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Abstract. Let H be a Hilbert space, L(H) the algebra of all bounded linear
operators on H and (,) 4: H x H — C the bounded sesquilinear form induced
by a selfadjoint A € L(H), (€, 7)a = (AL,n), & n€eH.GivenT € L(H), T
is A-selfadjoint if AT = T*A. If S C 'H is a closed subspace, we study the set.
of A-selfadjoint projections onto S,

P(AS)={QeL(H):Q°=Q, RQ)=S, AQ=Q 4}

for different choices of A, mainly under the hypothesis that A > 0. 'There
is a closed relationship between the A-selfadjoint projections onto & and
the shorted operator (also called Schur complement) of A to St. Using
this relation we find several conditions which are equivalent to the fact that
P(A,S) # 0, in particular in the case of A > 0 with A injective or with R(A)
closed. If A is itself a projection, we relate the set P(A4,S) with the existence
of a projection with fixed kernel and range and we determine its norm.
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1. Introduction

If H is a Hilbert space with scalar product { -,-) and L{H) is the algebra of
all bounded linear operators on H, consider the subset Q of L(H) consisting of all
projections onto (closed) subspaces of H and the subsct P of Q of all orthogonal
(i.e., selfadjoint) pro jections.. Every Q € Q\ P is called an oblique projection. The
structure of Q@ and P has been widely studied since the begining of the spectral
theory. In recent times, applications of oblique projections to complex geometry
[21], statistics [26], [27) and wavelet theory (1], [2], [24], [25] have renewed the
interest on the subject. The reader is also referred to [6], [16].

In [21], [4] there is an analytic study of the map which assigns to any positive
invertible operator A € L(H) and any subspace S of H the unique projection onto
S which is selfadjoint for the scalar product (-, -) 4 on H defined by (£,m)a = (A&, )
(6,7 € H). In this paper we study the cxistence of projections onto S which are
selfadjoint for (-,-)a if A is not nccessarily invertible. More precisely, if S is a
closed subspace of H and B:H x H — C is a Hermitian sesquilincar form, consider
the subsets of Q,

Qs ={Q € Q:Q(H) =S} (projections with range S)

and
0% = {Q € Q: B(6,Qm) = B(Q€,n), forall Ene ™}

(B-symmetric projections).

The main theme of the paper is the characterization of the intersection of Qs
and QB. We shall limit our study to the case in which B is bounded, so that,
by Riesz’ theorem, there exists a unique selfadjoint operator A € L(H) such that
B(&,7) = Ba(€,n) = (A€,n) (€,7 € H); we search to characterize the set

P(A,S) = Qs N QB4

Observe that P(A,S) has a unique element if A is a positive invertible operator,
but in general it can have 0, 1 or infinitely many elements. Even if we get a char-
acterization of P(4,S) in general, much more satisfactory results can be obtained
for a positive A (A > 0, i.e. (A&, £) > 0 for all £ € H). In this paper, a pair (A,S)
consisting of a bounded selfadjoint operator A and a closed subspace S C H is said
to be compatible if P(A,S) is not empty.

The contents of the paper are the following:
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In section 2 we recall the Douglas factorization and use it to prove that if

Q€ Q, A€ L(H) and R(QA) C R(A), then the unique operator D € L(H) with

the properties
QA=AD, kerD =kerQA and R(D) C R(A*),

(called the reduced solution of AX = QA) satisfies D*> = D, ie., D € Q.

In section 3, some characterizations of the compatibility of (A4, S) are given;
some of them hold for general bounded selfadjoint operators A, and others hold
only for positive operators A. Among other properties, it is shown that an oblique
projection Q is A-selfadjoint (if A > 0) if and only if 0 < Q*AQ < A (sec Lemma
3.2). We establish that P(A, S) is an affine manifold and we give a parametrization
for it. When (A, S) is compatible, a distinguished element Py s € P(A,S) can be
defined. It is shown that the norm of P4 s is minimal in P(A,S) (sce Theorem
3.5).

In section 4 we consider the relationship between the compatibility of (A, S)
and some properties of the Schur complement. M. G. Krein [18] and W. N. An-
derson and G. E. Trapp [3], extended the notion of Schur complement, of matrices
to Hilbert space operators, defining what is called the shorted operator. We recall
the definition: if A € L(H)*, S C H is a closed subspace, then the sct

{(Xe L(H)* : X <A and R(X)C S}

has a maximum (for the natural order relation in L{H)%), which is called the
shorted operator of A to §*. We shall denotc it by Z(P, A), where P = Ps stands
for orthogonal projection onto S. It is shown that, for any Q € P(4,S), the Schur
complement (P, 4) is given by '

(P, A) = A1 - Q)

(see Proposition 4.2). We also show that (A, S) is compatible if and only if, in the
characterization

Z(P,A)=inf{R"AR : R€ Q, kerR=S8},

due by Anderson and Trapp [3], the infimum is, indeed, a minimum (see Corol-
lary 4.3).

In section 5 we consider the case of positive operators A which are injective.
Using properties of the shorted operator X (P, A), new conditions equivalent to the
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fact that the pair (A,S) is compatible are found. For example (see Proposition
5.4), it is shown that

(A,S) iscompatible <= S* C R(A+A(1-P)), forsomec A> 0.

In section 6 we consider the case of positive operators A with closed range.
Among other equivalences, it is shown that (A,S) is compatible if and only if
S + ker A is closed (see Theorem 6.2). As a consequence it is shown that all
manifolds P(B,S) for R(B) = R(A) are "parallel” (see Corollary 6.4). So, in this
sense, it suffices to study the case of the orthogonal projection Q = Pr(ay. This
case is studied in section 7, where we give a formula for the norm of the projection
Pq,p := Py s inP(Q,S). For example (see Proposition 7.2), if ker QNR(P) = {0},
then PQP € GL(S) and

1Po,pII* = I(PQP)~"| = (1 - (1 - Q)PI*)~".

In casc that R(P)Nker@Q = {0} = R(Q)Nker P (c.g., if P and Q are in position p
(12], [9] or generic position [15]), Pp p is the oblique projection given by

ker PQ,p = kCI‘Q and R(PQSP) = R(P).

We thank several useful comments and suggestions of the referee. In particu-
lar, the present version of Theorem 3.5, in which the superfluous assumption A > 0
was removed, is due to him.

2. Preliminaries

In this paper H dcnotes a Hilbert space, L(H) is the algebra of all linear
bounded operators on H, L(H)" is the subset of L(H) of all (sclfadjoint) positive
operators, GL(H) is the group of all invertible operators in L(H) and GL(H)* =
GL(H) N L{H)* (positive invertible operators). For every C € L(H) its range is
denoted by R(C). We shall use the symbols + for direct sum and & for orthogonal
sum of closed subspaces. Given & and 7 two closed subspaces of H, we denote
S67T =SNTH*, the "relative orthogonal companion® of 7 in S.

Denote by @ (resp. P) the set of all projections (resp. selfadjoint projections)
in L{H):

Q=QUMH)={QecL(H):Q*=Q} , P=PLH)={PcQ:P=P}

The nonselfadjoint elements of @ will be called oblique projections.
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Recall that every P € P induces a representation of elements of L{H) as 2 x 2
operator matrices. Under this representation P can be identified with

Ipay O\ _(1 ©
0 0/ \0o 0
and all idempotents Q with the same range as P have the form
1l =z
(o )
for some z € L(ker P, R(P)).

Definition 2.1. Let A,B € L(H). A bounded operator D which satisfies the
conditions

AD=DB, kerD=kerB and R(D) C R(A*)

is called the reduced solution of the equation AX = B.

Now we state the well known criterium duc to Douglas [13] (sce also Fillmore—
Williams [14]) about ranges and factorizations of operators:

Theorem 2.2. Let A,B € L(H). Then the following conditions are cquivalent:
1. R(B) C R(A).
2. There exists a positive number X such that BB* < AAA*.
3. There exists D € L(H) such that B = AD.

Moreover, in this case there exists a unique reduced solution D of the equation
AX = B and | D||? = inf{)\: BB* < AAA*}.

Corollary 2.3. Suppose that Q € Q, A € L(H) and R(QA) C R(A). Then the
reduced solution D € L(H) of AX = QA satisfies that D2 = D, i.e., D € Q.

Proof. Note that AD? = QAD = Q%A = QA. Also
ker QA = ker D C ker D* C ker AD? = ker QA

and R(D?) C R(D) C R(A*). Thus, D? is a reduced solution of AX = QA and,

by uniqueness, it must be D2 = D, i.e. D € Q. .
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3. A-selfadjoint projections, generic properties

Let S be a closed subspace of H and P be the orthogonal projection onto
S. Consider the bounded sesquilinear form B = B4:H x H — C determined by a
Hermitian operator 4 € L(H):

Ba(g&m) =(Agn), & nen.

This form induces the notion of A-orthogonality. In particular, the A-orthogonal
companion of S is given by

Str={€: (At,n) =0 e S}=A"YSH).
Given T' € L(H), an operator W € L(H) is called an A-adjoint of T' if

Ba(T¢,m) = Bal§,Wn), & neH,

or, which is the same, if T*A = AW. We shall study the existence and uniqueness
of A-selfadjoint projections, i.c., @ € Q such that AQ = Q*A. Among them, we
are interested in those whose range is exactly S. Thus, the main goal of the paper
is the study of the set

P(A,S)={Qe Q: R(Q) =§5,AQ = Q" A}

for different choices of A.

Definition 3.1. Let A = A* € L(H) and let S C H be a closed subspace. The
pair (A,S) is said to be compatible if there exists an A-selfadjoint projection with
range S, i.e. if P(A,S) is not empty.

For general results on A-selfadjoint operators the reader is referred to the
papers by P. Lax [20] and J. Dieudonné {11]; a more recent paper by S. Hassi and
K. Nordstrom {16} contains many interesting results on A-selfadjoint projections.
Some of the results of this scction overlapp with their work, but we include them
because the methods used in our proofs are useful for the study of the case of a
positive A, which is our main concern.
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Lemma 3.2. Let A = A* € L{H) and Q € Q. Then the following conditions are
equivalent:

1. Q satisfies that AQ = Q*A, i.e. Q is A-selfadjoint.

2. kerQ C A- (R(Q)) = R(Q)*.
If A e L(H)*, they are equivalent to

3. Q*AQ < A.

Proof. 1 & 2. If Q € P(A4,S) and €, € H, then
(1) (An, Q) = (Q"An, &) = (AQn, &) = (Qn, AE),

so ker @ C A™'(S*). The converse can be proved in a similar way.

1 < 3. Suppose that 0 < Q*AQ < A. Then, by Theorem 2.2, the reduced
solution D of the equation AY2X = Q*Al/? satisfies || D]| < 1 and, by Corollary
2.3, D* = D. Thus, it must be D* = D. Since Q*A = AY2DAY? we conclude
that @A = AQ. Conversely, note that AQ = Q*AQ > 0 and, if E =1 — Q, then
also AE = E*AFE. Therefore, A = AQ+E)=Q*"AQ + E*AE > Q*AQ -

Throughout, we usc the matrix representation determined by P.

Proposition 3.3. Given A = A* € L(H), the following conditions are equivalent:
The pair (A, S) is compatible (i.c. P(A,S) is not cmpty).
. R(PA) = R(PAP).

2
3. IfA::(a b
4

.

b c) then IR(b) C R(a).
LS4+ ATN(S) =M.

Proof. Note that

a b a 0
PA-(O O) and PAP—(O 0),

so R(a) = R(PAP) C R(PA) = R(a) + R(b) and items 2 and 3 are equivalent. On
the other hand, for any @@ € Q it holds R(Q) = S if and only if

1 =z
@=(o3)

Easy computations show that Q*4A = AQ if and only if ax = b, so items 1 and
3 are equivalent by Theorem 2.2, Finally, if @ € P(4,S) then, by Lemma 3.2,
ker @ C A~}(S1), which implies 4. Conversely, if S + A"1(S1) = H, and if N
is defined by N = Sn A7}(SY), then S+(A7H(St) ©N) = H. The projection
Q defined by this decomposition of H satisfies, again by Lemma 3.2, the identity
QA= AQ
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Definition 3.4. Let A = A* € L(H) and suppose that the pair (A4, S) is compat-

ible. If A = ; ﬁ) and d € L(S*,S) is the reduced solution of the equation

azr = b, we dcfine the following oblique projection onto S:

1 d
Pasi= (5 4).

Theorem 3.5. Let A = A* € L(H) and suppose that (A,S) is compatible. Denote
N = A"YSL)NS. Then the following properties hold:
1. N =kcra and, if A> 0, then N =kerANS.
2. Pas € P(A,S). Moreover Pas is the projection onto S with kernel
A" Y(SH)eN.
3. P(A,S) has a unique element (namely, Pas) if and only if SHAY(SY) = H.
4. P(A,S) is an affine manifold and it can be parametrized as

P(A,S) = Pas + L(S*,N),

where L(S1,N) is viewed as a subspace of L(H). A matriz representation of
this parametrization is

1 0 d SoN
(2) P(A,S)>Q =Past+z= (0 1 z | N
0 0 0/ gt

with the notations of Definition 3.4.
Pa.s has minimal norm in P(A,S):

(&4

| Pasl = min{ [|Q]l : Q € P(A,5)}

Nevertheless, Pa.s is not in gencral the unique Q € P(A,S) that realizes the
minimal norm.

Proof. 1. Let £ € S. Then A€ = af + b*€. Recall that a§ € S and b*¢ € St
Therefore A¢ € S* if and only if € € kera. If A > 0 and £ € NV, then AL 2¢) =
(A€, &) = 0 so that A = 0.

9. In order to show that P4 s € P(4,S), use the same argument as in the
proof of Proposition 3.3. Then ker P4 s C A71(S%). Since SHAY(SH)eN) =H,
it suffices to show that ker P4.s C NL. Let € € ker Pa,s and write § = £ +&2 with
£, ¢S and & € S*. Then 0 = Paof = & +dés. I n € N, then (§,n) = (&1,1) =
—{d€a,n) = 0, because R(d) C R(a) = (kera)t = N,
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3. By Lemma 3.2, if Q € Q and R(Q) = S, then Q@ € P(A,S) if and only if
ker Q C A~1(S1). This clearly implies the assertion.

4. We have to show that every element Q ¢ P(A,S) can be written in an
unique form as

Q@=Pas+z, with ze L(StN).

If A = (;‘ 2) Q = ((1) g) with y € L{S*,8) and if d € L(S*,S) is the

reduced solution of the equation az = b, then Q € P(A,S) if and only if ay = b if
and only if a(y — d) = 0. Therefore, if z = y — d € L(SL,S), then Qe P(A,S) if
and only if Q = P4 s+ z and R(z) C kera = N.

Concerning the matrix representation, note that, by Theorem 2.2,

R(d) C R(a) = (kera)! NS =SoN.
5. If Q € P(A, S) has the matrix form given in equation (2), then

0 0 d\|?
1QI% =1+ (o 0 2 > 14 ||dl? = |Pasli>.
0 0 0O

Choose d € L(S*,S) such that ||d| = 1, R(d) = R(d) # S and kerd # {0}. Then

the matrix p J
= { TR >
4 ( d* 1) 20,
N =kerANS = §© R(d) and d is the reduced solution of Prgyx = d. Let
z € L{kerd, N} with 0 < ||z]| < 1; then the projection Q = P, s + z as in equation

(2) satisfies Q S P(A,S), ”Q” = ”PA,S” = \/§ and Q 76 PA,S- -

4. Schur complements and A-selfadjoint projections

As before, let P € P be the orthogonal projection onto the closed subspace
S C H. Every A € GL(H)* defines a scalar product on H which is equivalent to
(,), namely

& ma=(AL,n), €& neH.

The unique projection P4 s onto S which is A-orthogonal, i.c. A-selfadjoint, is
uniquely determined by

Pas=P(l+P—-A"'PA)"' = P(PAP + (1 - P)A(1 — P))" A.
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Observe that Py s = A’IPQ’SA, because A is invertible. In particular, in this
case the set P(4,S) is a singleton. Analogously, there exists a unique projection
Qa,s which is A-orthogonal and has kernel S: Qas = 1 — Pas. Notice that
AQA,S = QZ,SA-

Consider the map &: P x GL(H)* — L(H)* defined by Z(P, 4) = AQas =
a

b*

1 a~'b 0 —a’lb 0 0
PA,S— (0 0 >’ QA,S—‘ (0 1 )’ J.Ild Z(P‘A)_ (0 C—‘b*(.l,—]b>.

"This reminds us the Schur complement. Recall that, given a square matrix M =

QusA IfAe GL(H)* has matrix representation A = < , then

b
((z d)’ with a and d square blocks, a Schur complement of a in M is d — ca’b,

where @' is a generalized inverse of a. The reader is referred to (8] and [7] for concise
surveys on the subject. This notion has been extended to positive Hilbert space
operators by M. G. Krein [18] and, later and independently, by W. N. Anderson
and G. E. Trapp (3] defining what is called the shorted operator: if A € L(H)*
then the set {X € L(H)T: X <A and R(X)C St} has a maximum (for the
natural order relation in L(H)T), which is called the shorted operator of Ato St
If A€ GL{H)*, it is shown in (3] that the shorted operator of A to & L coincides
with (P, A), where P is the orthogonal projection onto S. Therefore we shall
keep the notation (P, A) for the shorted operator of A to R(P)! for every pair
(P,A) € P x L(H)*.

Next we collect some results of Anderson—Trapp and E. L. Pekarev (22] which
are relevant in this paper. Sec also Krein [18] and Krein- Ovcharenko [19].

Theorem 4.1. Let A € L(H)* have the operator matriz representation A=

(> o)

1. R(b) C R(a?) and if d € L(H) is the reduced solution of the equation

al/? z = b then 0 0
n(PA) = (0 c— d'd) )

9. If M = A~V2(S81) and Py is the orthogonal projection onto M then
(P, A) = AY2 Py AV

3. B(P, A) s the infimum of the set {R*AR : R€ Q, ker R = S }; in general,
the infimum is not attained.
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4. R(A) NSt C R(Z(P, A)) C R(S(P,A)Y/?) = R(AV?)n 8L, in general, the
tnclusions are strict.

The reader is referred to {3] and [22] for proofs of these facts. We prove now
that the infimum of item 3 is.attained if and only if (A, S) is compatible by relating
the notions of shorted operators and A-selfadjoint projections (when there is one).
As a consequence, we complete item 4 of the previous theorem in case that (A, S)
is compatible.

Proposition 4.2. Let A € L(H)* such that the pair (A,S) is compatible. Let
EeP(A,S)and Q=1-E. Then
1. B(P,A) = AQ = Q*AQ.
2. X(P,A) = min{R*AR : R € Q. kerR = S} and the minimum 1is attained
at Q.
3. R(X(P,A)) = R(A)n St.

Proof. 1. Note that 0 < AQ = Q*AQ < A, by Lemma 3.2. Also R(AQ) =
R(Q*A) C R(Q*) = §*. Given X < A with R(X) € &%, then, since kerQ = S,

we have that

X = Q*XQ < Q*AQ = AQ,

0 o0
where the first cquality can be easily checked because X has the form ( 0 m)'
2. By item 1, Q*AQ = X(P, A) and ker @ = §. So the minimum is attained
at @ by Theorem 4.1.

3. Clearly the equation S(P, A) = AQ implies that R(S(P, A)) C R(A)N St

The other inclusion always holds by Theorem 4.1. u

Corollary 4.3. If A€ L(H)* the following conditions are equivalent:
1. The pair (A,S) is compatible.

2. The set {S*AS : S € Q, kerS = S} attains its minimum af some projec-
fion R.

3. There exists R € Q such that ker R=38 and R*AR < A.
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Proof. 1 — 2. Follows from Proposition 4.2.

2 — 3. Follows from Theorem 4.1.

3 — 1. By Lemma. 3.2, any projection R such that R*AR < A satisfies that
AR = R*A. If also ker R = S, then 1 — R € P(4,S). .

In the next sections we shall study the existence of A-selfadjoint projections
onto a closed subspace S, under particular hypothesis on the positive operator A.

5. A-selfadjoint projections: the injective case

As before, let P € P be the orthogonal projection onto S. In this sec-
tion we study the case of injective operators 4 € L(H)*. We define the notion
of A-admissibility for S, in terms of the shorted operator X (P, A4). In Exam-
ple 5.5 below, we show that A-admissibility for S is in general a strictly weaker
property than compatibility for the pair (4,S). But under the assumption of A-
admissibitity for S, the fact that (A, S) is compatible becomes equivalent to the
equality R(Z(P, 4)) = S+ N R(A) (sce item 4 of Theorem 4.1 and item 3 of Propo-
sition 4.2).

Definition 5.1. We shall say that S is A-admissible if ker S(P, A) = S.

Lemma 5.2. If A € L(H)%is injective and (A,S) is compatible, then S is A-
ndmissible.

Proof. Let E € P(A,S) and @ = 1~ E. Then, by Proposition 4.2, £(P, A) = AQ

and ker 2(P,A) = ker@ = S. -

Remark 5.3. Let A € L(H)*. It is easy to see that a closed subspace S is A-
admissible if and only if S* N R(AY?) is dense in St. If (4,S) is compatible
then a condition which is stronger than A-admissibility holds. Indeed, £(P, A) =
A(1~ P, s) implies that ker 2(P, A) = S. But in this case, R(X(P, A)) € R(4)NS+
which must be dense in S*. Note that R(A'/?) strictly contains R(A) if R(A) is
not closed.

Nevertheless, we restrict ourselves to the weaker notion of A-admissibility
because under the hypothesis that S is A-admissible, the pair (4, S) is compatible
if and only if R(E(P,A)) € R(A). Observe that R(Z(P, A)) C R(A) is falsc in
general (recall item 4 of Theorem 4.1 and item 3 of Proposition 4.2)
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Proposition 5.4. If A € L(H)" is injective then the following conditions are
equivalent:
1. The pair (A, S) is compatible.
2. i) ker (P, A) = S (i.e. S is A-admissible) and ii) R(D(P, A)) C R(A).
3. S is A-admissible and, if M = A~Y2(SL), then PpyAPypm < A for some
u>0.
4. St C R(A+ A(1 — P)) for some (and then for any) X > 0.

Proof. 1 — 2. By Lemma 5.2, S must be A-admissible. If Q4.5 = 1 — P4 s, then
Z(P, A) = AQ4,s and item 2 follows.

2 — 3. If R(AY?PpAY?) C R(A) then R(PpAY?) C R(AY?), because
ker A1/2 = ker A = {0}. Then, by Douglas’ theorem, item 3 follows.

3 — 1. Note that Py APy < pA if and only if R(PyyAY?%) C R(AY?) if and
only if there exists a unique F' € L(H) such that AY2F = Py AY2 ker(Pp A'Y/2) C
ker F and R(F) C R{A'/?). We shall see that 1 - F € P(A,S). Indeed, F? = F by
Corollary 2.3. F is A-selfadjoint because AF = AY2P, AV/?2 = (P, A) which is
selfadjoint. Finally, ker F' = S. Indecd, AF = Z(P, A),so ket F = ker Z(P, A) = §
because S is A-admissible.

4 — 1. Using Proposition 3.3, we know that the fact that (4, S) is compat-
ible only depends on the first row PA of A. Therefore we can freely change A by
A+ A1~ P), for A > 0. In this case conditions 2 can be rewritten as condition 4,
because X(P, A+ A(1 — P)) = Z(P, A) + A(1 — P). .
Example 5.5. Given a positive injective operator A € L(H) with non-closed range,
it is casy to show that there exists £ € R(AY?)\ R(A). Let P¢ be the orthogonal
projection onto the subspace generated by £. Then R(Fg) C R(A}/?), so that, by
Douglas’ theorem, Py < AA for some positive number A which we can suppose equal
to 1, by changing A by AA. It is well known that this implies that the operator
B € L(H & H) defined by

A P
B= (Pe A )

is positive. Let S = H; = H & 0. Then St = H, = 0 & H. We shall see that B is
injective, H; is B-admissible and H, N R(B) is dense in Hz; but P(B,S) is empty.

Indeed, it is clear that B does not verify condition 3 of Proposition 3.3, so
P(B,S) is empty. Let D be the reduced solution of Pz = AY2X. Then ©(P, B) =
A — D*D. Note that ker D = ker P implies DI, = D. So D*D = P.D*D. Then,
if 0 @7 € ker L(P, B),

An=D*Dn =P DDy =X forsome A eC = 5=0
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because £ ¢ R(A) and A is injective. So ker X(P, B) = § and H; is B-admissible.
Also '

(3) BwonecldH « Av+Pn=0 < w=0 and ne {&t

Then R(B)NHy = {BO®n) :n € {}+} = 0 A({€}). We shall see that
A({€}*) is dense in H. Indeed, if ¢ € [A({€})]4, then (n, ACQ) = (An, () = 0 for
all 7 € {€}1. So AC¢ = ué for some p € C. As before this implies that ¢ = 0.
Finally, the injectivity of B can be deduced by a similar argument as was used in

(3).

6. A-selfadjoint projections: the closed range case

As before we fix P € P with R(P) = S. In this section A denotes a positive
operator with closed range. We shall see that, in this case, the fact that (4,8) is
compatible depends only on the positivity of angle between ker A and §. Namely,
(A, S) is compatible if and only if ker A+ S is closed. Lo establish the link between
compatibility and the angle condition, we need to determine when R(PAP) is
closed. This is done in the following Lemma:

Lemma 6.1, Let A€ L(H)*.
1. The follouing equality holds: R(PAP) = SN (S Nker A)*.
2. Moreover, if R(A) is closed, then R(PAP) s closed if and only if the subspace
ker A + S s closed.

Proof. Obscrve that ker PAP = ker AP = S* @& (S Mker A). Therefore
R(PAP) = (ker PAP)t =S50 (SnkerA) = SN (SMker A)* := M.

Clearly MnNker A = {0}. Suppose that N = ker A+S = ker A+ M is closed. Let Q
be the projection from A onto M with ker Q = ker A; observe that Q is bounded.
If Q =0then M = {0}, S C ker A and PAP = (. If M # {0}, given £ € M, let
n € R(A) such that An = A€ (A is invertible in R(A)). Clearly n = € + ¢ with
¢ € ker A. Then n e N, Qn.=¢ and ||¢]|| < IQ]l |Inl]. Therefore

(PAPE,€) = (AL, &) = (An,m) = Ninli* > MQI™2)i€N®

for some A > 0, because R(A) is closed and so Ajg(a) is bounded from below.
Conversely, if R(PAP) is closed then R(PAP) = M. Then there cxists 4 > 0
such that (Ag,€) = ||AY2¢}|? > pul|)? for € € M and AV2(M) is closed. So

N = A~1/2(AV2(M)) must be also closed. .
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Theorem 6.2, If A € L(H)* has closed range then the following conditions are
equivalent:
1. The pair (A, S) is compatible.
2. R(PAP) is closed.
S + ker A is closed.
R(PA) is closed.
St + R(A) is closed.
6. R(AP) = A(S) is closed.

SN

Proof. 2 «+ 3. Use Lemma 6.1.
«

2—-1. Let A= ([‘ ﬁ) be decomposed by means of P. Note thata = AP,
) M
s0 R(a) is closed. Therefore, since A > 0, R(b) € R(a'/?) = R(a). Then (4,8) is
compatible by Proposition 3.3.
1 - 3. Suppose that (A4,S) is compatible. Let Py s € P(A,S) and let

Qas =1 —Pas. Then
ker A< ker(Qy sA) = ker(AQps) = S+(ker AN R(Q4.5)) C ker A + S.

Therefore ker A + S = (ker AQ 4 s) which is closed.
4 « 5. This is an easy consequence of the identity

R(A) + 8t = P7'[P(R(A))] = P~Y{R(PA)).

3 « 5. In fact, it holds in general that the sum of two closed subspaces is
closed if and only if the sum of their orthogonal complements is closed (see {101).
4 « 6. It is a general fact that R(C) is closed if and only if R{(C*) is <-105«-d..

Remark 6.3. Conditions 3, 4 and 5, 6 are known to be equivalent, because R(P) =
S and ker P = S+ (see Thm. 22 of {10]). They are also equivalent to, for example,
the angle condition

c(S,ker 4) < 1,

where «(S.T) is the cosine of the Friedrichs angle between the two subspaces S, 7T,
defined by:

(4) o(S. T) = sup{(€, )] : € € SA(SNT)*, €l < 1, n € TASAT) . fif < 1).

Also Lemina 6.1 can be deduced from the results of [10].
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Corollary 6.4. For every A € L(H)* with closed range. the following conditions
are equivalent:

1. The pair (A,S) is compatible.

2. For all B € L(H)* with R(B) = R(A), the pair (B.S) is compatible.

3. The puir (Pg(ay.S) is compatible, if Pray denotes the orthogonal projection

onto the closed subspace R(A).

Moreover, if B € L(H)* and R(B) = R(A). then the affine manifolds P(A,S) and
P(B.S) are “parallel”, i.c.

(5) P(B.S) = (Pps — Pas) + P(A,S).

Proof. If R(B) = R(A) then ker B = ker 4 = ker Pray and, by Theorem 6.2,
the three conditions are equivalent. Equality (5) follows from the parametrization
given in Theorem 3.5, since

AT S NS =ker ANS =kerBNS = B~Y(SY)nsS

Condition 3 is an invitation to consider the scts P(Q,S) tor @ € P, which we
study in the next section.

7. The case of two projections

In this section we shall study the case in which A4 is an orthogonal projection,
i.c., A= Q ¢ P. Then, by Theorem 6.2 (items 3 and 6), ker Q + R(P) is closed
if and only P(Q.R(P)) is not empty. In this case we shall denote by Py p the
projection I’y gr(py of Definition 3.4. In the following theorem we collect several
conditions which are equivalent to the existence of Py, . Notice, however, that
the equivalence of items 3 to 10 can be deduced from results by R. Bouldin [5] and
S. Izumino [17); a nice survey on this and related subjects can be found in [10).
Observe that Theorem 6.2 provides alternative proofs of some of the cquivalences.

Theorem 7.1. Let P,Q ¢ P with R(P) = S and R(Q) = T. The following are
cquivalent:
1. (Q.S) is compatible.
. (P T) is compatible.
. ker @ 4 R(P) is closed.
. ker P+ R(Q) s closed.
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R(PQ) is closed.
R(QP) is closed.
R(1 - P+ Q) is closed.
R(1 - Q + P) is closed.
9. (S, T+) =¢(T,81) < 1.
If kerQNS = {0}, they are equivalent to
10. [ -Q)P| < 1.

% N oo

Proof. 1 < 2 & 3. Follows from Theorem 6.2.
3 +» 4 = 9. Follows from Theorem 13 of [10].
3 < 6 and 4 < 5. Follows from Theorem 22 of [10].
o < 7 and 6 —~ 8. Follows from 2.5 of [17]

3 ++ 10. Follows from Theorem 13 of [10]. .

Suppose that any of the conditions of Theorem 7.1 is satisfied by P,Q € P. As
a final result, we shall compute || Pg p|l. First, we assume that ker QN R(P) = {0}.

Proposition 7.2. Let P,Q € P. Denote R(P) = S. Suppose that ker QNS = {0}
and ker Q + S is closed. Then Q|s is invertible in L{S,Q(S)), PQP is invertible
in L(S) and

IFa.rll = 1(Qls) ™ I = (PRP)YM? = (1~ |1 - Q)PI?)~1/2.
Proof. Using Theorem 7.1, we know that ||(1 — Q)P|| < 1. Then
12 = PQPI = |IPQ - Q)P = (1 -Q)P|* <1,

showing that PQP is invertible in L(S). On the other hand consider Qls:S —
Q(S). By Theorem 6.2, Q(S) is closed, so Qls is invertible in L(S, Q(S)).
If Pop= ((1) g), then |[Py pli? = 1 + ||d]|>. Recall that d is the reduced
solution of the equation PQPX = PQ(1 — P). So, by Theorem 2.2,
[dl* = inf{A > 0: PQ(1 — P)QP < A\PQPQP)}
= inf{A > 0: PQP < (1 + A)(PQP)?}
=Inf{A>0: P < (1+A)PQP} =inf{A>0: (PQP)~' <(1+A)P}
=I(PQP)™!| - 1.

So [|Py,rli? = {[(PQP)~!||. Note also that
P<(@+0PRP <= ¢l < (1+M)(PQPE, &) = (1+ N)[|QE)* forall €€,
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Taking infimum over A, we get | Po.pll = (1 + |2}|2)Y2 = [|(Qls)~ |-
It is easy to see that, if 0 < A < I in L(H), then I - Al =1 - [|JA~}|~L.
Applying this identity to PQP in L(S) we get

I(PQP)™H = (1=|P=PQPI)™" = (1-PA-Q)P|) ™" = 1-[I(1-Q)PIH) ™"

Remark 7.3. Let P,Q € P with R(P) = S and R(Q) = T and suppose that any
of the conditions of Theorem 7.1 hold. By Proposition 3.5,

ker PQ'p = Q"l(ker P) S (kerQ N R(P))
= (ker Q + R(Q) Nker P) & (ker Q N R(P)).

Therefore, in the case that
(6) R(Q) Nker P = {0} = ker Q N R(P)

(e.g., if P and Q are in position p [12], [9] or generic position [15]) we can conclude
that Pg p is the projection given by

ker Pg p =kerQ and R(Pgp)=R(P).

Then S+ ker @ = H and Py p is the oblique projection given by this decomposition
of H. In this case, formula ||[Pg pll = (1 — {|(1 — Q)P||>)~/? has been proved by
Ptak in [23] (see also [6]).

Theorem 7.4, Let P,Q € P and assume that ker Q + R(P) is closed. Denote by
N =kerQNR(P), M = R(P)SN and Py = Pp. Then

1. P(Q, M) has only one element, namely Py p,.

2. Pg,p=Pn+ Pg.p,.

3. |Po,pll = 1Po,pll = (1 = (1 - Q)Po)|*)~ /2.

Proof. If N = {0}, we can use Proposition 7.2. Assume now that A/ is not trivial.
Then, by the results of section 3, we get the matrix form

1 0 0\ N
Pop={0 1 d] M .
0 0 0/ kerP
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Denote

00 o\N
(7) T=FPop~Py=[0 1 d}| M
0 0 0/ kerP

We must show that T' = Py p,. Note that ker QN M = {0}, so P(Q, M) has, at

most, one element. On the other hand, T? = T and R(T) = M by equation (7).
Also

T"Q=(T"+ Px)Q =P5 pQ = QPgp = Q(Py +T) = QT,

because QP = 0. So, T' = Py p, as claimed. By equation (7) and Proposition 7.2,
Po.p=Fn+Pop, and |[|Pgpl =1Poprl =1~ -Q)P[%)/2,

because ker Q N R(P) = {0}.
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