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Consider the algebra L(H) of bounded linear operators on a Hilbert space H, and let
L(H)T be the set of positive elements of L(H). For each A € L(H)™ we study differential
geometry of the Thompson component of A, Cis={BeLM™':A<rBand B <sA
for some s,r > 0}. The set of components is parametrized by means of all operator ranges
of H. Each Cy4 is a differential manifold modelled in an appropriate Banach space and a
homogeneous space with a natural connection. Morover, given arbitrary B, C € Cy4, there
exists a unique geodesic with endpoints B and C. Finally, we introduce a Finsler metric
on C,4 for which the geodesics are short and we show that it coincides with the so-called
Thompson metric.

1. Introduction

It is the aim of this paper to study, from a differential geometric view point, the
space L(H)™" of all positive bounded operators on a Hilbert space H. More precisely,
there is a natural partition of L(H)* in components C (the so-called Thompson’s
components of L(H)") and we prove that each C is (naturally) a differentiable
submanifold of a suitable space of operators. One particular component is the set
G* of all positive invertible operators on H. The geometry of G* is well known
(see [3-5] and the references therein). Here we present a method which allows to
study every component of LH)*.

The relevance of the search of geometrical structure of parts of L(H)' in math-
ematical physics has been emphasized by Uhlmann [19-21], Dabrowski and Jadczyk
[7], Dabrowski and Grosse [6], Dittmann and Rudolph [8], Petz [15], Petz and Su-
dar [16] and by many others. Uhlmann provided a geometric method for studying
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the so-called geometric phase (or Berry phase [2]). The reader will find in [20,
21] a nice exposition of the geometric ideas of the parallel transport for the Berry
phase.

In Uhlmann’s explanation of the geometrical phase. a central role is played by
the set of generalized density operators, i.e. positive operators of the trace class.
The main difficulty we find in studying these operators is that they have, in general,
nonclosed range. The geometry of the space of positive operators with closed range
has been studied in [4], where the first attempt of using Thompson’s partition in
components was made.

Also in Petz and Sudar’s study of quantum systems [15, 16] there is evidence of
the difficulty mentioned above, so they restricted the study to finite quantum systems,
which in turn led them to consider only finite-dimensional Hilbert spaces and the
so-called closed range operators.

The partitions of L(H)* in components and the natural differentiable structure of
each component is not a complete solution of the difficulties mentioned before. In
fact, many natural curves are not contained in any component: if A has nonclosed
range, each A’ belongs to a different component! However, in problems where the
range of the considered operators remains constant. the results of the paper may be
useful.

Let us describe the contents of the work. Section 2 contains description of the
components of L(H)*. This result is essentially a consequence of a well-known
theorem of R. G. Douglas [11]. One of the many characterizations of the components
is the following: A, B € L(H)* belong to the same component if and only if A'/?
and B'/? have the same range. For injective operators this is in turn equivalent to the
boundedness of the operators A'/2B~1/2 and B'/2A~1/2 over their (common) domain.
This description allows a parametrization of the set of all components of L(H)* by
means of the set of all operator ranges of H: a subspace S of H is called an operator
range if there is a bounded operator on H with S as its range. These subspaces are
called “variétés de Julia” by J. Dixmier, who found many characterizistics of them [9,
10]. Fillmore and Williams [12] give a very readable version of many of Dixmier's
results. Using the results of this section we show that the means of operators,
introduced by Pusz and Woronowicz [17], Anderson and Trapp [1]. and Kubo and
Ando [13] are consistent with components: if A, B belong to the component C then
the mean Ao B belongs to C, too. This is particularly useful for the geometrical
mean # of [17], because A#B is the operator which rules the geodesic from A to B
(see details in Section 4). In Section 3 we study different Hilbert spaces constructed
from a single positive operator A. Typically, one defines an inner product { , )}, on
H by (x,y)4 = (Ax,y) and considers the completion Hy of (H. (. )4). The unique
extension of A'? to Hy is an isometric isomorphism onto H. On the other hand,
H = (R(A'7?), (, )a-1) is complete. It is shown that L(H,4. H) is in a one-to-one
correspondance to the left ideal L(H)A'/?, and L(H. H') to the right ideal A'?L(H).
For noninjective operators the constructions are more involved. These operator spaces
are used in Section 4 to study each component C, as a homogeneous space of the
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group GL(H') of all invertible operators on the space H'. An isometric isomorphism
L(H) — L(H4, H) provides a way of defining a differentiable structure on Ca,
modelled in the Banach space of “Hermitian” elements of L(H,, H'). The action
of GL(H') over C4 provides a fibration GL(H') — C4 with a principal connection
which induces a linear connection on the tangent bundle 7C4. We show how to lift
curves in C, by means of the transport equation and characterize the geodesics of
the connection. These results generalize the corresponding results on the component
G*. Finally, we introduce a Finsler metric on C4 and show that it coincides with
the so-called Thompson metric (or part metric), a complete study of which can be
found in [14].

2. Thompson’s components of L(H)*

Let K be a closed convex cone of a real Banach space which is normal in the
sense that there exists a constant r > 0 such that |x|| < r|yll if 0 <x <y (here
x <y means that y —x € K). Consider in K the following equivalence relation:
x ~ y if there exist constants r,s > 0 such that x <ry and y <sx. A component
is an equivalence class. Thompson [18] proved that

dr(x,y) = logmax{inf{r > 0:x <ry},inf{s > 0:y < sx}}

defines a complete distance on each component of K. The reader will find in
Nussbaum [14] an excellent exposition on this notion and its multiple applications.

In this section we characterize the components of the normal closed convex cone
L(H)* of the real Banach space L(H), = {X € L(H) : X* = X}. As a matter of
fact, this section is a set of variations on the following result of [11]:

THEOREM 2.1. If A, B € L(H) the following conditions are equivalent:

(1) R(A) CR(B),
(2) there exists r > O such that AA* <rBB”*,
(3) there exists C € L(H) such that A = BC.

If one of these conditions holds, then there exists a unique C € L(H) such that

(a) |C|I*> = inf{r > 0: AA* < rBB*},
(b) kerC =ker A,
(¢) R(C) C R(B*).

COROLLARY 2.2. If A, B € L(H), then R(A) = R(B) and dimker A = dimker B
if and only if there exists C € GL(H) such that A = BC. In particular, positive
operators A, B have the same range if and only if there exists C € GLH) such
that A = BC.

The reader is referred to [12] for a survey on these subjects and related matters.
We proceed now to characterize Thompson’s components of L(H)*. In order to
do this, we first consider the case of injective operators.
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THEOREM 2.3. Let C4 be the component of an injective operator A € L(H)™.
For B € L(H)" the following conditions are equivalent:

(i) B eCy,

(i) R(A'Y?) = R(B'/?),

(ii1) there exists a unique V € GL(H) such thar B/? = A2y,

(iv) there exists a uniqgue P € GL(H)" such that B = AV?2PA/?,

(v) AT12BA™Y? s a bounded operator on R(A'Y?) and it has a unique ex-
tension to H which is invertible.

Proof: The equivalence between (i) and (ii) follows from Douglas’ theorem. Its
corollary shows the equivalence between (ii) and (iii). The uniqueness of V follows
from the injectivity of A.

(iii) = (iv) If BY?2 = A2V for some V € GL(H), then B = A2V V*A!/? and
P =VV* e GLH)" is uniquely determined because A is injective.

(iv) = (v) If B = AY2PAY? for some P € GL(H)", then A~'2BA-172 is
a bounded linear operator on R(A'/?), so that A~'/2BA~'"2 is a bounded linear
operator on R(A'?) which admits a unique extension to H, namely P, which is
invertible.

(v) = (i) The positive operator A~'2BA~1/2 on R(AY?) satisfies al <
A72BA-Y? < BI, where

a =inf{|A™2BA7 2y ¥y e RGAVA), |Iy| = 1)

and
B =sup{[AT'2BAT 2yl 1 y e R(A'?), ||y|| = 1}.

This shows «A < B < BA, and then B € C,4.

Observe that B € Cy4 if and only if B'/2A~"/2 is a bounded operator on R(A!/?)
(which can be extended to H).

The general case is considered in the following result.

THEOREM 2.4. For A, B € L(H)" the following conditions are equivalent:

(i) B € Cy,

(i) R(A'2) = R(B'/?),
(iii) there exists V € GL(H) such that B'? = A2V,
(iv) there exists P € GL(H)" such thatr B = A'2pAl/?,
(v) R(B) C R(A?) c R(B) and

(7], ) (0], ) ms

extends to a positive invertible operator in L(H), where M = R(A1/?).

Proof: The equivalence (i)<>(ii)<>(iii) can be proved as in Theorem 2.3, by
observing that the kernels of two positive operators with the same range must
coincide.
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(iii) = (iv) If B2 = A2V for some V € GL(H), then B = AY/2VV*A!/% and
P =VV*e GLH)".

(iv) = (v) If B = AYV2PA'? for some P € GL(H)*, then R(B) C R(A!/?)
and ker B = ker A!/2,

Therefore, R(B) = (ker B)* = (ker Al/z)L =M and R(B) C R(A?) Cc M =
R(B). On the other hand, Bly : M — M is injective.

If Q denotes the orthogonal projection onto M, then B = A/2QP QA2 Let
us abbreviate P, = QP Q. Then P; > 0 and Pyjm : M — M is invertible: in fact,
(Px,x) = ||P'%x| = c| x|, Vx € H, for some ¢ > 0; then

(Pix,x) =(PQx, Ox) > cllx]| VxeM,

and P;|p is positive and bounded from below.
Then By = AY2PiAY2|y = AV2|p Pilv AV?|m which proves that

—1 -1
P1=(A1/2‘ ) B(Al/z‘ ) in R(AY),
M M

which admits an obvious bounded extension to M. This implies (v).
(v) = (i) If P, :R(AY2) > R(A!/?) extends to a positive invertible operator
on H, then in particular there exist ¢, 8 > 0 such that

al <P <Bl in R(AYY

or, which is the same,
aAjm < Blm < BA|m-

But R(B) C R(A'/?) c R(B) and then ker A = ker B = M. This shows that
aA <B<pBA
and B € Cy4.

REMARK 2.5. It should be noticed that the invertible operator V of the part (iii)
is not unique, as it is in the injective case. However, V(ker A'/?) = ker A'/? and
V(M) = M. Then condition (iii) is equivalent to

iy (A'Y2|,) B2y = V]y € GLM).

COROLLARY 2.6. For every A € LC(H)* the component C4 coincides with the set
AYV2GLM)*AY2. In particular, C4 is contained in the trace class ideal if A is.

As a consequence of Theorem 2.4 we obtain a parametrization of the set of
components {C4 : A € L(H)*} by means of the set of operator ranges of H,
i.e. subspaces S of H such that there exists a bounded linear operator C € L(H)
with R(C) = S. These subspaces have been studied by Dixmier [9, 10] under
the name of “variétés de Julia”. The reader will find in [12] a modern treatment
including simplified proofs of Dixmier’s results. Using the polar decomposition it
can be proved that a subspace S of H is an operator range if and only if there
exists A € L(H)™ such that R(A) = S. Thus, there exist as many Thompson’s
components of L(H)* as the operator ranges of H.
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The next result shows that, for A € L(H)™, the values of the curve r > A’ lie
in the same component if and only if R(A) is closed. Moreover, if R(A) is not
closed, then each A’ lies in a different component.

THEOREM 2.7. For a positive operator A € L(H)™ the following alternative holds:

(1) either R(A) is closed and then R(A") = R(A) for every t € [0.1]
(2) or R(A) is not closed and then R(A') is closed for t =0, not closed for every
t € (0,1] and

R(A) C R(A") C R(A") C R(A)
for 0 <s <t <l

Proof: a) First case: A is injective. If A € L(H)T is injective, then R(A)* =
ker A =0 so that R(A) is dense in H. Then, the alternative reads:

(1) either R(A) = H and then R(A’) = H for every r € [0, 1],

(2) or R(A) £ H and then R(A") £ H for all + € [0, 1] and

R(A) ¢ R(A") C R(A*) C H

for 0 <s <1 <1.
Since A is injective the following conditions are all equivalent:

(i) R(A) =H,

(ii) Ae GLH)T,
(iii) there exists t € (0, 1) such that R(A") = H,
(iv) there exists t € (0, 1) such that A" € GL(H).

Observe also that, for 0 < ¢ < 1, we can factorize A = A'A!™" and, more
generally, if 0 <s <t < 1,
AI — ASAI_X,

In particular, R(A) ¢ R(A") C R(A?).
To complete the proof we must show that conditions (i) to (iv) are equivalent
to

(v) there exist + and 4 such that 0 <7 <t +h <1 and R(A") = R(A"™").

Suppose that (v) holds. By Corollary 2.2 there exists V € GL(H) such that
At = A'V. Since A’ is injective, we get A" =V which means A" € GL(H)".

The factorization A = AY2AY2 shows that (i) = (v) obviously.

Let us show that the alternative is proven. If R(A) is not closed and 1 € (0, 1)
then R(A") is not closed because (iii) = (i). That the inclusions are all proper
follows from (v) = (i).

b) General case: A is not necessarily injective. Observe that ker A’ = ker A for
all 1, so that R(A") = (ker A’)" = (ker A)* = R(A). In particular. R(A) C R(A") C

R(A). Thus, if R(A) is closed, then R(A") = R(A) is closed for all r.
Suppose that R(A) is not closed and R(A") = R(A™") for some 0 <t <t +h
< I.
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Again by Corollary 2.2 there exists an invertible V such that Ah = AV It

is easy to see that V(ker A) C ker A and V(M) C M, where M = R(A). Then we
can treat V{y as an invertible operator on M and write Arth| = (A']y) (Vi)

Then A’y = V|m, so R(A"|y) is closed. But R(A"|p) = R(A"), so that
Ahlm € GL(M)* and thep AIW € GL(M)* by raising to the }I-th power. In
particular, R(A) = R(A|y) is closed. O

COROLLARY 2.8. If A € L(H)* then R(A) is closed and then the curve y(t) = A’
lies in the Thompson component of A; or R(A) is not closed, and then each A'
lies in a different component.

3. Hilbert spaces associated to a positive operator
Each injective positive operator A defines a scalar product on H by
(. y)a=(Ax,y)  (x,y e H),
and a norm || |4 by
I¥lla = (e, 0% = 14"2x) (x € H).

Thus AY2: (H,| [l4) = (H, | [)) is an isometry onto R(A'/?). If H, denotes the
completion of (H, ( , )4), then A2 admits an extension

A2 . H, - H
which is an isometric isomorphism. Observe that the densely defined operator
AT (R(AV) ) - (B (L)
is an isometry, so that it can be extended to an isometric isomorphism
A2 H S H A

which is the inverse map of A!/2. (We shall use different symbols to denote ex-
tensions to H and Hy,). -

Every B € L(H,4, H) induces, by restriction, an operator B = Bl : H - H
which is bounded because

IBxll = 1Bxll < IBI Wxlia = 1BI 1AY2x) < 1B 1AV ).
Moreover, by Douglas’ theorem and by
B*B < | B|*A
it follows that R(B*) C R(A!2).
Thus, the restriction defines a transformer
LH,4, H) - LH),
B> B,
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with the image {B € L(H) : R(B*) C R(A'*)} = L(H)A!Y? (the equality is, again,
a consequence of Douglas’ result). The same argument_shows that B € L(H4, H)
is invertible (i.e., there exists C € L(H,Hx) such that Bo(C = lg. Co B = lu,)
if and only it B = VAY? for some V € GL(H).

Regarding the norm of B, observe that

~ ~IBX|l
| BllL,m =sup ~=-—-
720 X4

Due to the fact that H is dense in H, it follows that

~ | Bx||
“B“L(HA.H) =S8

up —————, e H.
o 1A

BA~'/?; "
= sup {“—TTJ e R(AY). 2 # 0] .

Thus, B is a bounded operator if and only if BA~'? is a bounded operator on
R(A'?) and, in this case,

1B\, = 1BA™2L

If BA-1/2 denotes the unique extension of BA~'? to (H, || ||} we obtain

—

BK:/Z =Bo A/’T/2 =Bo AT]:‘I =B oAV,

—~ —1 —~ %
because A2 = AY? e L(H, Hy).
Another useful remark is that R(A'"/?) is complete with the norm || [l4 induced
by the inner product

(x, W), = (A‘l/zz. A_'/zw), z.w e R(A?).

Moreover, AY2: (H, || I) = (R(AY2 || [l 1) is an isometric isomorphism.

If H denotes the Hilbert space (R(AY?). (. ), 1), then L(H.H) = {B €
L(H): there is X € L(H) such that B = A'X} = AV2LH) and |Bllrany =
IA~Y2 Bl

It may be useful to characterize the elements of L(H,), i.e. the linear operators
Hy, — Hy ﬂxich are bounded with respect to || [l4. It is easy to see that the map
¢ : B+~ A-'Y2BA'/? is an isometric isomorphism from L(H) onto L(H,) which
preserves the involution.

In a similar way, L(H) = {B : R(4"/%) — R(A'/2): there exists X € L(H) such
that B = A'2XA~12) = AVILADAZ.

Finally, L(H,, H) = A'Y?L(H)A!/? and there is a natural isomorphism ¥ :
L(H") — L(H,),

| —

¥ (AVIXATVR) = ATRXFATR = AV XTALR,
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Using this notion we obtain another characterization of C4 which will be useful
in the next sections.

PROPOSITION 3.1. If B € L(H)*, then B € C, if and only if there exists Ce
LMH,, H), C invertible, such that B = C*C.

Proof: If B € Cy, there exists P € GL(H)* such that B = AY2PA'2. Then
C = PY2AY? : H — H admits a unique extension C : Hy — H which is bijective
and bicontinuous. Then C*C = AY2PAY? = B. Conversely, if B = C*C for some
invertible C € L(Hy4, H) then C = VA'? for some V € GL(H) and B = C*C =
A2y*V A2 = A2PAY2, P e LAH)T. Thus B € Cy.

Now consider an A € L(H)™ which is not necessarily injective. Denote M =
R(A). Then

Alm : M — R(A)

is an injective operator in L(M)". In the same way as before A|n defines a scalar
product in M by

(, Ja:MxM-—C,
(x,y)a = (Ax,y), x,y e M.

Denote by M, the completion of (M, ( , )a).
From ker A = ker A2, R(A!/2) = R(A) =M, and then

A m M > R(AYH c M.

Again
A s ML) ) = (ML D
is an isometry tth can be extended to My. Denote this extension by AT//le :
M, — M. Then A!Y2|y; is an isometric isomorphism.
Again, L(My4, M) can be identified with the subset of L(M),
{B € LIM) : R(B*) c R(A!/%)},

and if GL(M4, M) denotes the subset of L(M4, M) of the elements that admits
an inverse in L(M, M,), then GL(M,4, M) can be identified with the set

{(BeLM):B=VA'? V € GL(M)}.

The sets L(M,M,), L(My), L(M4,M') and L(M’) can be studied in the
same way as in the injective case. (Here M’ denotes the Hilbert space (R(AY?),

(o o)

Means in C,4
A binary operation o on the class of positive operators of L(H), (A, B) —
(Ao B), is called a mean if

(i) A<B and B <D imply AcB <Cao D,
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(i) C(AoB) < (CAC)o(CBC),

(iii) A, | A and B, | B imply (A,0B,) | AcB (A, | A denotes A} > A}, > ...
and A, converges strongly to A),

@iv) lol = 1.

For each mean o, the map o — f, defined by f(x) = lox for x > 0 es-
tablishes an isomorphism from the class of means onto the class of normalized

operator-monotone functions f.
In fact, for A, B € GL(H)" the following relation yields

Ac B = A]/2f(A~l/2BAA1/2)AI/2,

with f the monotone function associated to o. This formula shows that ¢ can be
recovered from the function f, see [13].

Consider B,C € L(H)* such that B < rC, r > 0, or equivalently such that
R(B'/?y c R(C'?). Then

R(B'?) c R[(BoC)'/?] c R(C'/?).

In particular, for B and C in the same component C,, BoC lies in C, for any
mean o.

To see this suppose that if there exists r > 0 such that B < rC, take o =
max{1,r}. Then from B < «B and B < a(C we get B < a(Bo(C), or R(B'/?) ¢
R[(BaC)'/?].

In the same way, if 8 = min{l,}}, from BB < C and BC < C we get
B(BoC) < C, or R[(BaC)!/?] <R(C'?).

Observe that if A € L(H)™ has closed range R(A) then C, identifies with
GL(R(A)™' and then the formula

Ao B = AI/Zf(A—l/ZBA—l/Z)Al/Q
which is valid for invertible elements A and B, is still true if we consider

(Alra) " "?B(Alra)) .

4. C4 as a homogeneous space

In this section we define an action on C4 and study the induced homogeneous
structure.

Consider an injective A € L(H)*, and let C, be the component of A. If
B eC, then B = A‘/zP{{\L’Q, with fve GL(H)*, uniquely determined, as seen in
Section 2. If B = A'/2PA'/2 with A!/2 the extension of A'/2 to (Ha.| |l4), then
C, identifies with a subset of L(H,4, H).

As in the preceding section

GLH)={WeLH): W =AY2vA~? V € GLH)}
= A2GLH)A™'?
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and
GL(H,) = ¥ (GL(H")

with the map ¥ : L(H) — L(H,) defined in Section 3 by
V(A2 ZAV2) = (ﬁ?)_l Z AR,
Consider the following action on Cyg,
L: GL(H/) X CA —> CA,
(W, B) = LyB = WBy(W).
Then N ~
LwB = A2V PV*AL2,

where W = AY2VA-12 and B = AY2PA2, V € GL(H), P € GL(H)*, are
uniquely determined.
Also, as P = (A"1/2BA~1/%)" (see Section 3),

LwB = A2V (A" 2BAT2) VAT,

It is easy to see that L satisfies:

(i) LwLr = Lwr because w(WT) = ¢(T)¥(W), W,T e GLH).

(i) L; = id because ¥ (ly) = 1u,. _
(iii) L is transitive: if W = AY2VA~Y2,V € GL(H), then Ly A = AY2VV*Al/2,
C,4 can be considered as a differential submanifold of L(H4, H') because C4 =

g (GL(H)+), where
g : L(H) — L(H4, H),

X > AV2X AR

is an isometric isomorphism. - -
Consider p : GL(H') — C,4 as the map defined by p(W) =LwA = WAY(W) =
A2y V*ALZ with W = AV2V A2,
The isotropy group T4 of A is

Iy = {W e GLH)) : p(W) = A} = AU A~ = UH),
where #/(H) and U (H’) are the unitary groups of H and H'.
In general, for B € C4, the isotropy group Zp of B is
ZB = AI/ZI(A_UZBA‘I/Z)AA—I/Z

with I(4-12p4-12» being the isotropy group of (the positive invertible element
of L(H)) (A~2BA~Y/2)" corresponding to the action L : GL(H) x GLH)* —
GLH)*, LyP = VPV* V e GLH)*, P ¢ GLH)" and P(V) =Lyl, see [5].
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The tangent space (7Z4); coincides with A'?L(H);,A~"?, where L(H)y =
{XeLH): X*=-X}, or also

(TZpr =Y e L) : Y' = -Y} = LH)a,
where Y# is the adjoint of ¥ in L(H),
Y= AYVX*ATV2 i Y = AV2XATY2 X e L(H).
For B e C,4. the tangent space to C, at § there 1is
(TCA)p ={Y eL(H4 H): ¥ =AXA2, X = X* ¢ L(H)}

with L(H), the subspace of hermitian elements of L(H), L(H), = {X € L(H) :
X* = X}.
Observe that (7C4)3 is a (real) closed subspace of L(H,, H') because

(TCx)p = g(L(H)p),
g L(H) — L(Hy4, H') is the isometry defined before.
The tangent map of p at 1 is
(T : LH) — (TC)3.
(T Y = YA+ Ay (Y).

A linear connection is defined on C, by giving the following distribution of
subspaces of L(H') at each W € GL(H'):

H, = GLH), = AY’LH),A~"2,
Vi =(TZ4); = GL(H ),

and
Hw = WH;, Vw = WV,

We have that
(T), |y, 1 = (TCW3

is an isomorphism, (7,)(Y) = ZYZ, Y € H, because fh//(Y) = YA if Y¥ =Y.
Define

1
Ki=(Tl,) + (TCOz - Hi.

then .
K3(2) = 57A™"

Observe that if Z € (TC4)x then Z = AY2XAYV2 for some hermitian X in L(H),
and K3(Z) = ;A2 XA™1? ¢ L(H),.

Given y : [0,1] — C,4, a smooth curve in Cg4, consider a lift W : [0, 1] —
GL(H') of y, ie., W is a curve in GL(H’) such that p(W(r)) = y(r). W is called
horizontal if W(Y) € Hyy,, for all ¢ or, equivalently, if WW e H,.
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If
W) = A2V A™Y2, V(t) c GL(H),

and .
y(t) = A2 P@)Al2, P(t) C GL(H)*,

then W is horizontal if and only if
V7'V € L(H).

But V-V € L(H)y, if and only if V is a horizontal lift of P(t). Then W is a
horizontal lift of y if and only if V is a horizontal lift of P, or, equivalently, if
V is a solution to the associated transport equation

1.
V=-PP V.
2

But then W is a solution of the transport equation
. 1
W=_yy 'w.
184

The transgort equation induces a covariant derivative of a tangent field X along
a curve y, —(3;&, and the field X is parallel along y if %;& =0. Acurve y is a
geodesic if y is parallel along y.

For B and C € C4 there exists a geodesic joining them, yj &, namely

VE’E‘(t) — BI/Z((B—I/ZCB—]/Z)A)tﬁz,

where again (B‘WCB‘I/Z)A is the extension of B~Y2CB~!/2 to an operator in
L(H)*. ~ ~ ~ ~
Observe that the geodesic yj &, joining B and C, only depends on B and C,
and not on A. — —
Also, if B = A2P,A1/2 and C = A2P,A)/2 with P; and P, in GL(H)*, then
A™V2y5 x(AY2)71 is the geodesic in GL(H)™ joining Py and P: if A7'/2BY/? =
P?U and A=V2CV2 = P)”?V, with U and V in U(H), then

A"V 2 (A = PMRUWBTPCBTYNY U P,

and
(B—I/ZCB—I/Z)/\ —_ U_IPI—I/szPl_l/ZU,
therefore
((B—I/ZCB—1/2)/\)I = U—I(P1_1/2P2Pl_l/2)tU,
and then

A——l/zyB,C(A]/z)—l — P11/2(P1—1/2P2P1—-1/2)tPll/z
= yp,p(1).
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Finally, we define a Finsler structure by setting a norm || ||z on the tangent
space (TCq)p: if ¥ € (TCu)z,

o~ '—1
Y15 = 1Y g = 1872Y (B72) e,

where H/, denotes the Hilbert space (R(B'/%),{ , )z-1).
Observe that this metric coincides with the metric defined for positive invertible
operators (see [5]), because in this case, if X € L(H),

X4 =NA""2 XA, A € GLH)™.
The length of a curve y : [0,1] = C,4 is

1
L) =/ 171, dt.
4]

and if y(1) = AV2P()A12, with P(r) ¢ GL(H)*, then L(y(t)) = L(P(1)).
Then as a consequence of the results for invertible positive operators, if y :
[0, 1] — C,4 is a curve with y(0) = B and y(1) = C,

L(y) > L(yz &) = |log(B™'2CB™3)"|,

where y3 & is the geodesic joining B and C (see [5]).
If
d(B,C) =inf{L(y): y[0,1] — C4, y(0)=B,y(l)=C}

is the geodesic metric, then
d(B,C) = L(yz &) = |l log(B~'2CB~1")"|.
But || log(B~'"2CB~1/?)"|| coincides with the Thompson metric dr(B, C), see [4].
Therefore the geodesic metric coincides with the Thompson metric defined in
each component,

d(E» E) =dr(B,C)=| IOg(B‘l/ECB_l/Z)/\”'

In the general case, if A € L(H)™ is not necessarily injective, C4 can be
considered as a differential submanifold of L(M,4, M’') (see Section 3) and as in
the injective case, we obtain a homogeneous space with a Finsler structure.
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