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Abstract

For each n × n positive semidefinite matrix A we define the minimal index I (A)=max{λ �
0 : A ◦ B � λB for all B � 0} and, for each norm N, the N-index IN (A) = min{N(A ◦ B) :
B � 0 and N(B) = 1}, where A ◦ B = [aij bij ] is the Hadamard or Schur product of A =
[aij ] and B = [bij ] and B � 0 means that B is a positive semidefinite matrix. A comparison
between these indexes is done, for different choices of the norm N. As an application we find,
for each bounded invertible selfadjoint operator S on a Hilbert space, the best constant M(S)

such that ‖ST S + S−1T S−1‖ � M(S)‖T ‖ for all T � 0. © 2001 Published by Elsevier
Science Inc.

AMS classification: 47A30; 47B15

Keywords: Hadamard product; Positive semidefinite matrices; Norm inequalities

1. Introduction

Given A = [aij ], B = [bij ] ∈ Mn = Mn(C), the algebra of n × n matrices over
C, denote by A ◦ B the Hadamard product [aij bij ]. In this paper A � 0 means
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that A is positive semidefinite; Pn = {A ∈ Mn : A � 0} denotes the set of positive
semidefinite matrices.

Every A ∈ Mn defines a linear map �A : Mn → Mn given by �A(B) = A ◦ B
for B ∈ Mn. By Schur’s product theorem [22] (see also [14, 7.5.3]) A ◦ B ∈ Pn if
A,B ∈ Pn so that �A is a positive linear map. Actually it is completely positive, i.e.,
the inflation map �(m)

A , which acts entrywise as �A on Mm(Mn), is positive for all
m ∈ N; see [20, Proposition 1.2].

In [23], the second author studied conditions under which

max
{
λ � 0 : �A(B) � λB, ∀B ∈ Pn

} = inf
{‖�A(B)‖ : B ∈ Pn, ‖B‖ = 1

}
.

The problem comes from the theory of conditional expectations. A conditional ex-
pectation on a C∗-algebra A is a norm one projection E : A → A such that E(A)

is a sub-C∗-algebra of A. Every conditional expectation E satisfies the condition

sup
{
λ � 0 : ‖E(a)‖ � λ‖a‖ ∀a ∈ A+}
= sup

{
λ � 0 : E(a) � λa ∀a ∈ A+} , (1)

where A+ = {c ∈ A : c � 0}. The inverse of this number is called the index of E
and it is useful in the classification of inclusions of subalgebras of C∗-algebras. Note
that a conditional expectation is completely positive. If E : A → A is a completely
positive map that is not a conditional expectation, (1) fails in general and the problem
arises of characterizing those E such that (1) holds.

For A ∈ Pn define the minimal index I (A) = max{λ � 0 : A ◦ B � λB ∀B ∈
Pn} and the N-index IN(A) = max{λ � 0 : N(A ◦ B) � λN(B), ∀B ∈ Pn} for any
given norm N on Mn. We are mainly concerned with Schatten norms ‖ · ‖p for p =
1, 2, and ∞; we use the shorter notations I1, I2, and Isp for I‖·‖1 , I‖·‖2 , and I‖·‖∞ ,
respectively. Isp is called the spectral index.

If A = Mn, every conditional expectation E has the form E(C) = U�A

(U∗CU)U∗, where U ∈ Mn is unitary and A ∈ Pn is a direct sum of matrices whose
entries are all equal to one. In this case, Ind(E)−1 = 1/k = Isp(A) = I (A), where
k is the number of diagonal blocks of A. We remove the inverse in our definition of
minimal and N-index in order to avoid complications when the index is zero.

For references on the norm of �A, see [2,3,9–11,17,19,20] and references in-
cluded therein. There is an extensive bibliography about the index of conditional
expectations; see [21] and its references. For a deep study of the index theory of
completely positive maps on operator algebras, see [5,12].

This paper compares these notions of index and investigates how to compute
them. The results obtained are useful in the study of certain operator inequalities.
Recall that if L(H) is the algebra of bounded linear operators on a Hilbert space H
and S ∈ L(H) is a selfadjoint invertible operator, then

‖ST S + S−1T S−1‖ � 2‖T ‖
for all T ∈ L(H) [4]. It is natural to ask whether 2 is the best constant for each fixed
S. Using a reduction to the finite dimensional case and a criterion for computing
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Isp(B) for matrices B ∈ Pn such that B � 0, in terms of the principal submatrices
of B (see Corollary 4.6), we are able to find for each S, the best constant M(S) such
that ‖ST S + S−1T S−1‖ � M(S)‖T ‖ for all T � 0.

In this paper we write A � 0 for matrices (or vectors) with nonnegative entries.
We write A � B or A � B if A − B � 0 or A − B � 0, respectively. R(A) is the
range of A and kerA is the kernel of A, where A is thought of as acting on Cn. AT

is the transpose matrix of A, A = [aij ] is the conjugate matrix of A, and A∗ = A
T

.
ρ(A) is the spectral radius of A and A† is the Moore–Penrose pseudoinverse of A.
Throughout, p denotes the vector (1, . . . , 1)T and E denotes the matrix ppT, which
has all its entries equal to 1.

Section 2 contains some elementary characterizations of the minimal index. We
prove that, for a given A ∈ Pn, I (A) > 0 if and only if p ∈ R(A); and, in this case,
I (A)−1 is the spectral radius of A†E.

Section 3 is devoted to a comparison of the minimal index with the spectral index.
The main result in this section is the following: if A ∈ Pn, A � 0, and there exists
a vector u ∈ A−1({p}) such that u � 0, then I (A) = Isp(A). The converse holds if
I (A) /= 0, without the hypothesis that A � 0.

In Section 4 we compare the indexes associated with the spectral and the Frobenius
norms. The main result here is that I2(A) = Isp(A ◦ A)1/2 for every A ∈ Pn. As
a consequence of the proof of this result we compute Isp(B) for matrices B ∈ Pn
such that B � 0, in terms of the principal submatrices of B (see Corollary 4.6).
This criterion is the main tool used in Section 5, where we compute the minimal
and spectral indexes of ! = [λiλj + 1/λiλj ] for any n-tuple of positive numbers
λ1, . . . , λn and use them to find, for each bounded Hermitian invertible operator S
on a Hilbert space H, the number

M(S) = inf
{
‖ST S + S−1T S−1‖ : T � 0, ‖T ‖ = 1

}
. (2)

For example, if ‖S‖ � 1, then M(S) = ‖S‖2 + ‖S‖−2.

2. Elementary properties of the index

Let us give more detailed definitions:

Definition 2.1. The Hadamard minimal index of A ∈ Pn is

I (A)=max
{
λ � 0 : A ◦ B � λB ∀B ∈ Pn

}
=max

{
λ � 0 : (�A − λ Id)B � 0 for all B ∈ Pn

}
=max

{
λ � 0 : A − λE � 0

}
.

The last equality follows from the fact that for C ∈ Mn, the map �C is positive if
and only if C � 0.
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Definition 2.2. Given a norm N in Mn, the Hadamard N-index for A ∈ Pn is

IN(A)=max
{
λ � 0 : N(A ◦ B) � λN(B) ∀B ∈ Pn

}
=min

{
N(A ◦ B) : B ∈ Pn and N(B) = 1

}
.

The index associated with the spectral norm ‖ · ‖ is denoted by Isp(·); we call it the
spectral index. The index associated with the Frobenius norm ‖ · ‖2 is denoted by
I2(·).

Example 2.3. Let A = [aij ] and B = [bij ] ∈ Pn. Then, if ‖ · ‖1 denotes the trace
norm,

‖B‖1 = tr(B) =
n∑
i=1

bii and ‖A ◦ B‖1 = tr(A ◦ B) =
n∑

i=1

aiibii .

From these identities it is easy to see that, if I1(·) denotes the associated index, then
I1(A) = min1�i�n aii for every A ∈ Pn.

Remark 2.4. Estimation of the N-index of a matrix A can be seen as an inequality,
namely, N(A ◦ B) � IN(A)N(B) for every B ∈ Pn. It would also be interesting to
get such inequalities without the restriction B � 0 (of course, for matrices A without
zero entries). But in this case, the constant involved is the inverse of the norm in-
duced by N of the map �C , where cij = a−1

ij . The computation of such norms is well
known (see [9–11,17,19,20]). For the index associated with the Frobenius norm, the
computation of an infimum without the restriction B � 0 becomes trivial, but with
this restriction it is certainly not trivial, as shown in Theorem 4.3.

2.1. The minimal index I (A)

The index I (·) is called minimal because I (A) � IN(A) for every unitary invari-
ant norm N. Indeed, given B ∈ Pn, then A ◦ B � I (A)B and, by Weyl’s monoton-
icity theorem, si (A ◦ B) � I (A)si(B)), 1 � i � n (where si denote the ith singular
value). ThereforeN(A ◦ B) � I (A)N(B) by Ky Fan’s dominance theorem; see [15,
3.5.9].

Given B,C � 0 the following relation holds:

max
{
α � 0 : αC � B

} = ‖C1/2B†C1/2‖−1 = ρ(B†C)−1. (3)

In fact, if B is nonsingular, (3) follows from [14, 7.7.3] (see also [1,6,13,16]). If B
has rank r < n, there exist a unitary matrix U and

� =
[
�1 0
0 0

]
such that �1 is an r-by-r invertible matrix and B = U�U∗. If α � 0 and B � αC

then, setting
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D =
[
D11 D12
D∗

12 D22

]
= U∗CU,

we get

[
�1 0
0 0

]
= � � αD

so that D22 = 0 and, then, D12 = 0. Therefore �1 � αD11 and, by the nonsingular
case, ρ(�−1

1 D11) � α. The result follows by observing that ρ(�−1
1 D11) = ρ(B†C).

Observe also that the block structure of D and the invertibility of �1 imply the
inclusion R(C) ⊂ R(B).

Taking B = A and C = E in (3) we get I (A) = max{α � 0 : A � αE} =
ρ(A†E)−1 for every A ∈ Pn such that p ∈ R(A). This proves part of the following
result.

Proposition 2.5. Let A ∈ Pn. Then I (A) /= 0 if and only if the vector p belongs to
R(A). In this case, for any vector y such that Ay = p, we have

I (A) = ρ(A†E)−1 = 〈y, p〉−1 =
(

n∑
i=1

yi

)−1

. (4)

Proof. By definition, I (A) /= 0 if and only if there exists α > 0 such that A � αE.
By the comments following (3), this means that R(E) ⊂ R(A) or, since p spans
R(E), that p ∈ R(A). Finally, I (A)−1 = ρ(A†E) = ρ(A†ppT) = ρ(pTA†p) =
pTA†p = 〈A†p,p〉, and A(A†p) = p. If y is any vector such that Ay = p, then
y − A†p ∈ kerA = R(A)⊥, so 〈y, p〉 = 〈A†p,p〉. �

Proposition 2.6. Let A ∈ Pn. Then I (A) = min{〈z,Az〉 : ∑n
i=1 zi = 1}.

Proof. If 〈z, p〉 = 1, then 〈z,Az〉 � I (A)〈z,Ez〉 = I (A) z∗pp∗z = I (A)〈z, p〉2 =
I (A). If p ∈ R(A), let x ∈ Cn be such that Ax = p. Then z = I (A)x satisfies 〈z, p〉
= I (A) 〈x, p〉 = 1 and 〈z,Az〉 = I (A)〈z, p〉 = I (A) by Proposition 2.5. If
p /∈ R(A) = (kerA)⊥, then there exists z ∈ kerA such that 〈z, p〉 = 1 and 〈z,Az〉 =
0 = I (A). �

Remark 2.7. Using Proposition 3.9 of [23] and the results of this section, it is easy
to see that, for all A ∈ Pn and m ∈ N, the inflation matrix A(m) = Em ⊗ A (where
Em ∈ Pm has all its entries equal to 1) satisfies Isp(A

(m)) = Isp(A) and I (A(m)) =
I (A). Note that the inflation map �(m)

A = �A(m) . Therefore the indexes of �A are
invariant under inflations and are invariants of �A as a completely positive map.
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2.2. IN(A) for general norms

Let A ∈ Pn and let N be a norm in Mn. If IN(A) = 0, there is some positive
semidefinite matrix C such that N(C) = 1 (so C /= 0) and N(A ◦ C) = 0. But then
A ◦ C = 0, so cij = 0 whenever aij /= 0. If all aii /= 0, then all cii = 0, which forces
C = 0. This contradiction shows that if all aii /= 0, then IN(A) > 0. Conversely, if
some aii = 0 just take C = Eii/N(Eii), so I (A) � N(A ◦ C) = 0. Thus,

IN(A) > 0 if and only if all aii > 0. (5)

Let J ⊆ {1, 2, . . . , n} and let AJ denote the principal submatrix of A associated with
J. Then, minimality ensures that

IN(A) � IN (AJ ). (6)

Remark 2.8. Let A ∈ Pn. Then, it can be shown that for every unitary invariant
norm N, the following properties hold:
1. If A has rank 1, then IN(A) = min1�i�n Aii .
2. If A is positive and diagonal, then IN(D) = N ′(D−1)−1 = �′(a−1

11 , . . . , a
−1
nn )

−1,
where N ′ is the dual norm of N and �′ is the symmetric gauge function on Rn

associated with N ′; see [7, Chapter IV].

Proposition 3.2 of [23] tells us that

Isp(A) = inf
{
Isp(D) : A � D and D is diagonal

}
, (7)

and one could hope that a similar formula holds for any norm, but it does not. In fact,
Corollary 4.4 says that, for every A ∈ Pn and the Frobenius norm,

I2(A)= inf



(

n∑
1

D−2
ii

)−1/2

: D is diagonal and A ◦ Ā � D2




= inf
{
I2(D) : D is diagonal and A ◦ Ā � D2

}
. (8)

Note that the condition A ◦ Ā � D2 is strictly less restrictive than A � D (the re-
verse implication follows from Schur’s theorem). Nevertheless, Eq. (8) allows one
to compute the 2-index for every positive semidefinite matrix using only diagonal
matrices. We intend to study this type of characterizations of IN(A) for general
norms in a forthcoming paper.

3. I (A) = Isp(A)

In this section we characterize those matrices A ∈ Pn such that I (A) = Isp(A).
In [23] it is shown that for
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A =
(
a b

b̄ c

)
∈ P2,

0 /= Isp(A) = I (A) ⇔ b ∈ R and 0 � b � min{a, c} /= 0. (9)

This is easily seen to be equivalent to the conditions
1. A � 0.
2. There exists a vector z � 0 such that Az = (1, 1)T (if A is invertible, this means

that A−1(1, 1)T � 0).
We prove that, for positive semidefinite matrices of any size with nonnegative entries,
condition 2 is equivalent to the identity Isp(A) = I (A). But first we need two lem-
mas:

Lemma 3.1. Let A ∈ Pn and L = {z ∈ Rn : ∑i zi = 1}. Consider the sets

V1 = {
z ∈ L : 〈Az, z〉 = I (A)

}
and V2 = {

z ∈ L : Az = I (A)p
}
.

Then V1 = V2 /= ∅. Moreover, any local extreme point of the map G : L → R given
by G(z) = 〈Az, z〉, belongs to V2.

Proof. It is clear that V2 ⊆ V1. By Proposition 2.6, I (A) � min{〈Av, v〉: v ∈ L}.
Then the mapG : L → R given by G(z) = 〈Az, z〉 = ∑

i,j aij zj zi is differentiable
and bounded from below. Thus G must have a minimum, which is also a critical
point. Let the columns of X ∈ Mn,n−1 be a basis for the orthogonal complement of
p. Then we seek the unconstrained minimum of

�(ξ)= G(Xξ + p/n)

=〈A (Xξ + p/n) , (Xξ + p/n) 〉
= (X + p/n)TA(Xξ + p/n)

over all ξ ∈ Rn−1. But ∇�(ξ) = 2XTA (Xξ + p/n) = 0 says that at a critical point
ξ0, Az0 = �p for some �, where z0 ≡ Xξ0 + p/n ∈ L. But, in that case,

I (A) � 〈Az0, z0〉 = λ〈p, z0〉 = λ.

If I (A) = 0, then λ = 0, because p /∈ R(A), by Proposition 2.5. If I (A) > 0, then
also λ = I (A), because y = λ−1z0 satisfies Ay = p and

λ = 〈Az0, z0〉 = λ2〈Ay, y〉 = λ2I (A)−1.

So ξ0 ∈ Rn−1 is a critical point of � if and only if z0 = Xξ0 + p/n ∈ V2. Since
each local extreme must be a critical point, this shows that ∅ /= V1 ⊆ V2 and the
final assertion is proved. �

Lemma 3.2. Let A ∈ Mn, and suppose x ∈ Cn with ‖x‖ = 1. Let y = x ◦ x̄ =
(|x1|2, . . . , |xn|2)T.
1. If Ay = �p for some λ ∈ C, then (A ◦ xx∗)x = λx.
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2. Conversely, if all xi /= 0 and (A ◦ xx∗)x = λx for some λ ∈ C, then Ay = λp.
If A ∈ Pn, the eigenvalue λ of the matrix A ◦ xx∗ associated with the vector x must
be I (A) and Ay = I (A) p.

Proof. Suppose that Ay = �p. Then

(A ◦ xx∗)x=(aij xi x̄j )



x1
...

xn




=


(
∑

j a1j |xj |2) x1
...

(
∑

j anj |xj |2) xn




=


(Ay)1 x1

...

(Ay)n xn


 = λx. (10)

Eq. (10) shows that if all xi /= 0 and (A ◦ xx∗)x = λx, then Ay = λp. If A ∈ Pn and
I (A) = 0, then � = 0 because p /∈ R(A). If I (A) /= 0, then p ∈ R(A) = (kerA)⊥.
SoAy /= 0 because 1 = ‖x‖2 = 〈p, y〉 /= 0. Then λ /= 0. If z = λ−1y, thenAz = p

and 1 = 〈p, y〉 = λ 〈Az, z〉 = λ I (A)−1, by Proposition 2.5, � = I (A). �

Theorem 3.3. Let A ∈ Pn.
1. If Isp(A) = I (A) /= 0, then there exists a vector u � 0 such that Au = p.
2. If A � 0 and there exists a vector u � 0 such that Au = p, then Isp(A) = I (A).

Proof.
1. Observe that I (A)B � A ◦ B � ‖A ◦ B‖ I. By Lemma 2.1 of [23], there ex-

ists x ∈ Rn such that ‖x‖ = 1 and Isp(A) = ‖A ◦ xx∗‖. So, if y = x ◦ x, then
〈y, p〉 = 1 and

I (A)xxT � DxADx � I (A)I,

which implies that

I (A) = I (A)(xTx)2 � xTDxADxx = yTAy � I (A)xTx = I (A).

We have 〈Ay, y〉 = I (A), y � 0 and 〈y, p〉 = 1. Then, by Lemma 3.1, Ay =
I (A)p. Take u = I (A)−1y.

2. Let u be a nonnegative vector such that Au = p. Let y = I (A)u and x = (y
1/2
1 ,

. . . , y
1/2
n )T. Note that ‖x2‖ = 〈y, p〉 = 1. By Lemma 3.2 we know that x is an

eigenvector of A ◦ xx∗ with eigenvalue I (A). Recall that always I (A) � Isp(A).

Case 1. Suppose that x has strictly positive entries. Since A ◦ xx∗ � 0, it is well
known (see Corollary 8.1.30 of [14]) that the eigenvalue I (A) of x must be the
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spectral radius ofA ◦ xx∗. SinceA ◦ xx∗ ∈ Pn we deduce that I (A) = ‖A ◦ xx∗‖
� Isp(A).

Case 2. Let J = {i : xi /= 0}, AJ the principal submatrix of A determined by the
indexes of J and similarly define xJ . Then xJ is an eigenvector of AJ ◦ xJ x∗

J

with eigenvalue I (A). Note also that AJ ◦ xJ x∗
J � I (AJ )xJ x

∗
J and xJ x

∗
J (xJ ) =

‖xJ ‖2xJ = xJ . Then

0 � 〈(AJ ◦ xJ x∗
J − I (AJ )xJ x

∗
J )xJ , xJ 〉 = I (A) − I (AJ )

and, by the definition of I, I (AJ ) = I (A). Now, as in Case 1, we can deduce that

I (A) = I (AJ ) = ‖AJ ◦ xJ x∗
J‖ � Isp(AJ ) � Isp(A),

where the last inequality holds by (6). �

Corollary 3.4. Let A ∈ Pn such that A � 0 and Isp(A) = I (A). Let u be a nonneg-
ative vector such that Au = p and y = I (A) u.
1. Let x = (y

1/2
1 , . . . , y

1/2
n )T. Then ‖x‖ = 1 and ‖A ◦ xx∗‖ = Isp(A).

2. Let J = {i : ui /= 0} and denote by AJ the principal submatrix of A determined
by J. Then I (A) = I (AJ ) = Isp(AJ ) = Isp(A).

Proof. This follows from the proof of Theorem 3.3. �

Remark 3.5. In Theorem 3.3(2), the hypothesis that A � 0 is essential. Indeed,
consider

A =
(

2 −1
−1 1

)
and u = (2, 3)T.

Then Au = (1, 1)T but 1/5 = I (A) /= Isp(A) = 1. For A ∈ Pn, we conjecture that
I (A) = I (sp,A) /= 0 implies that A � 0, as in the 2 × 2 case.

4. Isp(A) and I2(A)

In this section we study the relation between the indexes associated with the
spectral and Frobenius norms. In Lemma 2.1 of [23] it is shown that the index Isp(·)
is always attained at rank-1 projections. The index I1(·) has the same property (see
Example 2.3). It is natural to conjecture that the same result holds for any unitary
invariant norm N. We show that the conjecture is true for the Frobenius norm:

Proposition 4.1. Let A ∈ Pn. Then there exists an x ∈ Cn such that ‖x‖ = 1 and
I2(A) = ‖A ◦ xx∗‖2. That is, I2(A) is attained at a rank-1 projection.
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Proof. Let � = max{µ � 0 : ‖A ◦ B‖2 � µ‖B‖2 for all B ∈ Pn with rank 1}.
By its definition � � I2(A). Let us prove that ‖A ◦ B‖2 � �‖B‖2 for all B ∈ Pn.
Indeed, for B � 0, write B = ∑k

i=1 Bi , where each Bi has rank 1, Bi ∈ Pn, and
BiBj = 0 if i /= j . Then

�2‖B‖2
2

= �2
k∑

i=1

‖Bi‖2
2

�
k∑

i=1

‖A ◦ Bi‖2
2
.

On the other hand, using tr(XY ) � 0 for positive semidefinite matrices X and Y,

‖A ◦ B‖2
2 = tr((A ◦ B)∗(A ◦ B)) =

∑
ij

tr(A ◦ Bi)
∗(A ◦ Bj)

�
∑
i

tr(A ◦ Bi)
∗(A ◦ Bi) =

∑
i

‖A ◦ Bi‖2
2. �

Proposition 4.2. Let A ∈ Pn.
1. There exists a nonnegative vector x such that ‖x‖ = 1 and ‖A ◦ xx∗‖2 = I2(A).
2. Any such vector x satisfies (A ◦ Ā ◦ xx∗)x = I (BJ )x,whereB = A ◦ Ā and J =

{i : xi /= 0}.

Proof. Let y be a unit vector such that ‖A ◦ yy∗‖2 = I2(A). Let xi = |yi|. It is easily
checked that ‖x‖ = 1 and ‖A ◦ xx∗‖2 = ‖A ◦ yy∗‖2 = I2(A), which proves 4.2(1).
Let B = A ◦ Ā ∈ Pn. Let y be a nonnegative unit vector and let z = (y2

1 , . . . , y
2
n)

T.
Then

‖A ◦ yy∗‖2
2

=
∑
i,j

|aij |2y2
i y

2
j =

∑
i,j

bij zj zi = 〈Bz, z〉

and
∑n

1 zi = 1. Moreover, ‖A ◦ yy∗‖2 = I2(A) if and only if 〈Bz, z〉 is the min-
imum of the map G(v) = 〈Bv, v〉 restricted to the simplex � = {v ∈ Rn : v � 0
and

∑n
1 vi = 1}. Using Lemma 3.1, we know that if z belongs to the interior �◦

of �, then z is a local extremum of G in the plane L = {z ∈ Rn : ∑i zi = 1 }, so
Bz = I (B) p.

If the vector x of item 1 satisfies xi > 0 for all i, then z = x ◦ x ∈ �◦ and Bz =
I (B) p. By Lemma 3.2, (A ◦ Ā ◦ xx∗)x = I (B)x, showing 4.2(2) in this case. If
some xi = 0, let J = {i : xi /= 0}, let BJ be the principal submatrix of B determined
by the indexes of J, and similarly define xJ . Then I2(A) = ‖A ◦ xx∗‖2 = ‖AJ ◦
xJ x

∗
J‖2 � I2(AJ ) and

I2(A) = I2(AJ ) = ‖AJ ◦ xJ x∗
J‖2,

because the converse inequality always holds by (6). Note that, by its definition,
xJ has no zero entries. By the previous case, xJ is an eigenvector of BJ ◦ xJ x∗

J

with eigenvalue I (BJ ). But clearly B ◦ xx∗ has zeroes outside J × J , so x is an
eigenvector of B ◦ xx∗ if and only if xJ is an eigenvector of BJ ◦ xJ x∗

J . Note that
the eigenvalue of x is always I (BJ ). �
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Theorem 4.3. Let A ∈ Pn. Then I2(A) = Isp(Ā ◦ A)1/2.

Proof. If B = Ā ◦ A and y ∈ Cn with ‖y‖ = 1, then

‖A ◦ yy∗‖2
2

=
∑
i,j

|aij |2|yi |2|yj |2 = 〈(B ◦ yy∗)y, y〉 � ‖B ◦ yy∗‖.

Therefore I2(A)
2 � Isp(B). On the other hand, let x be a nonnegative unit vector

such that I2(A)
2 = ‖A ◦ xx∗‖2 and J = {i : xi /= 0}. Then, by Proposition 4.2, (B ◦

xx∗)x = I (BJ )x and

I2(A)
2 = ‖A ◦ xx∗‖2 = 〈(B ◦ xx∗)x, x〉 = I (BJ ).

But xJ is a unit eigenvector ofBJ ◦ xJ x∗
J with strictly positive entries. So, by Lemma

3.2, BJ (xJ ◦ xJ ) = I (BJ )(1, . . . , 1)T. Suppose that I2(A) /= 0. Then I (BJ ) /= 0,
BJ � 0, the vector u = I (BJ )

−1(xJ ◦ xJ ) has strictly positive entries, and BJu =
(1, . . . , 1)T. Hence we can apply Theorem 3.3 to BJ and, by (6),

I (BJ ) = Isp(BJ ) � Isp(B) � I2(A)
2 = I (BJ ).

If I2(A) = 0, then (5) ensures that some aii = 0, so Isp(B) = 0 by (5). �

Corollary 4.4. Let A ∈ Pn. Then

I2(A)= inf



(

n∑
1

d−2
ii

)−1/2

: D is positive diagonal and A ◦ Ā � D2




= inf
{
I2(D) : D is positive diagonal and A ◦ Ā � D2

}
.

Proof. This is a direct consequence of Theorem 4.3 and Proposition 3.2 of [23]. �

Remark 4.5. In Theorem 4.3 we get information about A ∈ Pn using B = Ā ◦ A.
But it can also be used to get information about any B ∈ Pn with B � 0, using A =
(b

1/2
ij ). Unfortunately it may certainly happen thatA /∈ Pn. Nevertheless this obstruc-

tion can be removed in the following way: given a selfadjoint (but not necessarily
positive semidefinite) matrix A ∈ Mn, consider the index

I2(A) = min
{‖A ◦ xx∗‖2 : |x‖ = 1

}
,

which, by Proposition 4.1, is consistent with Definition 2.2 when A � 0. A careful
inspection of the proofs of Proposition 4.2 and Theorem 4.3 shows that they remain
true using this new index if the condition “A ∈ Pn” is replaced by “A = A∗ and B =
Ā ◦ A ∈ Pn”. Note that Lemmas 3.1 and 3.2, and Theorem 3.3 are applied only to the
positive semidefinite matrix B or its principal submatrices. The inequality I2(A) �
I2(AJ ) in (6) (which is also used in the proofs) remains valid for this new index. This
observation is useful in order to avoid the unpleasant condition “A = (b

1/2
ij ) ∈ Pn”

in the following result.
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Corollary 4.6. Suppose B ∈ Pn and B � 0. Then there exists a subset J0 of
{1, 2, . . . , n} such that Isp(B) = Isp(BJ0) = I (BJ0). Therefore

Isp(B) = min
{
Isp(BJ ) : Isp(BJ ) = I (BJ )

}
.

If A = (b
1/2
ij ) (which may be not positive semidefinite), then J0 can be characteri-

zed as J0 = {i : xi /= 0} for any unit vector x such that I2(A) = ‖A ◦ xx∗‖2. Also
Isp(B) = ‖B ◦ xx∗‖ = 〈By, y〉, where y = (|x1|2, . . . , |xn|2)T .

Proof. Use Remark 4.5 and the proof of Theorem 4.3. �

5. An operator inequality

In this section we compute the indexes of a particular class of matrices and, as
an appplication, we get a new operator inequality, closely related to the inequality
proved in [8]; see also [4,18].

Let x = (λ1, . . . , λn)
T ∈ Rn+, S = {λ1, . . . , λn}, and

� = �x =
(
λiλj + 1

λiλj

)
ij

∈ Pn.

Observe that � has rank 1 or 2.

5.1. Computation of I (�)

1. If all λi are equal, then � = (λ2
1 + λ−2

1 ) E and I (�) = λ2
1 + λ−2

1 .
2. If #S > 1, then the range of � is spanned by the independent vectors x =

(λ1, . . . , λn)
T and y = (λ−1

1 , . . . , λ−1
n )T, because � = xx∗ + yy∗ = [xy][xy]∗

has rank 2.
3. If #S = 2, say S = {λ,µ}, then p = ax + by, with a = (λ + µ)−1 and b =

λµ(λ + µ)−1. If a vector z satisfies �z = p, then

p = �z = (xx∗ + yy∗)z = 〈z, x〉x + 〈z, y〉y.
Therefore

I (�) = 〈z, p〉−1 = (〈z, x〉2 + 〈z, y〉2)−1 = (λ + µ)2

1 + λ2µ2 = I (�0),

where the last equality is shown in Remark 4.3 of [23].
4. If #S > 2, it is easy to see that p is not in the subspace spanned by x and y. Then

I (�) must be zero by Proposition 2.5 .

Note that I (�) /= 0 if and only #S � 2.
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5.2. Computation of Isp(�)

We shall compute Isp(�) using Corollary 4.6 and therefore use the principal sub-
matrices of �, which are matrices of the same type. Let J ⊂ {1, 2, . . . , n}, let SJ =
{λj : j ∈ J }, and let xJ be the induced vector. Then �J = �xJ and so Isp(�J ) /= 0.
Suppose that Isp(�J ) = I (�J ). Then #SJ � 2 by Section 5.1. If #SJ = 2, let i1, i2 ∈
J be such that λi1 /= λi2 . By Theorem 3.3 there exists a vector y ∈ RJ such that
y � 0 and �J y = pJ . Let z1 = ∑{yk : k ∈ J and λk = λi1 } � 0 and z2 = ∑{yj :
j ∈ J and λj = λi2 } � 0. Easy computations show that �{i1,i2}(z1, z2)

T = (1, 1)T.
Then, by Theorem 3.3 and Section 5.1,

Isp(�J ) = I (�J ) = (λi1 + λi2)
2

1 + λ2
i1
λ2
i2

= I (�{i1,i2}) = Isp(�{i1,i2}).

Therefore, in order to compute Isp(�) using Corollary 4.6, we need to consider only
the diagonal entries of � and some of the principal submatrices of size 2 × 2. If
λi /= λj , (9) ensures that

Isp(�{i,j}) = I (�{i,j}) ⇔ λiλj + 1

λiλj
� min

{
λ2
i + 1

λ2
i

, λ2
j + 1

λ2
j

}
.

If λi < λj , this condition is equivalent to

λ2
i � 1

λiλj
� λ2

j . (11)

In particular, this implies that λi < 1 < λj . Then, by Corollary 4.6,

Isp(�) = min{M1,M2} (12)

where M1 = mini λ2
i + λ−2

i = mini �ii and

M2 = inf

{
(λi + λj )

2

1 + λ2
i λ

2
j

: λi < 1 < λj and λ2
i � 1

λiλj
� λ2

j

}
.

For example, if all λi � 1 (or all λi � 1), then by (11), Isp(�) = M1 = mini λ2
i +

λ−2
i . On the other hand, if λ /= 1 and x = (λ, λ−1)T, then

Isp(�x) = M2 = λ2 + λ−2

2
+ 1 < M1 = λ2 + λ−2.

Proposition 5.1. Let H be a Hilbert space and let S be a bounded selfadjoint
invertible operator on H. Let M(S) be the best constant such that

‖ST S + S−1T S−1‖ � M(S)‖T ‖ for all 0 � T ∈ L(H).

Then M(S) = min{M1(S),M2(S)}, where

M1(S) = min
λ∈ σ(S)

λ2 + λ−2
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and

M2(S) = inf

{
(|λ| + |µ|)2
1 + λ2µ2 : λ,µ ∈ σ(S), |λ| < |µ| and λ2 � 1

|λµ| � µ2
}
.

In particular, if ‖S‖ � 1 (or ‖S−1‖ � 1), then

M(S) = ‖S‖2 + ‖S‖−2 (resp. ‖S−1‖2 + ‖S−1‖−2).

Proof. We follow the same steps as in [8]. By taking the polar decomposition of S,
we can assume that S > 0, because the unitary part of S is also the unitary part of
S−1; it commutes with S and S−1 and it preserves norms. Note that we must change
σ(S) by σ(|S|) = {|λ| : λ ∈ σ(S)}.

By the spectral theorem, we can assume that σ(S) is finite, because S can be
approximated in norm by operators Sn such that each σ(Sn) is a finite subset of
σ(S), σ(Sn) ⊂ σ(Sn+1) for all n ∈ N and

⋃
n σ (Sn) is dense in σ(S). Then M(Sn)

(and Mi(Sn), i = 1, 2) converges to M(S) (resp. Mi(S), i = 1, 2).
We can suppose also that dimH < ∞, by choosing an appropriate net of finite

rank projections {PF }F∈F that converges strongly to the identity and replacing S, T
by PFSPF , PF T PF . Indeed, the net may be chosen in such a way that SPF = PF S

and σ(PF SPF ) = σ(S) for all F ∈ F. Note that for every A ∈ L(H), ‖PFAPF ‖
converges to ‖A‖.

Finally, we can suppose that S is diagonal by a unitary change of basis in Cn. In
this case, if λ1, . . . , λn are the eigenvalues of S (with multiplicity) and x =
(λ1, . . . , λn)

T, then

ST S + S−1T S−1 = �x ◦ T .
None of our reductions (unitary equivalences and compressions) change the fact that
0 � T . Now the statement follows from formula (12). If ‖S‖ � 1, then M(S) =
M1(S), because M2(S) is the infimum of the empty set. Clearly M1(S) is attained at
the element λ ∈ σ(S) such that |λ| = ‖S‖. �
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