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Abstract 

 

Because of the increasing availability of multi-core machines, clusters, Grids, and 

combinations of these environments, there is now plenty of computational power 
available for executing compute intensive applications. However, because of the 

overwhelming and rapid advances in distributed and parallel hardware and 

environments, today’s programmers are not fully prepared to exploit distribution and 
parallelism. In this sense, the Java language has helped in handling the heterogeneity of 

such environments, but there is a lack of facilities and tools to easily distributing and 

parallelizing applications. One solution to mitigate this problem and make some progress 
towards producing general tools seems to be the synthesis of semi-automatic parallelism 

and Parallelism as a Concern (PaaC), which allows parallelizing applications along with 

as little modifications on sequential codes as possible. In this paper, we discuss a new 
approach that aims at overcoming the drawbacks of current Java-based parallel and 

distributed development tools, which precisely exploit these new concepts. 
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computing, PaaC, fork-join synchronization patterns, Java, EasyFJP 

 

 

1 Introduction and problem statement 
 

The existence of compute intensive applications present in a wide range of domains including the entertainment 

industry, meteorology, economy, biology, physics, among others, and the rise of powerful execution environments 

doubtlessly calls for new parallel and distributed programming tools. Many existing tools remain hard to use for 

non-experienced programmers, and are based on the traditional conception that high performance is the utmost 

goal, ignoring other important attributes such as code invasiveness and execution environment independence. 

Simple parallel programming models are essential for helping “sequential” developers to gradually move into the 

parallel programming world. Low code invasiveness and environment neutrality are also important since they 

allow for hiding parallelism and distribution from the pure application logic of these domain-specific applications. 

In dealing with the software diversity of such environments –specially distributed ones– Java is very 

interesting as it offers platform independence and competitive performance compared to conventional languages 

(Shafi, Carpenter, Baker, & Hussain, 2009) (Taboada, Ramos, Expósito, Touriño, & Doallo, 2011). However, most 

Java tools have focused on running on one environment exclusively, i.e., one of multi-core machines, clusters or 

Grids. Besides, they often offer developers APIs for programmatically coordinating subcomputations, but not 

parallel code generation techniques. This needs knowledge on parallel/distributed programming, and output codes 

are tied to the API library employed, compromising code maintainability and portability to other libraries. All in 

all, parallel programming is nowadays the rule and not the exception. Hence, researchers and software vendors 

have put on their agenda the long-expected goal of versatile parallel tools –i.e., applicable to several domains– 

delivering minimum development effort and code intrusiveness. 

To date, several Java tools for scaling out CPU-hungry applications have been proposed in the literature. 

Regarding multi-core programming, Doug Lea’s framework (Lea, 2005) and JCilk (Danaher, Lee, & Leiserson, 

2006) extend the Java runtime library with concurrency primitives. Alternatively, JAC (Haustein & Lohr, 2006) 

aims at separating application logic from thread declaration and synchronization via regular Java annotations, with 



a special emphasis on removing the differences between sequential and concurrent codes. Furthermore, Duarte et 

al. (Duarte, Mota, & Sampaio, 2011) address the same goal by automatically deriving thread-enabled source codes 

from sequential ones based on algebraic laws. Similarly, JOMP (Bull & Kambites, 2000) is compliant to OpenMP 

(Chandra, Dagum, Kohr, Maydan, McDonald, & Menon, 2000), a set of standard method-level/sentence-level 

directives and library routines for shared memory parallel programming, which is very popular.  

Regarding cluster and Grid programming, most of the tools offer APIs to manually create and coordinate 

parallel computations. Some representative examples of such tools are JavaSymphony (Aleem, Prodan, & 

Fahringer, 2010), a platform that features a semi-automatic execution model that transparently deals with 

migration, parallelism and load balancing of Grid applications, and allows programmers to control such features 

via API calls within their parallelized codes, JCluster (Zhang, Guang-Wen, Yang, & Zheng, 2006) -which supports 

the execution of task-oriented parallel applications in heterogeneous clusters. Tasks are scheduled according to the 

novel transitive random stealing algorithm, JR (Chan, Gallagher, Goundan, Au Yeung, Keen, & Olsson, 2009), 

which provides a rich concurrency model supporting remote JVM and object creation, asynchronous 

communication and rendezvous, and VCluster (Zhang, Lee, & Guha, 2008), a library that executes thread-based 

applications on clusters. In VCluster, threads migrate between nodes for load balancing purposes. Inter-thread 

communication is performed through virtual channels, which isolate threads location. Finally, Satin (Van 

Nieuwpoort, Wrzesinska, Jacobs, & Bal, 2010) is a library for parallelizing divide and conquer codes on LANs and 

WANs that follows the semantics of JCilk. A distinctive feature of these tools compared to other Java libraries for 

building classical master-worker applications such as GridGain (Systems, 2011) or JPPF (Sourceforge.net, 2009) is 

that the former support complex parallel applications structures in terms of code design. All in all, tools in both 

groups are designed for programming parallel codes rather than semi-automatically or automatically transforming 

sequential codes to cluster and Grid-aware ones. 

Irrespective of the target execution environment, according to a well-known taxonomy in the area, parallel 

programming can be classified into implicit and explicit (Freeh, 1996). The former methodology allows 

programmers to write applications without thinking about parallelism and leaving parallel technical details on the 

background, which are dealt with automatically by the runtime system. However, performance of implicit 

parallelism may be suboptimal since programmers have no control over parallel subcomputations directly. Explicit 

parallelism on the other hand supplies APIs so that developers have more control over parallel execution to 

implement efficient applications, but the burden of managing parallelism falls on them, which involves more 

programming and testing costs. From the work analyzed in this Section, it follows that although they are designed 

with simplicity in mind, most of them are still inspired by explicit parallelism. Parallelizing applications then 

requires learning parallel programming APIs. From a software engineering standpoint, parallelized codes are hard 

to maintain and port to other libraries. In addition, these approaches lead to source code that contains not only 

statements for managing subcomputations but also for tuning applications, i.e., exploiting certain characteristics of 

the underlying computational resources. This makes such tuning logic obsolete when an application is ported for 

example from a cluster to a Grid, since execution conditions are inherently different. 

An alternative approach to traditional explicit parallelism is to treat parallelism as a concern (as in aspect oriented 

programming - AOP), thus avoiding mixing application logic with code implementing parallel behavior. As Table 

1. Parallelism in Java: Taxonomy. Adapted from (Mateos, Zunino, & Campo, 2010) shows, this has gained 

momentum as reflected by Java tools that partly or entirely rely on mechanisms for separation of concerns, e.g., 

code annotations in JAC (Haustein & Lohr, 2006), metaobjects in ProActive (Amedro, Caromel, Huet, & 

Bodnartchouk, 2008), and Dependency Injection in JGRIM (Mateos, Zunino, & Campo, 2010b) (Mateos, Zunino, 

& Campo, 2008). Other efforts support the same idea through AOP, and skeletons, which capture recurring parallel 

programming patterns such as pipes and heartbeats in an application-agnostic way. Approaches to instantiate these 

skeletons include wrapping sequential codes, or specializing framework classes as in (Aldinucci, Danelutto, & 

Dazzi, 2007) (Sobral & Proença, 2007). 

 

 



 
 

Table 1. Parallelism in Java: Taxonomy. Adapted from (Mateos, Zunino, & Campo, 2010). 

 

 

Current approaches pursuing PaaC fall short with respect to applicability, code intrusiveness and expertise. 

Tools designed to exploit single machines are usually not applicable to clusters/Grids, and approaches designed to 

exploit these settings incur in overheads when used in multi-core machines. Moreover, approaches based on 

annotations require explicit modifications to insert parallelism and application-specific optimizations that obscure 

final codes. Metaobjects and specially AOP have helped in coping with this problem, but at the expense of 

incepting another programming paradigm that has to be learnt by programmers prior to parallelization. Lastly, tools 

providing support for various parallel patterns offer good applicability in respect to the variety of applications that 

can be parallelized, but require solid knowledge on parallel programming. 

We propose EasyFJP, a tool aimed at unexperienced developers that offers means for parallelizing compute-

intensive applications through which the difficult and intrusive nature of parallelism is mitigated. EasyFJP exploits 

PaaC by adopting a base programming model providing opportunities for enabling implicit nevertheless versatile 

forms of parallelism. EasyFJP also employs generative programming to build code that leverages existing parallel 

libraries for various environments. Developers proficient in parallel programming can further optimize generated 

codes via an explicit, but non-invasive tuning framework. EasyFJP is an ongoing project for which encouraging 

results in the context of the Satin library has been obtained (Mateos, Zunino, & Campo, 2010). In this paper, we 

show the various extensions and adaptations to EasyFJP in order to support another class of libraries in general and 

the well-known GridGain library in particular. 

The paper is organized as follows. Section 2 introduces the concept of fork-join parallelism, the set of parallel 

primitives that represents the cornerstones of our approach. After that, Section 3 overviews the EasyFJP project and 

its main technical aspects regarding the materialization of the approach. Then, in Section 4 an implementation of 

EasyFJP is explained in detail. An empirical validation of EasyFJP implementation with several variants is reported 

in Section 5. Finally, Section 6 presents some concluding remarks. 

 

 

2 An overview of Fork-join parallelism 
 

Fork-join parallelism (FJP) is a simple but effective technique that expresses parallelism via two primitives: fork,  

which starts the execution of a method in parallel, and join, which blocks a caller until the execution of methods 

finishes. Conceptually, FJP represents an alternative to threads, which have received criticism due to their inherent 

complexity in terms of program testing effort. In fact, Java, which has offered threads as first-class citizens for 

years, includes from version 7 an FJP framework for exploiting multi-core CPUs, which is essentially based on the 

well-known Doug Lea’s framework.  



 

 
 

Fig. 1 Simple Fork-Join synchronization pattern 

 

Interestingly, FJP is not circumscribed to multi-core programming, but is also applicable to any parallel or 

distributed execution environments where the notions of “tasks” and “processors” exist. For instance, 

forked tasks can be run on the machines of a cluster. Moreover, recently, Computational Grids, which 

arrange resources from geographically dispersed sites, have emerged as another environment for parallel 

computing. Then, multicore CPUs, clusters and Grids alike can execute FJP tasks, as they conceptually 

comprise processing nodes (cores or individual machines) interconnected through communication “links” (a 

system bus, a high-speed LAN or a WAN). This uniformity arguably allows the same FJP application to be 

executed in either environment by using environment-specific execution platforms to process the associated 

forked tasks.       Broadly, current Java parallel libraries relying on 

task-oriented execution models offer API primitives to create one parallel task or a list of tasks 

simultaneously, which are firstly mapped to library-level execution units. As a complement to these 

primitives, these parallel libraries also expose primitives or use models to synchronize the access to the 

results of finalized tasks. Hence, the mechanism for parallelizing based on primitives to create tasks and 

coordinating results could be directly mapped to a Fork-Join pattern where Fork is the way to express 

parallelism and Join the way to access to the results. There are, however, operational differences among 

libraries concerning the primitives to synchronize sub-computations. We have observed that there are two 

FJP synchronization patterns: single-fork join (SFJ) and multi-fork join (MFJ). The former represents one-

to-one relationships between fork and join points: a programmer must block its application to wait for each 

task result. An example of this type of syncronization is the Future object, whose class is included into the 

java.util.concurrent library. These objects are used by GridGain and represent the result of an asynchronous 

computation. With MFJ, the programmer waits for the results of the tasks launched up to a synchronization 

call. The Sync primitive from Satin project is an example of MJF synchronization points. To better illustrate 

the idea, in the following codes, two SFJ calls are necessary to safely access the results of task1 and task2 ( 

Fig. 1), whereas the same behavior is achieved with one MFJ call (Fig. 2). 

 

 



 
 

Fig. 2 Multiple Fork-Join synchronization pattern 

 

 

Examples of Java parallel libraries and their support for these patterns are Satin (MFJ), ProActive (SFJ, MFJ), 

GridGain (SFJ) and JPPF (SFJ), which developers take advantage of through API calls. In general, at least in Java, 

SFJ is more popular and it is implemented by most parallel libraries. However, as discussed, using libraries 

requires learning an API, and ties the code to the library at hand. Even more important, managing synchronism for 

real-world applications is error prone and time-consuming. 
 

 

3 The EasyFJP project: FJP as a concern 
 

Intuitively, FJP is suitable for parallelizing divide and conquer (D&C) applications. This is because there is a direct 

association between Fork and Join points with sequential recursive invocations and the use of recursive results 

respectively. The EasyFJP project (Mateos, Zunino, & Campo, 2010) goals is precisely to design source code 

analysis algorithms and code generation techniques to inject SFJ and MFJ into sequential D&C codes. EasyFJP 

includes a semi-automatic process (Fig. 3) that automatically outputs library-dependent parallel codes with hooks 

for attaching user optimizations. Moreover, for the D&C version of the Binary Search code shown in Fig. 3 that 

serves as input of the EasyFJP parallelization process, there are two recursive calls or Fork points (lines 5 and 6) 

and two accesses to recursive results or Join points (line 8). 

Broadly speaking, at step 1, given a sequential application, a target D&C method of this application and a 

target parallel library as input, EasyFJP performs an analysis of the source code to spot the points that perform 

recursive calls and access to recursive results. As a convention to facilitate the analysis it is important that 

programmers write the sequential application assigning the results of recursive calls to local variables. Depending 

on the target parallel library selected, EasyFJP uses an MFJ or a SFJ-inspired algorithm to detect fork and join 

points, but the algorithms themselves do not depend on the parallel library selected. For brevity, below we discuss 

the SFJ algorithm, while (Mateos, Zunino, & Campo, 2010) presents its MFJ counterpart. As such, the fork-join 

pattern supported by this algorithm represents the main difference between this work and (Mateos, Zunino, & 

Campo, 2010). 

 

 

 



 
 

Fig. 3 EasyFJP: Parallelization process 

 

 

 
 

Fig. 4 Output sample of step 1 

 

 

The SJF-based algorithm (see Alg. 1 and Table 2) works by depth-first walking the instructions and detecting 

where a local variable is defined or used. A local variable is defined, and thus becomes a parallel variable, when 

the result of a recursive method is assigned to it, whereas it is used when its value is read in a statement. As input, 

the algorithm operates on a tree derived from the target method source code (Fig. 4). Nodes in this tree are method 

scopes, while ancestor-descendant relationships represent nested scopes. First, the procedure IdentifyForkPoints 

search for parallel variables, that are local variables placed on the left side of an assignment operation where the 

right side is a recursive call. These recursive calls are the fork points. Once the list of fork points is identified, the 

associated list of join points has to be built. This is done by the IdentifyJoinPoints procedure, which is invoked 

with the list of fork points as argument. Thus, for every fork point, the algorithm performs an examination of the 

sentences looking for every use of the result of the parallel variable associated to a fork point. All the resulting 

occurrences are marked as join points of the current fork point under analysis. Finally, the algorithm passes on to 

step 2 the list of recursive calls and its corresponding uses of recursive results (fork and join points, Fig. 4) so that 

it can map them into parallel API calls. 



At step 2, based on previous identified recursive calls and uses of recursive results, EasyFJP modifies the source 

code to call a library-specific fork and join primitive between the definition and use of any parallel variable, for any 

possible execution path. This step involves reusing the primitives of the target parallel library plus inserting glue 

code to invoke (if defined) the user’s optimizations (step 3). The former sub-step also adapts the parallel code to 

the application structure prescribed by the library (e.g., subclassing certain API classes, generating extra artifacts, 

etc.). 

Targeting libraries supporting D&C (e.g., Satin) mostly requires source-to-source translation, because 

sequential methods calls are individually and directly forked in the output code via fork library API 

functions. For libraries relying on master-worker or bag-of-tasks execution models (e.g., GridGain or JPPF), 

in which hierarchical relationships between parallel tasks are not present, EasyFJP somewhat “flats” the 

task structure of the sequential source code.  

Fig. 5 shows part of the GridGain code generated by EasyFJP from the BinSearch application shown in Fig. 3. 

GridGain materializes SFJ via Java futures. Lines 15-17 represent fork points while in line 19 join points have 

been translated into appropriate GridGain library API calls. Instances of BinSearchTask perform the 

subcomputations by calling BinSearchGridGain.search(int, int[], ExecutionContext) on individual pieces of the input 

array. For the sake of simplicity, this parallel code does not exploit the latest GridGain API since it is fairly more 

verbose than previous versions. 

 

The SJF-based algorithm 

procedure IdentifyForkPoints(rootScope) 

  forkPoints ← empty 

  for all sentence ∈ traverseDepthFirst(rootScope) do 

   varName ← getParallelVar(sentence, rootScope) 

   if varName ≠ empty then 

    addElement(forkPoints,sentence) 

   end if 

  end for 

  return joinPoints 

end procedure 

 

procedure IdentifyJoinPoints(rootScope,forkPoints) 
  for all sentence ∈ forkPoints do 
   varName ← getParallelVar(sentence) 
   currSentence ← sentence 
   scope ← true 
   repeat 
    useSentence← getFirstUse(varName, currSentence) 
    if useSentence ≠ empty then 
     useScope ← getScope(useSentence) 
     varScope ← getScope(sentence) 
     if checkIncluded(joinPoints,varScope) then 
      addElement(joinPoints, useSentence) 
      currSentence ← useSentence 
     end if 
    else 
     scope ← false 
    end if 
   until scope ≠ true 
  end for 
  return joinPoints 
end procedure 

 

 

Alg. 1 The SJF-based algorithm 

 



Finally, at step 3, programmers can optionally and non-invasively improve the efficiency of their parallel 

applications via policies, which are rules that regulate the amount of parallelism, or in other words the number of 

parallel tasks executing in the environment to handle the whole application. This is the only manual step and, even 

when not measured yet, the effort to specify policies is intuitively low as they capture common and simple 

optimizations so far. 

 

Signature Functionality 

getParallelVar (aSentence,rootScope) If aSentence assigns a recursive call to a parallel 

variable, the variable name is returned, otherwise an 

empty result is returned. 

getParallelVar(aSentence) Returns the name of the parallel variable defined in 

aSentence. 

getFirstUse(varName,aSentence) Returns the first subsequent sentence of aSentence that 

uses varName. If no such a sentence if found, an empty 

result is returned. 

getScope(aSentence) Returns the scope to which aSentence belongs. 

checkIncluded 

(aScope,anotherScope) 

Checks whether aScope is the same scope as 

anotherScope or is a descendant of it. 

 

Table 2 SF-based fork and join points detection: Helper functions 

 

 

 
 

Fig. 5 Example of GridGain code automatically generated by EasyFJP 

 

EasyFJP allows developers to specify policies based on the nature of both their applications (e.g., using 

thresholds/memoization) and the execution environment (e.g., avoiding many forks with large-valued parameters in 

a high-latency network). Policies are associated to fork points through external configuration files and can be 

switched without altering parallelized codes. For instance, BinSearch could be made forking search provided 

array.length is above an appropriate threshold by implementing the shouldFork(ExecutionContext), otherwise the 

sequential version of the method would be executed. This prevents using parallelism for small-sized arrays and 

falling back to sequential execution to ensure good performance. ExecutionContext allows users to introspect 



execution at both the method level, such as accessing parameter values, and the application level, for example 

obtaining the current depth of the task hierarchy tree. In other words, this object allows developers to access certain 

runtime information that refers to parallel aspects of the application under execution and use the information to 

specify tuning decisions. Fig. 6 shows a possible implementation of a Threshold policy that, based on the input 

array size, which is part of the application context, decides whether or not to continue parallelizing the execution of 

the target method. Furthermore,  

Fig. 5 line 9 shows the glue code to illustrate how the parallelized BinSearch code references to a user-defined 

threshold policy. 

 

 

  

 
 

Fig. 6 Example of a threshold policy code 

 

 

3.1 Developing with EasyFJP: Considerations 
 

Determining whether a user application will effectively benefit from using EasyFJP depends on a number of issues 

that developers should have in mind. First, feeding EasyFJP with a properly structured D&C code does not 

necessarily ensures increased performance and applicability. The choice of parallelizing an application (or an 

individual method) depends on whether the method itself can inherently exploit parallelism. In other words, the 

potential performance gains after parallelizing an application is subject to its computational requirements, which is 

a design factor that must be first addressed by the developer since he/she knows the details of the application 

domain and the input data used. EasyFJP automates the process of generating a parallel, tunable application 

“skeletons”, but it does not aim at automatically determining the portions of an application suitable for being 

parallelized. Furthermore, the choice of targeting a specific parallel backend is mostly subject to availability 

factors, i.e., whether an execution environment running the desired parallel library (e.g., GridGain) is available or 

not. For example, a novice developer would likely target a parallel library he knows is installed on a particular 

hardware or execution environment, rather than the other way around. 

Likewise, the policy support discussed so far is not designed to automate application tuning, but to provide a 

framework that aims at capturing common optimization patterns in FJP applications. Again, whether these patterns 

benefit a particular parallelized application depends on several factors. For example, not all FJP applications can 

exploit memoization techniques. More research is being done in this respect, as will be indicated later. 

Moreover, an issue that may affect applicability is concerned with compatibility and interrelations with 

commonly-used techniques and libraries, such as multi-threading and AOP. In a broad sense, these techniques 

literally alter the ordinary semantics of a sequential application. Particularly, multi-threading makes deterministic 

sequential code non-deterministic, while AOP modifies the normal control flow of applications through the implicit 

use of artifacts containing aspect-specific behavior. Therefore, when using EasyFJP to parallelize such 

applications, various compatibility problems may arise depending on the backend selected for parallelization. Note 

that this is not an inherent limitation of EasyFJP, but of the target backend. Thus, before parallelizing an 

application with EasyFJP, a prior analysis should be carried out to determine whether the target parallel runtime is 

compatible with the libraries the application relies on. 

 

 

 

 



4 EasyFJP implementation 
 

The implementation of EasyFJP (http://code.google.com/p/easyfjp-imp/) is based on the notion of Builder. A 

Builder is a piece of code that encapsulates knowledge on the use of a parallel library and therefore is responsible 

for the entire code generation process. The more the variety of Builders that are plugged into EasyFJP, the more the 

parallelization choices the tool offers to users who will use EasyFJP to write applications that take advantage of 

parallelism. 

From a functional point of view, a Builder performs its work by relying on three basic components: a code 

analyzer, a target parallel library and a code generator. The code analyzer is the component in charge of 

identifying where to insert calls to the target parallel library. The output from this analysis is fork and joins points. 

These points are required by the code generator, the component which performs the transformation of the original 

code into its parallelized counterpart by adding parallelization instructions into the target method. The 

parallelization instructions to support fork and join points are highly coupled to a parallel library, since the last one 

is the component that provides the parallelization support and acts during the actual execution of the application. 

The abstract design of a Builder was thought as a set of combinable and exchangeable components, to facilitate the 

extension of the tool. To goal is to enable EasyFJP to cover a wide range of parallel environments through the 

utilization of different parallel libraries that use different Fork-Join synchronization patterns and provide different 

code customizations to optimize parallel computations. 

The parallelization process starts when the programmer indicates the Java class of his/her application, which 

contains the D&C method to be parallelized. Currently, this operation is done by writing a simple XML file. Then, 

the programmer needs to invoke a Java tool including a class called Parallelizer to start the automatic source code 

transformation, which comprises:  

 

1. Peer Class Building: is the step in the parallelization process where fork and join points are identified 

and then converted into middleware API calls. The resulting artifact is the peer class. 

2. Policy Injection: is the step where EasyFJP adds to the peer class the references to the policies 

optionally provided by programmers with experience in parallelization concepts. 

3. Peer Class Binding: is the step through which the main application is bound to the peer class (i.e., the 

one built on step 1) so that every call to the sequential D&C method is forwarded to its parallelized 

counterpart. 

 

It is worth clarifying the existing relation between the previously mentioned steps and Builder-related components. 

The code analyzer, which acts in the first step, is described in detail below. The code generator, instead, is present 

each time the Java code is modified. Therefore, this component is needed not only to translate fork and join points 

into middleware API calls but also when extra logic in the shape of policies is planned to be added to the 

parallelized code, and finally, to establish the link between the sequential portion and the parallelized code of the 

application. Then, the component is used throughout the three steps. The classes that implement it are described 

below. Lastly, the remaining component -the parallel library- plays a protagonic role in the first and second steps. 

However, despite being a component strongly related to the code analyzer and the code generator, the 

implementation is not part of EasyFJP. In other words, this is why EasyFJP rely on existing parallel libraries to 

delegate such functionality. 

Fig. 7 shows the main classes of EasyFJP and the way they collaborate. The Parallelizer class is the entry point 

to the tool. It uses three collaborator classes to perform the steps described above. The Peer Class Building step is 

done by a set of classes that respond to the Gamma’s Builder creational design pattern. It is composed by the 

PeerClassDirector class and the PeerClassBuilder interface. The former defines a generic algorithm to obtain the 

Peer Class as the final product. The algorithm uses the PeerClassBuilder interface to perform the steps it defines. 

These are mostly part of the Code Analyzer component, although some code, the one related to inserts middleware 

API calls, belongs to the Code Generator component. To support SFJ and MFJ synchronization patterns, the 

previous algorithm is refined by extending the PeerClassDirector class and providing an extension to the 

PeerClassBuilder interface. SFJPeerClassDirector and SFJPeerClassBuilder are examples of such extensions. 

In addition, the code generator component is also present in the PolicyManager and BindingManager classes. 

Both define generic procedures to achieve their purposes, i.e., the Policy Injection and the Peer Class Binding 

steps, respectively. These generic algorithms and procedures mentioned allows us to contemplate the peculiarities 

of the target parallel library (i.e., execution environment initialization), and also the library used to manipulate the 

input Java code. 

 



 

 
 

Fig. 7 EasyFJP main classes of the workflow package 

 

 

5 Experimental evaluation 
 

The practical implications of using EasyFJP are determined by two main aspects. One aspect is how competitive is 

implicitly supporting FJP synchronization patterns in D&C codes compared to explicit parallelism and classical 

parallel programming models. Another fundamental aspect is whether policies are effective to tune parallelized 

applications or not. Hence, we have conducted in the past experiments in the context of the MFJ synchronization 

pattern in (Mateos, Zunino, & Campo, 2010). Furthermore, for the sake of completeness, next we report 

experiments with SFJ through our new bindings to GridGain to further analyzing the trade-offs behind using 

EasyFJP. 

As a testbed, we used 15 machines connected through a LAN with similar CPU capabilities running Ubuntu 

11.04, Java 6 and GridGain 3.2.1. With the purpuse of simulates a more real Grid environment, where latency in 

the communication channels is greater than in a LAN network, the nodes were grouped into three-clusters. While 

the intra-cluster communication remained under the LAN conditions (100 Mbps), the communication between 

nodes placed in differents clusters (inter-cluster) were emulated with common WAN conditions. This means that 

for this type of links, and with the help of the software WANem 2.2
1
, it was emulated a T1 connection type 

(bandwidth of 1,544 Mbps) with a round trip lattency of 160 ms and a jitter of 10 ms, resulting in inter-cluster 

communication latencies between 150-170 ms.  

Regarding the application codes tested, it was used a ray tracing and a gene sequence alignment applications, 

whose parallel versions were obtained from sequential D&C codes from the Satin project. Apart from the 

challenging nature of the environment, the applications had high cyclomatic complexity, so they were 

representative to stress our code analysis mechanisms.  

Ray tracing (http://en.wikipedia.org/wiki/Ray_tracing_(graphics)) is a technique for generating an image by 

tracing the path of light through pixels in an image plane and simulating the effects of its encounters with virtual 

objects. The technique is capable of producing a very high degree of visual realism, usually higher than that of 

typical scanline rendering methods, but at a greater computational cost. Moreover, in bioinformatics, sequence 

alignment (http://en.wikipedia.org/wiki/Sequence_alignment) refers to a way of arranging the sequences of DNA, 

RNA or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary 

relationships between the sequences. Sequence alignments are also used for non-biological sequences, such as 

those present in natural language or in financial data. 

 

                                                           
1
 WANem (http://wanem.sourceforge.net/) is a software for emulating WAN conditions over a LAN 

http://en.wikipedia.org/wiki/Ray_tracing_(graphics))
http://wanem.sourceforge.net/


 

 
 

Fig. 8 Variables and values of SJF scenarios 

 

We fed the applications with various 3D scenes and real gene sequence databases from the National Center for 

Biotechnology Information (http://www.ncbi.nlm.nih.gov). As Fig. 8 shows, for ray tracing we used two scenes 

with two resolutions (1024x1024 and 2048x2048) that represent four different inputs of the application. In 

addition, three task granularities were used: fine, medium and coarse, i.e., about 17, 2 and 1 parallel tasks per node, 

respectively. By “granularity” we refer to the amount of cooperative tasks in which a larger computation is split for 

execution. More tasks means finer granularities. Furthermore, for sequence alignment, five databases with real 

disease information represented the application inputs and we also employed three granularities, each with a 

number of tasks that depended on the size of the input database for efficiency purposes. For either application, we 

implemented two EasyFJP variants by using a threshold policy to regulate task granularity and another policy 

additionally exploiting data locality, a feature of EasyFJP to place tasks processing near parts of the input data in 

the same cluster. We developed hand-coded GridGain variants through its parallel annotations and its support for 

Google’s MapReduce (Lämmel, 2007). Hence, an escenario is represented by the four variables shown as columns 

in Fig. 8. The combinations of the values for each variable resulted in a total of 108 exercised scenarios (48 

scenarios for ray tracing and 60 scenarios for the sequence alignment application). 

Fig. 9 and Fig. 10 illustrate the average running time (40 executions) of the ray tracing and the sequence 

alignment applications, respectively. For ray tracing, the execution times uniformly increased as granularity 

became finer for all tests, which shows a good overall correlation of the different variants. For fine and medium 

granularities, EasyFJP was able to outperform their competitors since SFJ in conjunction with either policies 

achieved performance gains of up to 29%. For coarse granularities, however, the best EasyFJP variants introduced 

overheads of 1-9% with respect to the most efficient GridGain implementations. As expected, data locality turned 

out counterproductive, because the performance benefits of placing a set of related tasks (in this case those that 

process near regions of the input scene) in the same physical cluster scene becomes negligible for coarse-grained 

tasks. Again, the most efficient granularities were fine and medium in the sense they delivered the best data 

communication over processor usage ratio. For sequence alignment, the running times were smaller as the 

granularity increased. Interestingly, like the case of the ray tracing application, EasyFJP obtained better 

performance for the fine granularity, and performed very competitively for the medium granularity. However, the 

GridGain variants were slightly more efficient when using coarse-grained tasks. In general, data locality did not 

help in reducing execution time because, unlike ray tracing, parallel tasks had a higher degree of independence. 

This does not imply that data locality policies are not effective but their usage should be decided depending on the 

nature of parallelized applications, which enforces similar previous findings (Mateos, Zunino, & Campo, 2010).  

 



 
 

Fig. 9 Ray tracing application: Average execution time 

 

 
 

Fig. 10 Sequence alignment application: Average execution time 
 

 

 



6 Conclusions 
 

EasyFJP offers another balance to the dimensions of applicability, code intrusiveness and expertise that concern 

parallel programming tools. Good applicability is achieved by targeting Java, FJP and D&C, and leveraging 

primitives of existing parallel libraries. Low code intrusiveness is ensured by using mechanisms to translate from 

sequential to parallel code while keeping tuning logic away from the latter. This separation, together with the 

simplicity of FJP and D&C, makes EasyFJP suitable for gradually introducing sequential programmers into parallel 

programming. 

The experimental results shown in this paper and the ones reported in (Mateos, Zunino, & Campo, An 

Approach for Non-Intrusively Adding Malleable Fork/Join Parallelism into Ordinary JavaBean Compliant 

Applications, 2010) confirm that FJP-based implicit parallelism and policy-oriented explicit tuning, glued together 

via generative programming, are a viable approach to PaaC. Encouraging results were obtained for both fork-join 

synchronization patterns. We are however performing more experiments with more SFJ-based and MFJ-based 

parallel libraries to better ensure results validity, which is at present our main treat to validity, since only two 

parallel libraries (one supporting MFJ and another implementing SFJ) have been used. Moreover, EasyFJP has the 

potentiality to offer a better balance to the “ease of use and versatility versus performance” trade-off inherent to 

parallel programming tools for fine and medium-grained parallelism, plus the flexibility of generating code to 

exploit various parallel libraries. Up to now, EasyFJP deals with two broad parallel concerns, namely task 

synchronization and application tuning. We are adding other common parallel concerns such as inter-task 

communication, and adapting our ideas to newer parallel environments such as Clouds, which are a new execution 

environment characterized by computing resources simultaneously supporting high-levels of platform 

heterogeneity through virtualization technologies. 

There is a recent trend that encourages researchers to create programming tools that simplify parallel software 

development by reducing the analysis and transformation burden when parallelizing sequential programs, which is 

known to improve programmer’s productivity (Dig, 2011). We are therefore building an IDE support to simplify 

the adoption and use of EasyFJP based on the Eclipse IDE for Java. Finally, we have produced a prototype to 

support the development of parallel applications within pure engineering communities, where scripting languages 

such as Python and Groovy are the common choice (Mateos, Zunino, Hirsch, & Fernández, 2012) and Java 

popularity is not that high compared to this scripting languages. At present, we have redesigned the EasyFJP policy 

API and its associated runtime support to allow users to code policies in Python and Groovy. Evaluating important 

aspect such as overhead (due to the inherent expensive nature of scripting languages) and usability is subject to 

further research. 
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