outer iteration, the new global lower bound
obtained is GLB =36.38, witlY = {false, true, trug. This
bound is greater than the best-known solution; therefore, the
algorithm stops with the global solutigh= 35.91.

8. Numerical examples

The proposed algorithm was implemented in GAMS
(Brooke, Kendrick, Meeraus, & Raman, 19%hd five ex-
amples were solved on a 1.8 GHz Pentium 4 PC with 256
Mb memory. GAMS/CONOPT2 and GAMS/BARON 5.0
(Sahinidis, 199Bwere used with their default options to solve
the reduced NLP problems and GAMS/CPLEX 8.1 for the
MILP problems.

Example 1. A process network problem, which is a vari-
ation of the problem irDuran and Grossmann (1986jps
solved using the proposed algorithm. The problem involves
eight processes, with 25 flow strean?¥g 5). The objective
function to be minimized considers fixed costor selected

is a gap between the lower and upper bounds, the problemunits and operating costs for streamnwith coefficientsp;,

(MILP-2) is solved, includingtZ in the grid. This problem

which are shown ifrig. 5. The GDP formulation of the model
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pis=15

\

Xy ) X5
=] X1

Unit 4
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Unit 7 >
pt;ﬁ: P2=-80 X4

X25) p1<:-35

P ps=15
X :
’ Xy pi=807 &
- ~=%0
Xry pi=15
X1o

Fig. 5. Superstructure fdtxample 1

is as follows:
8
min Z cj+122+ Z pixi — pa(xo — 3 + pa(xz — 0.7)°
j=1 ieL

+ P10\/15 — 0.3(x10 — 4)° — p1o(x19 — 3)?

+ p21\/10 — 0.5(x21 — 1.2)2

st. x1—x2—x4=0
x3—x5—xg—x11=0

x13—x19—x21=0 x10—0.8x17 <0
x17—x9—x16—X25 =0 x10—0.4x17>0
x11—x12—x15=10 x12 —5x14 <0
xg—x7—xg=0 X12—2x14>0

x23—x20—x22=0
X23— Xx14 — x24 =10

Y1 -1
e —1—x2<0|V |[x3=x2=0
c1=25 c1=0
[ Yo —Y>
es/l?2 1 -x4<0| Vv |x5=x4=0
c =40 c2=0
I Y3 1 T —Y3
15x9 —xg+x10=0| V [ xg=xg=x10=0
c3 =30 ] | c3=0
[ Ys i i =Yy
1.25x10x14 —x13=0| V | x13=x12=x14=0
c4 =50 ] i c4=0

Ys —Y5
x15—2x16 <0| vV | x15=x16=10
cs = 30 c5=0
[ Ys —Ys
e20/15 _ 1 _x19<0| Vv |x20=2x19=0
cg =35 cg=0
[ Y7 —Y7
€22 —1—x1<0|V |x22=x21=0
c7 =20 c7=0
[ Ys —Yg
€18 —1—-x10—x17<0| V |x1g8=x10=x17=0
i cg =25 cg=0
=YgV Y7
—YsV Y5

xi, ¢j =0, Y;eltrue falsg, i=1,2,...,25, j=1,2,...,8

When the Logic-Based OA algorithm byurkay and
Grossmann (1996} applied in this problem, using the ter-
mination criterion of no improvement in the objective of the
NLP solutions, it stops in the third major iteration with a
suboptimal solutio =10.627. Also, none of the master so-
lutions is lower than the global optimum. If the termination
criterion is not applied and we let the algorithm continue it-
erating, the global solution is found in major iteration 18.
However, there is no guarantee of globality.

The problem was also formulated as an MINLP using
the Big-M formulation of the disjunctions (with/ =100)
and solved using the GAMS/DICOPT solver, which imple-
ments the AP/OA/ER algorithnv{swanathan & Grossmann,
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Table 1

Results using GAMS/DICOPT with different initial points iixample 1

Initialization for variables: Optimal solution Stopping criterion CPU time (s) Major iterations Units
MIP NLP

x=x"P 82.627 3 0.19 0.30 3 7and 8

x=x° 117627 3 0.21 0.20 3 1,3and 8

x=xOPt 55.627 3 0.24 0.17 3 1,7and 8

x=xOPt 10.627 0 0.90 0.71 10 1

1990. The solution depends strongly on the initial point. Sev-
eral initial points were used, but none of the runs finds the
global solution. Some results are shownTiable 1 Using

the stopping criterion 3, DICOPT stops when the solutions of
the NLP subproblems have no improvement, and the stopping
criterion O forces DICOPT to continue performing a specified
number of iterations (10 iteration in the resultsTable J).

The algorithm proposed in this work obtains the optimal
structure (units 1, 4 and 7) in two outer iterations. The con-
figuration obtained in the first master (MILP-1) consists of
units 1, 3, 4, 7 and 8, and the lower bound is GLB83.53.
This structure is optimized in four inner iterations. The cor-
responding (MILP-2) subproblems are set up adding in the
grid the variable values obtained in the optimal solution of the
master problem, and adding the linearizations of the convex
term in the solution of the NLP subproblem. An integer cut is
added in order to make this configuration infeasible in subse-

Column

fl

fZ

7 Flash

Fig. 6. Superstructure in tHexample 2

quent master problems. The gridpoint set is updated by sim- /s = 0.55/" + 0.50f2
ply adding the new point to the grid of the previous iteration. pl = 8 4 £104 ¢6

The optimal structure with objectiye 7.011 and involv-
ing units 1, 4 and 7 is selected in the next outer iteration,
and it requires one inner iteration to prove globality in the

a

Pa=fo+ I+ Al

6:

£8f3

solution of the subproblem. One additional outer iteration is f = &7 f3

required to check convergence to the global optimum.
The algorithm requires less than 1 CPU second in solving

the MILP subproblem and 0.5 CPU second in solving the Pa

g e+t =1

> 40p; pj=>30p3

NLP subproblems. Details of the solution steps and problem Pt + pj <15 pZ+ p7 <18

sizes can be seen fable 2 The problem was also solved
with BARON (Sahinidis, 1995 which required 0.3 CPU-
second and 25 nodes in the branch-and-bound tree, yielding
the same solution gf=7.011.

Example 2. The next example was taken frokocis and
Grossmann (1987)t involves the selection of the optimal
separation scheme to be used to separate a multicomponen
process stream into a set of product streams with given purity

specifications. The superstructure consists of feed and prod-L

uct mixers, two possible separation units and a splitter that
splits the feed into streams towards the separators or towards
the final mixersFig. 6). The alternative schemes include the
use of flash separation, distillation, or the elimination of the
complete separation process if it is proven to be unprofitable.
The nonconvex (bilinear) GDP model for this problem is as
follows:

minz = —35p} — 30p% + 10/ + 8% + f + fif + Af2
+Af2 +cf +cd

Yy
fh=602 =87
25< fA4 fh<25

r8=o085f2 f8=o0.20f
f2=015f% f2=0.80f
cf =2
Yy
f2=63 =8

25< 54+ f2 <25
f20=0.975/2,
fat=0.025fp,
cd =50

f2 = 0.45f% +0.50£?
Py =15+ B0+ 1
ph= 1+ it ff
fe=13
=€

f2%=0.050£
fit = 0.950£

fA=ft=0
y B=r=0
2=f=0
=0
L c¢f=0
T oy T
P=f=0
10 _ 10 __
v fa _fb =0
M=ft=0
£=0
] L cd =0 ]
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Table 2
Solution steps and problem sizes fbtample 1
Quter iteration Inner iteration Solution MILP-1 Solution NLP Solution MILP-2 Binary variables Cont vars
NLP MILP
1 1 —93.530 - - 14 21 68
83317 71910 8 74
2 83317 79636 10 80
3 83317 81647 12 86
4 83317 82937 14 92
2 1 6261 - - 25 14 100
7.011 7011 18 104
3 10627 - - 26 - 104

The second outer iteration solves the master with the
piecewise underestimator constructed on the accumulated
gridpoints. It provides a new global lower bound of
GLB =-510.39 withYy=true, Y, =true. The corresponding
NLP subproblem has a solution 8= —510.08. The global
lower and upper bounds are within 0.5% tolerance and no
inner iterations are required. The algorithm stops with the
global optimal Z=-510.08, involving both column and
flash separator (se€ig. 7). The total time is less than 1.5
CPU secondTable 3shows the progress of the algorithm
through the outer and inner iterations, as well as the model
sizes for this example.

The solution of the first master problem provides a very
weak lower bound for the correspondent NLP solution. It was
Fig. 7. Optimal solution oExample 2 noted that in the solution of that MILP problem, the streams
involved in the initial splitter do not maintain the relative
order of component flowrateKocis and Grossmann (1987)

8.0

O<cfed, fY f2<25 0<ég* 56056 <1, propose valid relaxations of the bilinear mass balances in
the multistream splitter that overcomes this weakness.
Y. Yy & {true falsg When these relaxations are added to the master problems

The eight bilinear terms are replaced by the proposed piece-in the algorithm, the optimal configuration is obtained
wise underestimators, partitioning the domain through the in the first master problem, providing a lower bound

split fractionsz. GLB=-515.55, withYs=true, Y;=true. The global opti-
mization of the NLP subproblem (within 0.5% tolerance)
The first master problem, using the boundzoés ini- takes one inner iteration if bound contraction is performed

tial gridpoints, predicts a lower bound GLB<539.66, with in the variables involved in bilinear terms*( ¢5, ¢8, ¢7, £3,
Y;=true, ¥, = false. No bound contraction is performed. The f2). Bound contraction requires solving 12 LP problems
corresponding NLP has a soluti@g+ —470.13. Since there  (problem (CB) is linear because the partition consists of a
is a gap between the lower and upper bounds, the MILP-2 isunique subinterval). Without bound contraction, the inner
solved, including the solution of the previous master in the optimization takes three iterations.

gridpoint set. It takes four inner iterations to converge the  The second outer iteration solves the master problem us-

local lower and upper bounds. ing the accumulated grid points. It provides a new global

Table 3

Solution steps and problem sizes btample 2

Quter iteration Inner iteration Solution MILP-1 Solution NLP Solution MILP-2 Binary variables Cont vars

NLP MILP

1 —539.66 6 25 71
1 —470.13 —481.88 8 89
2 —470.13 —476.91 12 107
3 —470.13 —473.75 16 125
4 —470.13 —471.44 20 167

2 —510.39 - 22 167

1 —510.08 - 31
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lower bound GLB =487.512, which is greater than the best
feasible solution found. Then, the global optimum is the
solution obtained in the first outer iteration, with objective
Z=-510.08.

we allow the solver to go on the search until a maximum of 20
major iteration, the best-found solutiordss USM$242.760
and none of the master objective is below this value.

The global optimal reaction path involves five reaction
units and two separation units (sei. 8). The production
of X-monomer is 450MIb per year with a by-product
production of 26.1 Mlb per year. The total annual cost is

Example 3. The following GDP problem was formulated
by Lee, Colberg, Siirola, & Grossmann (200@) model a
X-monomer process. The objective of the model is to find USM$ 214.711 per year.
the best reaction path from the given raw materials to the = The sequence of steps for obtaining the global solution us-
final product, which minimizes the total annual cost. The ing the proposed algorithm is showniable 4 as well as the
superstructure proposed by the authors of the mentionedprogress of the lower and upper bounds. No bound contrac-
work involves a number of interconnected reaction units tion was performed. Four outer iterations were required to
whose selection is modeled with disjunctions. Due to con- obtain a global lower bound greater than the best feasible so-
fidentiality reasons, we cannot disclose the details of this lution. Each NLP subproblem was solved to global optimality
model. in one inner iteration and the gridpoint sets were updated with
The superstructure consists of two raw materials, eight the solution of the MILP problems. The grid was not reset in
intermediate chemicals, one product and two by-products. the outer iterations but it accumulated all the added points.
There are 14 reaction units and 3 separation units. LinearTable 5shows the CPU time required in each step and the
mass balances define the input and output streams in eaclsize of each solved subproblem. Note that the total CPU time
unit. The objective function takes into account the annualized used is 5.441s.

cost of raw material, utility, waste treatment, packaging (with
cost coefficient RM, UT, WT and PK, respectively) labor and
capital. The model is as follows:

This example was also solved using GAMS/BARON in
two ways. In the first one, BARON was used to solve the NLP
subproblems to global optimality instead of performing the

inner loop inFig. 3. The optimal objective values obtained
with this alternative are the same as showrTable 4for

the problems (MILP-1) and NLP subproblems and the CPU
time are shown iMable 6 As can be seen the CPU-time is

min Z=> {(RM+UT; + WT; + PK))p; + LC; + &i(py)}
i

st. Ax=b slightly lower (5.212 s versus 5.441s). The second way that
Y —y, BARON was used was to directly solve the full problem O-
. N ouT N GBD (its Big-M reformulation). In this case BARON could
Yield; x x;" = x; x =0 not solve the problem O-GDP in less than 960 s. At that point,
pi = x2UT v [PYT =0 Vier the search was interrupted, and the lower bound that BARON
LC; = a; pi=0 provided (109.018) was about 50% below the global optimal
0< N OUT . < XUB LC =0 solution (214.711).
<x;,x70 L, pi <
2(Y) = True
N ouT . Example 4. This example corresponds to a synthesis prob-
O<xu, x;°, x7~ ', pi=XUB, Viel VneN lem of a distributed wastewater multicomponent network,
0<LC;, Viel Y; € {true false, Viel which is taken from Example 10 @balan and Grossmann

(1998) Given a set of process liquid streams with known
composition, a set of technologies for the removal of pollu-
tants, and a set of mixers and splitters, the objective is to find
the interconnections of the technologies and their flowrates
to meet the specified discharge composition of pollutant at
minimum total cost. Discrete choices involve deciding what
equipment to use for each treatment ulnéte and Grossmann
The capital cosb;(p;) is a concave function of the produc-  (2001)formulated the problem as a GDP model.
tion rate. The master problems are set up replacing each of The superstructure is shownkig. 9, involving three inlet
these terms with a variable bounded by the piecewise linearstreams, which are split into streams going into the treatment
underestimator. units. There are three different equipment available for re-
GAMS/DICOPT solves the Big-M reformulation of this  moval of each of the pollutants. Each equipment has different
problem providing a local solutiod =USM$ 246.342 per  removal ratio of the pollutants and cost function. The outlet
year, for a production of 450 MIb per year of X-monomerand stream of each treatment unit is again split and then a fraction
no by-product production. This solution involves seven reac- of the stream is recycled, while the rest of the stream is sent
tion units and two separation units. DICOPT stops with wors- to the final mixer for discharge. The data for this example is
ening of the NLP solutions at the second major iteration. If giveninLee and Grossmann (2001)

I denotes the set of units amdthe set of chemicals. The
variablesx, represents the molar flowrate of component
andxN and xPYT are the inlet and oulet flowrates in unit
i. The production of each unit is represented withlt is
assumed that the conversion of uhiYield;, is given.
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Table 4

Solution steps foExample 3

Outer iteration Solution MILP-1 Solution NLP Solution MILP-2 GUB LUB GLB LLB

1 186.276 216.920 216.920 216.920 186.276 186.276
216.918 216.920 216.918

2 199.702 214.711 214.711 214.711 199.702 199.702
214.710 214.711 214.710

3 210.602 236.567 214.711 236.567 210.602 210.602
236.567 236.567 236.567

4 215.619 214.711 215.619

Table 5

CPU time and model sizes in the solutionEbfample 3

Outer iteration Solution MILP-1 Solution NLP Solution MILP-2

CPU time (s) Disc vars/Cont vars CPU time (s) Cont vars CPU time (s) Disc vars/Cont vars

1 0.203 249/34 0.039 67 0.109 283/34

2 0.625 283/51 0.066 59 0.140 317/51

3 1.921 317/68 0.027 71 0.140 341/68

4 2.171 351/85

Total time 4.920 0.132 0.389

The non-linearities in this model are due to the bilinearities
that arise in the component mass balances in the final splitters

Table 6 and the concave cost functions.

CPU time using BARON for solving the NLP subproblemdsxample 3 This problem was solved to global optimality with our

Outer iteration MILP-1 NLP algorithm in just under 2 min. Bound reduction was per-

1 0.203 o060  formed in the complicating variables representing the total

2 0.640 0.110 flows in the treatment units. These variables are involved in

3 1.968 0.060 the bilinear mass balances in the final splitters. The initial

4 2.171 grid for the outer iterations was set up with three points: the

Total 4.982 0.230

lower and upper bounds and the middle point. Within each
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Fig. 9. Superstructure fdtxample 4

inner iteration, the gridpoint sets were updated using the was approximately 38 CPU seconds, which is considerably
middle point of the active subinterval. Adding the master lower than the 118 s with the algorithm Big. 3.
solution point to the grid causes slower convergence to the
global solution of the reduced NLP. Example 5. The next example is a wastewater treatment
The global optimum solution is shown iAig. 10 Six network problem where the separation is performed using
outer iterations were necessary to prove globality of the solu- nondispersive solvent extraction (NDSX) (s€alan and
tion as seen iMable 7 In the third outer iteration (MILP- Grossmann, 1998For NDSX technologies, the outlet con-
1), selected the optimal equipment and obtained a lower centration depends on the inlet concentration of the pollutant
bound within a tolerance of 0.5% requiring five iterations and on the flowrate. However, the flowrate of the inlet stream
in the inner optimizatioriTable 8shows the computing times  is assumed not to change during the treatment, since the con-
and the problem sizes. The total time required by the al- centration of the pollutants is low. A short-cut model of the
gorithm was 11.31s for solving the (MILP-1) problems, NDSX is used. The equation for the NDSX treatment is as
0.54 s for solving (R-NLP) subproblems, 8s for reducing follows:
bounds in total flows and 117.56 s in solving the (MILP-2) o _
subproblems. He/csd — Co/ = exp (—
The most time consuming step in this example is the inner
optimization of the optimal structure. Due to the bound con- where cé is the outlet concentration of pollutaﬁtcé the
traction procedure, the reduced NLP could be solvedto globalinlet concentration of, a; the surface area of the hollow
optimality with the solver BARON 6.0. Itrapidly detected the  fiber module (135 rﬁ), NM the number of modulek, the
infeasibility of the first two NLP subproblems. In the third membrane transport coefficient (a value of 2.20-8m/s
equipment selection, BARON found the global optimum of was used), Hethe distribution constant of the pollutant be-
the NLP in 20 CPU seconds. The (MILP-1) problems in the tween the organic phase and the aqueous phase, ahig Co
following outer iterations detected infeasible structures. The the concentration of the contaminant in the organic phase. In
total time required with this implementation of the method the simplified case, where extraction and back-extraction are

atKmHeNM

e ) (He/ce/ — Col)

2.40

24.86

Fig. 10. Optimal solution foExample 4
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Table 7
Solution steps foExample 4
Quter iteration  Inneriteration  Solution MILP-1  Solution NLP  Solution MILP-2 ~ GUB LUB GLB LLB
1 1 1080714.18 Infeasible Infeasible - - 1080714.18 1080714.18
2 1 1082892.69 Infeasible Infeasible - - 1082892.69  1082892.69
3 1235559.63 1235559.63 1235559.63
1 1992836.21 1449071.22 1992836.21 1992836.21 1449071.22
2 1692583.88 1482263.35 1692583.88 1692583.88 1482263.35
3 1992836.21 1508500.95 1508500.95
4 1692583.88 1635451.81 1635451.81
5 1697253.17 1683607.48 1683607.48
4 1235559.63 1235559.63
5 1235559.68 1235559.63
6 Infeasible

* The selection of the equipment from the MILP-1 is proven to be worse than the best solution in the reduction steps.

Table 8
Model sizes and solution time f@xample 4
Outer iteration Inner iteration Solution MILP-1 Solution NLP Solution MILP-2
CPU time (s) Disc vars/Cont vars CPU time (s) Cont vars CPU time (s) Disc vars/Cont vars
1 1 2062 33/544 0.039 180 .265 30/616
2 1 1953 33/544 0.098 180 .453 30/616
3 3.359 33/544
1 0.059 180 1593 31/624
2 0.121 180 1121 41/740
3 0.090 180 15168 48/820
4 0.095 180 3B70 51/856
5 0.041 180 5387 57/916
4 1437 33/544
5 1218 33/544
6 1281 33/544
Total time 11310 0.543 11557

carried out at the same rate, we can assume that@mins  can be seen imable 12 as well as the global and local
constant. lower and upper bound§&ig. 11shows the progress of the

bounds. Note that the global lower bound defines a piecewise
increasing path, and the global upper bounds describes a
piecewise decreasing path, always above the global lower
bound line. This does not occur with the local bounds. Local
bounds involve discontinuities when the inner loop finishes
and outer iteration changes. Also note that inner loop stops
if the local lower bound reaches the global local bound.
(MILP-1) problems have 51 binary and 790 continuous
variables, whilst the (MILP-2) problems have on average 60
binary variables and 973 continuous variables in the first in-

The superstructure for this problem is identicatt@mple
4. The data for the equipment, inlet streams and costs are
shown inTables 9-11

The global optimum (US$ 30,481.13) was found in the
first outer iteration, but the convergence within 1% tolerance
of the global optimum was obtained in 10 outer iterations.
The first selected structure required four inner iterations
each to check globality. The gridpoint sets were updated
in each inner optimization using the middle point of the
active subinterval. Details of the solution in each iteration e 10

Inlet streams data fdExample 5

Table 9

S ) ) ) ) Inlet Stream Flowrate (tonnes/h) Pollutant ppm

Distribution of the pollutant Heand concentration of pollutant in organic

- B 100

Unit A B C c 250

Treatment X He 1900 1700 0

; 2 32.7 A 168

Co 200 200 0 B 110

Treatment XX Hé 0 1700 1900 C 400

Co 0 200 200 3 56.5 A 250

Treatment XXX Hé 1700 0 1500 B 100

co 200 0 200 c 350
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Table 11
Cost and removal ratio data for the equipmentExample 5

Treatment unik EquipmentH NM Cost functiort («F-6+~F)
Investmentx Operatingy
1 EA 15 250.00 0.0180
EB 20 301.40 0.0247
EC 25 348.45 0.0316
2 ED 15 250.00 0.0180
EE 20 301.40 0.0247
EF 25 348.45 0.0316
3 EG 15 250.00 0.0180
EH 20 301.40 0.0247
El 25 348.45 0.0316

F is the treated flowrate, given in ton/h.

ner iteration, and their size grow as the inner iterations pro-

13 1 ceed. The fourth (MILP-2) in outer iteration 1 has 114 binary
g 12 ¢ A variables and 1522 continuous variables. The time required
5 1 ¢ LB to solve the 10 outer master problems is 0.33 min aproxi-
- 1 5 os o 9 8 o o |-sus mately; the bound reduction steps take a total of 0.83 min.
— + - i ——GU . ; ;

g e " o The algorithm spends 2.55s in solving the NLPs problems
g 09 and 18 min in solving the bounding problems (MILP-1). The
08 optimal values for the flows are shownhkig. 12(flow values

0.7 are given in tonnes/h).
1 2 3 4 5 6 7 8 9 10 . g f . .
, Numerical difficulties were experienced with BARON,
Outer Iterations which prevented convergence to feasible solutions; and
Fig. 11. Bound progress Example 4 henc_e, a comparison of computational times was not possible
for this problem.
Table 12
Solution steps foExample 5
Outer iteration Inner iteration Solution MILP-1 Solution NLP Solution MILP-2 GUB LUB GLB LLB
1 25963.96 - - 25963.96  25963.96
1 30598.67 28773.15 30598.67  30598.67 28773.15
2 30481.13 29051.94 30481.13  30481.13 29051.94
3 30481.13 29809.68 30481.13 29809.68
4 30481.13 30170.21 30481.13 30170.21
2 26070.73 30481.13 26070.73  26070.73
1 35182.82 30167.93 35182.82 30167.93
2 31972.22 31373.77 31972.22 31373.77
3 1 27100.94 30481.13 27100.94  27100.94
35531.09 30351.09 35531.09 30351.09
4 27533.17 30481.13 27533.17  27533.17
1 31488.26 29830.80 31488.26 29830.80
2 31796.13 30700.72 31488.26 30700.72
5 1 28876.28 30481.13 28876.28  28876.28
1 34882.90 31494.12 34882.90 31494.12
6 29038.51 30481.13 29038.51  29038.51
1 37100.28 32135.22 37100.28 32135.22
7 29098.96 30481.13 29098.96
1 36675.09 31969.28 36675.09 31969.28
8 29832.45 30481.13 29832.45
1 40905.71 31442.17 40905.71 31442.17
9 29924.85 30481.13 29924.85  29924.85
36071.18 31369.43 36071.18 31369.43
10 30191.21 30481.13 30191.21
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Unit 3

Fig. 12. Global optimal solution fdExample 5

9. Conclusions and future work Appendix A. Derivation of piecewise linear

o ) o underestimators of concave univariate functions
A new deterministic algorithm for the global optimization

of synthesis of processes network problems has been pre-  The convex envelope of a concave function on an interval
sented. It is based on a new methodology for constructing y=[lo, yup} js
underestimators of nonconvex functions based on partitions
of the entire domain. In this work, the derivation of this class
of estimators for univariate concave terms and bilinear terms fY(x) = A£(x'°) + (1 — 1) £(x"P)
has been developed.
The proposed algorithm relies on an outer approximation
methodology. The global solution of the problem is achieved Wherex is such that = Ax'® + (1 — 1)x{P.
by solving problems that are relaxations of the original one. ~ Given the partition{Zx}X_;, with Li=[x*, X**], k=1, ..,
As iterations proceed, the bounding problem approximates K, x! =x'°, x¥*1=xUP, the piecewise underestimator can be
the original problem with more accuracy. formulated as a disjunction withterms:
The effectiveness of the proposed algorithm has been
illustrated in several examples as well as comparisons with
other existent algorithm to solve this class of problems. The Wi
computational experience, although still limited, suggests x = Ak 4 (1 — a)aktL
that this algorithm has several advantages with respect tok:lY._’K U= AfOR) (L= 2) FEHD
spatial branch-and-bound algorithms, particularly in regard 0<i<1
to ease of implementation and potential strengthening of - -
lower bounds.

For larger problems, however, the relaxed MILP prob-  The mixed-integer formulation based on the convex hull

lems prediCt bounds with Sigl’lificant gap and convergence relaxation Raman and Grossmann' 19%33 follows:
is achieved at high computational cost. A modification

of the algorithm is being studied, involving the solution

of the convexified C-MINLP problem. Also, most of the K

computing time is spent in the inner optimization. This x = Zkkxk + (wi — )kt
is due to the iterative procedure and the increasing size k=1

of the MILP-2 problems. An alternative methodology for = axl + (w1 — A1 4+ A2)x2 4+ -+ - + (wg — Ag)xKHT
obtaining the global solution of the reduced NLPs is also K

being investigated. It involves the simultaneous grid update fY = Z M F ) + (wi — ) FEFL)

and solution of the local bounding problem. k=1

= A () + (w1 — A1+ 12) ()
+oo A (wi — k) F(ETY
0 <Ak < wy
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Let us defineyr=wi—1 — Ap—1+ A, k=2,..., K, y1=11
andyg.1=wg — Ag. With these weights, the convex com-
bination can be expressed as the equivalent formulation:

K+1
k=1
k1
£=> mfE)
k=1
O<n=w
O<wm<wptwg-1, k=2,....K

0<yky1 Swk

K
Zwk =1
k=1

This second formulation is the same as the formulation given

in Nemhauser and Wosley (1999)

An interesting discussion about the quality of two formu-
lations of piecewise-linear estimators can be fouriRedberg
(2000)

Appendix B. Piecewise underestimators for bilinear
terms

Consider the bilinear ternf(x,y)=xy, defined in the
domain D = [x'°,xYP] x [y'°,y"P], and consider the partition
{Dk}le,witth =[xk, K] x [yO,9UP), k=1,.. ., K, x! =x'°,
x**1=xUP_ A piecewise linear underestimatgt will be de-
rived, such that'(x*,y) = A(x*,y).

Wi

akzxylo—i—xky— k. lo

XNy

k_lv bk — nyp 4 xk+1y _ xk+1yup
o fU'= maxd, b*)
xk <x< xk+1

The mixed-integer formulation based on the convex hull
relaxation is as follows:

i RIS ¢

y=yt AR
fuzfu1+fuz_|_..._|_fUK

ak = Uky10 - xkyk ko

bk — vkyUp + xk+1yk _ xk+1yquk,
Y = max(ak, bk

kak < Uk < xk+lwk

ylowk < )/k < yupwk

K
Zwk =1
k=1

wk € {0, 1}

X =

k=1,....K
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