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In Uhlmann’s description of the differential geometry of the space Q of density operators, 
a relevant role is played by the parallel condition w*o = &*c~, where w is a lifting of a 
curve y in G, i.e. w(t)o(t)* = y(t) for all t. In this paper we get a principal bundle with 
a natural connection over the space G + of all positive invertible elements of a C*-algebra 
such that the parallel transport is ruled by Uhlmann’s parallel equation. 
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1. Introduction 

After the discovery by M. V. Berry [l] of the geometric phase (sometimes also 
called “Berry phase”), B. Simon [12] interpreted it as a holonomy of a natural 
connection which rules the parallel transport of pure states in a Hilbert space ‘H. 
Later, A. Uhlmann [14-161 extended this approach to mixed states by studying some 
geometric properties of the map r(A) = A*A restricted to the set s2 of normalized 
density operators, i.e. positive operators with trace 1. The main problem with this 
study consists in the lack of smoothness of R: it is not a manifold with a boundary, 
but a stratification. In order to avoid this obstruction, L. Dqbrowski and A. Jadczyk 
[6] performed Uhlmann’s programme on a dense subset Qa of s2, namely the set 
of A E Q with positive eigenvalues. On a;20 they obtained a principal bundle with 
a connection such that the related parallel transport coincides with what Uhlmann 
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calls “parallel amplitudes”. On the other hand, in a series of papers [3-51, H. Porta, 
L. Recht and the authors of this paper have studied a natural connection on the 
principal bundle defined by the action 

GxG++ G+ 

(8, a) * &Tag* 
(1) 

(here G is the group of invertible elements of a unital C*-algebra A and G+ is the 
set of positive invertible elements of the algebra). 

This paper is devoted to the study of a different principal fibre bundle over 
G+ with a connection such that the corresponding parallel transport coincides with 
Uhlmann’s, in the sense that both are ruled by the same equations. The contents of 
the paper is the following. Section 2 contains some results about the existence and 
formulae of solutions of the equation AX - XB = Y, for A, B, Y E L(T-l), which 
are needed later. Section 3 contains a survey of the differential structure of the fibre 
bundle (G, G+) as a homogeneous space, with a natural connection, geodesics and 
a Finsler metric, as studied in [5] and [3]. In Section 4 we give a brief description 
of some of Uhlmann’s results about the geometry of density operators, such as 
the parallel condition for a lift and the transport equation for a given curve y of 
density operators. Section 5 contains the description of the fibre bundle (G, G+), 
as seen in Section 3, but considering another connection which gives rise to the 
corresponding transport equation, covariant derivative and geodesics. This bundle is 
named Uhlmann’s fibration because the equations derived from it coincide with those 
given by Uhlmann for density operators. Finally, in Section 6 both approaches are 
compared. 

2. Preliminaries 

Let ‘FI be a Hilbert space and L(H) the algebra of linear bounded operators on 
‘F1. Given A, B, Y E L(x), consider the equation AX - X B = Y. This equation has 
been first studied by Sylvester [ 131 in the finite dimensional setting and later in its 
full generality by M. G. Krein [8], J. Dale&ii [7], M. Rosenblum [ll], and others. 
The reader is referred to [2] for a nice survey on the subject. We shall need the 
following facts: 

1) if a(A) f~ a(B) = 0 then the equation has a unique solution for every Y, 
2) if Re h > 0, Re p < 0 for all A E a(A), p E ~7 (B), then the unique solution 

X has the form 

s 

bo 
X = e-‘*YetBdt. 

0 

In particular, if B (A) c If@ = {t E IR : t > 0} then the equation AX + XA = Z 
has a unique solution for every Z, namely X = loo0 e-‘*Ze-‘*dt. Observe that 
if A E GL(‘FI)+ and Z* = Z then X* = X. 
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More generally if A is a unital C*-algebra, a E A and C, = R, + L,, where R, 
and L, are respectively the operators of the right and left multiplication by a, then 
a(&) C a(a) +a@) so that if a(u) C JR + , C, is invertible and then the equation 

C,(x) =ux+xu =z 

has a unique solution, namely C;‘(z). Also 

s 03 

x = C;‘(z) = e-a’ze-n’dt. 
0 

3. Differential geometry of G+ 

A short description of G+ as a Finsler manifold and as a homogeneous space of 
G is presented in this section. Most of the results we mention here are contained 
in [3-51. Throughout this paper A denotes a unital C*-algebra represented in a 
Hilbert space 7-L, G is the group of invertible elements of A, U is the group of 
unitaries, Ah is the (real) Banach space of hermitian (i.e. self-adjoint) elements of 
A, Aah consists of all antihermitian elements of A, A+ = {X E Ah : X 1 0) and 
G+ = G tl A+. Every a E G+ defines an equivalent scalar product on ‘FI by 

(xv YL 

If *a denotes the adjoint with 
to see that 

Denote by Ai the hermitian 

= (ax, Y), x, y E 7-t. 

respect to the scalar product ( , ),, then it is easy 

T*a = a-‘T*a. 

elements of A with respect to ( , )a, i.e. Ai = 

(X : a-’ X*u = X), Aih the a-antihermitian elements of A, and Ua the u-unitary 
elements of A. The reader may suppose that A is the algebra L(N) of all bounded 
linear operators on a Hilbert space 7-1. Because G is an open subset of A, G+ 
is an open subset of Ah, so it has a natural structure of an open submanifold of 
Ah. There is also a natural action of G over G+, namely L : G x G+ + G+, 
L(g, a) = gag*. L is differentiable and transitive: if a, b E G+ then L(g, a) = b 
for g = b1/2u-1/2 (for c E G+, c- ‘I2 denotes the inverse of the positive square root 
of c). Thus the map pa : G + G+, 
s(b) = b1/2u-‘/2 

pa(g) = gag* is surjective and s : G+ + G, 
is a global differentiable section of pa, i.e. pa o s = ido+. As 

an open submanifold of Ah, the tangent of G+ at a E G+ naturally identifies 
t0 A/, : (TG+), = Ah (a E G+). Then the tangent map of pa : G + G+, at 

1, (&,)I : A + Ah is (TPo)l(X) = Xu + ax*. The isotropy group of a is the 
subgroup Z, of G of all g E G such that pa(g) = gag* = a. Z, coincides with the 

u-l -unitary group W’ = (g E G : ug*u-’ = g-l} which acts freely on the fibres 
by right multiplication. Observe that (TZ,)l = (X E A : Xu + uX* = 0) = (X E 
A : X*a-’ = -X), the a-‘antihermitian elements of A. In particular, for a = 1, 
(TU)l = {X E A : x+x* = o} = &h. 
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From now on we consider the case a = 1 and we shall be concerned with the 
map p = p’ : G + G+, p(g) = gg*, with the tangent map at 1, T : A + Ah, 
T(X) = X + X*. Observe the decomposition A = ker T @ R(T) = A,h @ At,. The 
projection of A onto Ah with the kernel Aat, is iT. The triple (G, G+, U) is a 
principal fibre bundle with the base G+ and structural group U. For g E G define 
Hs = gAh. This is a natural connection, i.e. a smooth distribution of subspaces 
such that (i) A = Hs @ V, if V, = (X E A : Xg* + gX = 0); (ii) uH’u* = H’; 
(iii) Hsu = HgU for all g E G, u E 2-4. Here, smooth means that the map g H Ps, 
which assigns to each g the unique projection over A with the kernel V, and range 
Hs, is differentiable. The subspaces Hs are called horizontal. It is well known that 
any smooth curve in the base space of a principal bundle with a connection admits 
a horizontal lift. In our case we have the following theorem. 

THEOREM 3.1. If y : [0, l] + G+ is a Co3 curve and y(0) = p(g) for some 
g E G then the solution of the problem 

1 F(t) = &qt)y(t)-T(t), 

r(o) = g, 
(2) 

is the unique horizontal lift r : [0, l] + G (i.e. p(r(t)) = y(t), p(t) E H’-(,’ for 
all t E [0, l] such that r(0) = g. Moreover, a Coo lift r of y is horizontal if and 
only if its unitary part u satisjes the diflerential equation 2tiu-’ = (Y’/~)’ y-‘i2 - 

Given a curve 
derivative 

y in G+ and a tangent field X along y we define the covariant 

$ =r(t)$ ( (T~w-~)~~~~ x(t)) r(t)* 

= k - ; (xy-‘i’ + gy-‘x) . 

A field X is called parallel along y if y = 0. A curve y is a geodesic (of the 

connection) if y is parallel along y if and only if i; = y y-’ y . The unique geodesic 

y such that y(0) = a and y(0) = X E (TG+), is y(t) = a’/2eta-“2Xa-“2a1/2 
(t E [0, 11). Given a, b E G+ there is a unique geodesic y& such that ya,b(0) = a 

and ya,b(l) = b, namely ya,b(t) = a’j2 (a-1/2ba-1/2)t a1j2. Observe also that if y is 
a geodesic and g E G then gyg* is also a geodesic. 

Let us introduce a Finsler structure on G+, i.e. define a norm I] . Ilo on each 
(TG+),. Define ]]X]la = lla-1/2Xa-1/211 (X E (TG+),, a E G+) and the length of 

a curve y in G +, L(Y) = &’ Ilv(f)ll rcr’dt. One can also prove that 

Il~xg*II,a,* = IlXlla (3) 
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for all g E G. As a consequence, L (gyg*) = L(y) for all curves y in G+ and 
g E G. An easy computation shows that L(y,,b) = ]( log (a-1/2bu-1/2) ]I. In fact, 

II)i,,b(t)IIya,6(r) = llU”*log (U-1’2bU-1’2) (U-1’2bU-1’2)’ U1'2~~a,,~(,_,,~ba_,,~)'a1/2 

= 11 log (a-“%U-1’2) (u-*‘%a-“*)’ l](a_,,2ba_,,2)’ 

= ]I (u-l/*~u-l/2)-f~* log (u-l/*~u-l/*) (u-l/*~u-l/*)‘~* II 

= II log (a-“%U-1’2) ]I, 

where the second equality holds by (3) and the third one from functional calculus. 
The main result in this section is the following theorem. 

THEOREM 3.2. The geodesic ya,b is u shortest curve among all curves y in G+ 
such that y(O) = a and y (1) = b. 

It should be noticed that there exist infinite many C? curves joining a, b which 
are the shortest (Nussbaum [lo]). The remarkable fact here is the conjunction of 
being a geodesic and being a shortest curve in a highly non-Riemannian context. 

As a corollary, the geodesic distance d(u, b) = inf L(y) (the infimum is taken 
over all CD0 curves joining a and b) can be explicitely computed: d(u, b) = 
)I log (u-1’2bu-“2) 11. Ob serve that, at a first sight, the right-side expression does 
not seem to be symmetric or satisfy the triangle inequality. The theorem shows 
that the equality holds and then 

and 

I] log (u-“*bu-“*) II = II log (b-1’2ub-1’2) II 

II log (a-“*bC1’*) II 5 I( log (u-~‘*cu-~‘*) ]I + ]I log (c-1’2bc-1’2) II 

for all a, b, c E G+. 

4. Geometry of density operators 

In this section we give a brief description of some of the results obtained by A. 
Uhlmann and others [14-16, 61 in the study of the differential geometry of the set 
of density operators as the base space of the bundle of Hilbert-Schmidt operators. 

For a Hilbert space W, consider the set a of density operators on 7-t, i.e. 
the set of positive operators in L(K) of trace 1, and the extended space XHeX’ of 
Hilbert-Schmidt operators in L(N), ‘Hext = {w E L(‘H) : tr(ww*) < 001, with the 
scalar product given by (wi,o& = tr(wTm). 

Consider the projection n : 7iext + 52 given by rr(o) = &. Any w in the 

fibre of b E !2, i.e. w E rr-‘((b)), is called a purifzcution of b and w is called a 
standard purijicution if tr(ww*) = 1. In this case b = r(w) = ow*. 
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Consider a smooth curve of  density operators y : [0, 1] ~ f2 and a curve 
(2) ." [0 ,  1] ~ 7"/ext such that Jr o o2 = y and tr(wo2*) = 1, o) is called a parallel lift 
if o) satisfies 

w*& = &*w. (4) 

This parallel condition can be solved by considering the solution w of  go = gw 
with g = g*. Inserting this solution into y = ww* one gets g as a solution of the 
equation 

~, = g y  + gg. (5) 

Also, the Euler equation of  the variational problem for 

inf {&, ~b) l /2d t  
6O 

(where the infimum is taken over all standard purifications w of  y )  gives again the 
parallel condition (4). 

5. Uhlmann's fibration 

For a fixed a ~ G +, consider the fibre bundle ( G  +, G ,  H a- l )  of  Section 3. As 
N / 

we have already seen, if p~ : G --* G + is the map defined by p~ (g) = Lga = gag*, 
g ~ G, its tangent map at 1 is (Tpa)I : A --~ Ah, ( T p a ) I ( X )  = X a + a X * ,  so 

a - I  
that ker (Tpa) l  = {X ~ A • aX*a -1 = - X }  = Aah and R ( ( T p a ) l )  = Ah. The 

isotropy group la is the subgroup of  G of  a - l -un i ta ry  elements of  G, L/a-~, i.e. 

Ia = {g  E G : g*a = g - l }  = L/a - I ,  w i t h  ( T I a ) l  = ker(Tpa)l .  
Consider the set of  a-hermitian elements of  A, A~ = {X ~ A • X *~ = X} = 

{X ~ A : X*a = aX}.  Then 
a -I  a 

A = Aah  E]~ A h , 

a-I  
a~ -~ n a ~  then X a 2 + a 2 X  = 0, so that X = 0 and then Aah (qA~ = because if X 6 "'ah . . . .  h 

{0}. Given X 6 A consider the unique solution X1 of  the equation 

X l a  2 + a2X1 = Xa  2 + aX*a.  

Then X 1 E A~ because, as the left-hand side of  the equation is a-hermitian, X~ a 
is also a solution and then X~ ~ = X1. If X2 = X - X1 then X2a + aX~ = 0, so 

a -1 a a -I 
that X2 e Aah and X = X1 + X2, with X1 e A h and X2 ~ Aah • 

LEMMA 5.1. (Tpa)l  a~ " A~ ~ Ah is an isomorphism and the inverse map 

( )' = , Ka " Ah ~ A~ is given by Ka(Y)  = X i f  X is the unique Ka (Tpa)l  Aah 

solution o f  Xa  2 + a2X = Ya. 



GEOMETRY OFPOSITIVEOPERATORS 293 

Proof: For X E AZ (Tp,)l(X) = Xa +aX* = Xa +a*Xu-‘. Then if (Tpa)i(X) 

= 0, Xu + u*Xu-’ = 0 or, equivalently, Xu* + u*X = 0, so that X = 0 and 

(TPJI IA’ is injective. Given Y E Ah, consider the unique solution X of Xu* + 

u*X = Yi, then X E AZ and (Tp,)l(X) = Xu +u*Xu-’ = Y, and (Tp,), IA0 is 
h 

surjective. Then if ((TP,), IA”)-’ = K,, K, : Ah + AZ, we have that K,(Y) = X 

if Xu + u*Xu-’ = Y or X is hthe unique solution of Xu* + u*X = Yu. 0 

We are in the position of defining a connection as follows. Denote by VI = 
ker(Tp,)i, Hi = A; and, for each g E G, V, = gV1, Hg = Hlg. 

LEMMA 5.2. i) For each g E G V, @ Hg = A. 

ii) For all u E Ua-‘, u*Hlu*-’ = HI (or equivalently, for all v E Ua, vHlv_’ = 

HI). 
iii) V, = ker(Tp,),. 

Proof: i) If X E V, f~ Hg for g E G, then Xg-’ is a solution of gug*u W + 
Wgug*u = 0. But gag* E G+ and a(gug*u) = o(ul/*gug*u’/*) lies in rW+ (where 
a(c) denotes the spectrum of c E A). Then the equation above admits the unique 
solution W = 0, so that X = 0. 

Given X E A, consider the unique solution W of gug*u W + Wgug*u = Xug*u+ 
guX*u and Xi = Wg. Then, as gug*u and Xug*u + guX*u E AZ, W E AZ, so 

that X1 E Hlg = Hg. If X2 = X - X1 then g-IX2 E AZ;’ = VI, so X2 E gV1 = V,. 

ii) Notice that if v E Ua and X E HI then u-~(vXV-~)*U = VU-~X*UV-~ = 
vxv-1, as we have already seen, in the case a = 1, so that vXv-’ E HI and 

vHlv -‘= HI. But v EL!“ if and only if v* E Ua-’ . 
iii) Differentiating at g the relation pa = .& o pa o L,-I, where .& is the left 

multiplication by g, we get (TP,)~ = (T-Qa(Tpo)leg-~ and then ker(Tp,), = 
gker(Tp,)i = gV1 = V,. 0 

Given a differentiable curve y : [0, l] + G+, we look for a horizontal lift o of 
y, i.e. a curve w : [0, l] +- G such that p,(w(t)) = L,(,)u = y(t) and h(t) E H,cI), 
t E [O, 11. 

THEOREM 5.3. For every diflerentiuble curve y : [0, l] += G+ such that y(O) = b 
and any g E G such that L,u = b, there is a unique horizontal lift w : [0, l] + G 
such that w(O) = g, namely the solution of the differential equation 

yuww-’ + &Ii-‘yu = ?a, 
w(0) = g. (6) 

This equation is culled the transport equation associated to y. 
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Proof: Suppose, first, that there exists a curve o in G such that pa(o) = y 
and h(t) E f&), t E [0, 11. Then ouw* = y and, differentiating at each t E [0, 11, 

&o* + wucj* = y or cj~-’ y + yw* 
-I 

h* = y . 

Using the fact that w is horizontal, i.e. &w-’ E HI or (Lw-‘)* = ah~-‘u-‘, 
we get 

cj&y + y&M-‘a-’ = y 

&0-l yu + y&M-’ = yu. 

If o is a horizontal lift of y 
y(0) = w(O)uw*(O) = L,u = b. 

Conversely, observe that the 

then b,-’ is a solution of Eq. (6). Observe that 

equation 

Xyu + yux = yu (7) 

or 

admits a unique solution X(t) for each f E [0, l] because for y and a E G+ it holds 
a(yu) c IR?. Besides, yu and yu E Ai then, taking *O in (4.6), X*ayu + yuX*a = 
yu. Hence X*0 is also a solution, but then X*0 = X. Then (7) admits a unique 
solution, and this solution is a-hermitian. 

Now suppose that w is a solution of (6), then &W-I E Ai = HI or (;, E Hlw = 

H,. An easy computation shows that 
( 
w-‘yo*-’ 

> 
= 0, and thus for all f E [0, 11, 

( 
w-1 yW* -’ 

> 
(t) = w(O)-’ y (0)0*-l (0) = a. Then y(t) = pa(m(t)), t E [O, 11, and w 

is a lift of y. 0 

F&MARK 5.4. i) In order to see that (6) admits a unique solution w observe that 
Xyu + yuX = yu admits a unique solution X = X(t), t E [0, 11. Then we look for 
the unique solution of 

l h=Xw, 
w(O) = g, t E lo, 11, 

and it suffices to show that w(t) E G (t E [0, 11). 
ii) Consider any lift w of y, i.e. y = wuw*. Then from the first part of the 

proof of the theorem we see that o is such that h,-l is a solution of 

BY + YB* = F, (8) 

and the horizontal lift corresponds to the unique a-self-adjoint solution. 
iii) Using ii), if /?y = R + Z with R* = R, Z* = -Z, then B = $py-l + Zy-I. 

The horizontal lift corresponds to j? = iy y-’ + Z y-l, where Z is the solution of 

yuz + lay = ; (yuy - yuy> 
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(or ayal +aZay = $(yay - yay)) which admits a unique solution of the form 

Z(t) = +-I s cm 

e-“Y”‘“u(~(t)uy(t) - y(t)u)i(t))e-ay(‘)Sds. 
0 

iv) The transport equation associated to y, studied in [5], is 

and corresponds to the case I = 0 in iii). 

Every g E G admits a unique decomposition as g = hu, with h. positive and 
z.4 unitary. In fact h = lg’] = (gg ) . * I/* This decomposition is called the polar 
decomposition of g; h is the positive part of g and u the unitary part. 

The horizontal lift w of y can be also characterized by means of the unitary 
part of 0x2”* as follows. If w is a lift of y, taking the positive square root of 
y = ouw* we get y”* = ]ui’*w*[. Then ~a”* = y”*u, where u is unitary and 
the right-hand side is the polar decomposition of ~a”*. Then for any lift w of y, 
w = y’/*uu-“*, where u is a unitary curve. 

PROPOSITION 5.5. Let y : [O, l] + G+ be a smooth curve, with y(0) = a. Zf u 
is the solution of the differentiul equation 

1 

y”*uy”*~u-’ + ~u-‘yWuy”* = (y”*)‘uy”* - y”*u (y”*)‘) 

u(0) = 1, 
(9) 

then w = y1’2uu-“2 is the horizontal lift of y such that o(O) = 1. 

Proof: A simple computation shows that if u is the solution of (9) and o = 
y “*Uu -l’*, then cj,-l is a solution of (1) with o(O) = 1. 0 

Consider Y as a tangent field in a neighbourhood 17, of a and X E (TG+), = 
Ah. Let y : [0, l] + G+ be a smooth curve with y(0) = a, y(0) = X and w the 
horizontal lift of y with w(O) = 1. For each I E [0, l] consider L,(,) : G+ + G+, 
L,(,,b = w(t)bw(t)*, b E G+, and its tangent map at a, 

(TLo(r))a : WC+), + W+),(t) 

which is invertible because L,cIj is a diffeomorphism. Then if 

Y(t) = (T&&JIYy(t), 

Y(t) E (TG+),, for f E [0, 11. Define the covariant derivative of the field Y in the 
direction X as 
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Observe that &(Y) E (TG+), . In order to show that the definition of DX (Y) does 
not depend on the curve y let us compute K, (Dx Y). Differentiating at g = 1 the 
equality L, o p o Aut,-1 = pgag*, where p = pa, g E G, we get 

(TL,), (TP)I A$+ = (TP,,,*), . 

Now observe that AZ = Aut,-1 (A[e’agm’), and that 

(TP,,,$ 
*-&,-I + Ah 

is an isomorphism. In fact, for Y E Ai 
*-',g-l 

, 

Z = (Tp,,,+ (Y) = Ygag* + ga2g-‘Y&g*, 

or equivalently 

zg*-lag-1 = Yga2g_’ + ga2g-‘Y. 

If (Tp,,,*), (Y) = 0 then Y is a solution of Yga2g-’ + ga2g-‘Y = 0, but this 

equation admits Y = 0 as the unique solution because a(gu2g-‘) = a(u2) C IF%+, 
so that (Tp,,,* )1 is injective. Given Z = Z*, consider the unique solution Y of 

Ygu2g-’ + gu2g-‘Y = Zg*-lag-‘, then Y E A; 
*-&-I 

and (TP,,& (Y) = Z 

because Zg*-lug-’ and gu2g-’ E Ai 
*-’ ag-’ 

. Define 

zs(Z) = Y if and only if Y is the unique solution of Ygu2g-’ + gu2g-‘Y = 

zg*-‘ug-1. 
Using these two facts in the last equality we get 

(TL,), (Tp)l Aut,-1 lAge+_-~ = (T~~a,*)~ IA~*-‘.~-l 

h h 

and taking the inverses we get Aut, K, (T Lg)al = k,. 
If for each t, g(t) = o(t) where w is the horizontal lift of y, then we get 

A%,(t) K, (TL,(tj),’ U’yd = kd”,d 
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and differentiating at t = 0, 

297 

Kl(DxY) = $ (~-Y&r) (Y,(O) o(t)) (l=o. 
Using o(O) = 1 we get 

K,(DxY) = -cj(oG:,(o) (?40)) + Km (G(O)) 40) + $z,,, (Yy(,)) ltzo. 
Now, from y(O) = a, p(O) = X and o the horizontal lift of y with o(0) = 1, 

h(O) is the unique solution of Za + aZ* = X and cj(O)o-‘(0) = ~$0) E AZ. Then 
W(O) is the unique solutjon of Za* + s*Z = Xu and depends only on X and a, 
in fact, W(O) = K,(X), K,(O) (Y,(O)) = K1 (Y,) but K1 (Y,) is the unique solution of 

Yu* +u*Y = Y,u, so that zl(Y,) = Y = K,(Y,). 
We obtain 

X,(DxY) = &(Y,)X,(X) - &(X)X,(Y,) + -$k,,, (Y,(t)) IrzO 

or 

and for a fixed the last expression depends only on a and X. 
We define the covariant derivative of a tangent field Yt along a curve y c G+, 

-$Y, as 

X, 
( > 

;Y = [K,(Y,), K,(F)] + $(Yt), 

where o is the horizontal lift of y, with w(O) = 1. y is called a geodesic if p is 
parallel along y, i.e., if K, (gp) = 0. 

In this case, if w is_ the horizontal lift _of y with o@) = 1 and yL0) = a, 
p(O) = X then 0 = -$ Kocr) (p(t)) so that K o(,)(N)) = G(o) (Y(0)) = K1 (X) = 
K,(X) = Z, Vt, or equivalently, w is a solution of the differential equation 

1 

w-‘&l2 + u&Fw* 
-I 

a = w-‘Zwa* + u*m-‘Zw, 
W(0) = 1. 

(10) 

Also, as Z = K,(X) = &,ct) (k(t)), Vt, we observe that Z E Az*‘Wm’ Vt, so 

Zoao* + wu*w-l Zwa-‘w* = 9 

or 
zy + yw*-’ uw-‘zwu-‘w* = 9 

and then, as Z E A;* 
-I 

u0-‘, Zy + y Z* = F, and using the fact that Z E A: we 
obtain 

Zyu + yuz = pa. (11) 
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Then y is a geodesic if y is a solution of (1 l), ~(0) = a and Z E AZ is the 
solution of Xa = Za* + a*Z, for a given X E Ah. (Observe that p(O) = X.) 

THEOREM 5.6. Given X E Ah, if Z is the solution of Za* + a*Z = Xa then 
y(t) = ezraez*’ is the unique geodesic such that y(O) = a and p(O) = X. 

Proof: A simple computation shows that y is a solution of (11) with y(O) = a 
and y(O) = X. Observe that if o is the horizontal lift of a solution /3 of (11) with 
o(O) = 1 then c%_u-’ is a solution of pa = cjm-‘/Tk~ + /?a&~-’ and B is a solution 
of (4.13). Thus /Ia = Z& + BaZ so that 0 = (Ww-’ - Z) pa +/3a (C&W-’ - Z) and 

( 

(2, --I = Z 
w(0) = 1, ’ 

hence o = ezr and B = ouo* = eZtaeZ*’ = y. 0 

REMARK 5.7. i) For every a E G+ and X E Ah there exists a unique geodesic 
y, with ~(0) = a and )i(O) = X. 

ii) For every a E G+ and every b E G+ of the form b = ezaez*, with Z E AZ, 
there exists a geodesic y joining a and b, namely 

where u E U is such that if b = gag*, g E Gz, then g = b’/*ua-‘I*. 
iii) If a = 1, there is a unique geodesic joining 1 and b, for every b E G+, 

namely y(t) = b’. 

6. Comparison between both approaches 

i) In Sections 3 and 5 the fibre bundles (G, G+, W-l) have been studied with 

different connections in each case. In Section 3, we have defined the connection 

by VI = A$‘, the set of A of a-‘antihermitian elements of a, and Hi = Af-’ = 

ker(Tp,)i, the set of a -‘-hermitian elements of A, and the corresponding horizontal 
and vertical spaces at each g E G as 

Hg = gfb, V, = gV1 = ker (Tp,), . 

In Section 5 we have considered, for the same vertical space at 1, VI = ker(Tp,) 1 = 

A:,‘, a different complement in A, namely Hi = Ai, the set of a-hermitian elements 
of A with the corresponding vertical and horizontal spaces at each g, 

HR = Hig, V, = gV1 = ker(Tp,),. 

These different connections give rise to different horizontal lifts of a given curve y 
in G+, which have been compared in Section 4 (see Remarks), and also different 
covariant derivatives. 
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The geodesic y with y(0) = a and p(O) = X is, in the first case, the curve 
y(t) = .1/2ea-“2Xa-‘/2ta1/2 and, 
the solution to Xa = Za2 ‘+ u2Z. 

in the second case, v(t) = eztuez*‘, where Z is 

ii) Observe that, taking a = 1 in Section 4, we have obtained Uhlmann’s equa- 
tions, described also in Section 4. More precisely, for a = 1 we have pi(g) = gg*. 
In this case (Tpl)r(X) = X+X* and ker(7’pl)r = Aah = VI; HI = Ah. The isotropy 
group is the unitary group. The connection is given by Hg = Ahg and V, = gAoh. 
Also the transport equation for a given curve y in G+ is 

( 

y&f-’ + C&0-ly = p, 

0) = g, 
(12) 

which is equivalent to Uhlmann’s equation (5). 
Observe that if w is a lift of y which is a solution of (12) then w satisfies 

the parallel condition, because in this case w is horizontal and C&W-’ E Ah or 
equivalently (&3-l)* = Ww-‘, or LI*c~ = o*& 

The equation for the unitary part of a horizontal lift w of y is, in this case, 

)/ku-’ + h&Y = 03j/w _ yw(yw)~~ 

Finally, the unique geodesic joining 1 with b E G+ is v(t) = b’ so that geodesics 
with origin 1 coincide in both cases. 
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