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Given a closed subspace % of a Hilbert space ## and a bounded linear operator
A € L(#) which is positive, consider the set of all 4-self-adjoint projections onto ¥

PAS)={Qel(A): =0, QA)=, 40= 04}

In addition, if # is another Hilbert space, T': # — ' is a bounded linear operator
such that 7T = 4 and & € A, consider the set of (7, %) spline interpolants to ¢:

Sp(T,9.8) = {n e &+ 52Tyl = min |ITCE + o)n}.
oes

A strong relationship exists between 2(4, ) and sp(T, ¥, £). In fact, (4, ) is not
empty if and only if sp(T, ¥, £) is not empty for every £ € #. In this case, for any
Ee A\ it holds

sp(I, &,8) = (1 - 0)¢: 0 e (4, 9);
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and for any &e #, the unique vector of sp(7,%,¢) with minimal norm is
(1 — Pyo)E, where Py is a distinguished element of 2(4,.%). These results offer a
generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard
and others, which hold for closed range operators. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Given two Hilbert spaces # and #, T € L(A#, ), ¥ < # a closed
subspace and ¢ € #, an abstract spline or a (7, &)-spline interpolant to £ is
any element of the set

sp(T,,8) = {17 € &+ Tyl = min |I7(E + o)n}.

Observe that 4 = T*T = |T*, as a positive bounded operator on #, defines
a semiinner product <:,->,:# x H — C by <& ny,=<4En>, EneH
and a corresponding seminorm || - ||, : # — R™ given by |||, = <17,11>l1/2 =
<A17,17>1/2 = ||Ty||. Thus, if for any n € # we consider d4(n, ¥) = inf e ||
+all,, then

sp(T, 9,8 = inel+ S |nlly = da(S, S5

If 4 is an invertible operator, then {, ), is a scalar product, (#,<, >,) is a
Hilbert space and, by the projection theorem, d4(¢, %) = ||({ — Ps.o)E||4 and
sp(T,%,8) = {U — Pyy)E}, where Py is unique orthogonal projection
onto & which is orthogonal to the inner product <, »,. However, if 4 is not
invertible then || - ||, is or a seminorm or an incomplete norm and we cannot
use the projection theorem unless we complete the quotient J# /ker A. One of
the main goals of this paper is to get a simpler way of describing the set
sp(T, 7, ).

We start with a positive bounded linear operator 4 on a Hilbert space #
and a closed subspace . of #. The subspace S = {&:{AEn)> =0V
n e &} is called the A-orthogonal companion of . Note the identities

S = AN () = A(P) = ker(PA). (1)

Instead of defining adjoint operators with respect to <, >, we restrict our
discussion to A-self-adjoint operators, i.e. W € L(A#) such that AW = W*A.
Note that any such W satisfies <WE,ny, = E W)y, Ene H.

The pair (4, ) is said to be compatible if there exists a projection Q €
L(A) such that Q(#) = % and AQ = O*A4. The main result in this paper is
the description of the relationship between the set

PA,S)=1{0€2:RQ) =Y, A0 = 0*4}
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and sp(T, %, &), where T: # — #; is any bounded linear operator such
that T*T = A. A relevant point here is that this method allows to tackle the
case of operators with non-closed range. Thus, several results by Atteia [3],
Sard [18], Golomb [11], Shekhtman [19], de Boor [4], Izumino [13], Delvos
[9], Deutsch [8] are generalized to any bounded linear operators 7.

If (4, %), is compatible, there exists a distinguished element P, o € 2(4, ).
The study of the map (4, %) — P4 was initiated by Pasternak-Winiarski [15]
at least for invertible 4. A geometrical description of that map can be found in
[2]. In [7,12] the inversibility hypothesis on 4 was removed, opening, in that
way, the possibility that (4, %) be empty or have many eclements. This
induces the notion of compatibility of a pair (4, ). This paper is mainly
devoted to explore the relationship of the compatibility of (4,.%”) with the
existence of spline interpolants for every ¢ € #. Section 2 contains a short
study on compatibility of a pair (4, %). If (4, %) is compatible, the properties
of the distinguished element Py € (4, ) are described. In Section 3, we
show that (4,.%) is compatible if and only if s p(7, ¥, £) is not empty for any
Ee s and that sp(T, %, &) = {(1 —Q)¢:0e P4, )} for any ¢ e #\ 7.
Moreover, the vector of sp(7, &, &) with minimal norm is exactly (1 — Py ).
In Section 4, we present some characterizations of P4 ¢ which are useful for the
study of the convergence of {P, «, ¢} if (4, S ,) is compatible for every n e N
and &, decreases to 0. This study is the goal of Section 5. Finally, Section 6
includes several examples of compatibility and spline projections.

In this paper, L(#) is the algebra of all linear bounded operators on the
Hilbert space # and L(#')" is the subset of L(#) of all self-adjoint positive
(i.e., non-negative definite) operators. For every C e L(J) its range is
denoted by R(C). If R(C) is closed, then CT denotes the Moore—Penrose
pseudoinverse of C. The orthogonal projections onto a closed subspace & is
denoted by Py. The direct sum of subspaces ¥ and 7 is denoted ¥+7 .
Finally, ¥ © 7 denotes & n 7.

2. A-SELF-ADJOINT PROJECTIONS

Throughout this paper % denotes a closed subspace of /# and A4 is a fixed
operator in L(#)". Recall that &* = A~ 1(%"). Tt is easy to see that a
projection Q belongs to (4, %) if and only if R(Q) = & and ker Q < A~1(F).
Then

the pair (4,.%) is compatible if and only if ¥ + A4~ (¥4 =#. (2)

In this case, 2(4, %) has a single element if and only if ker4 n.¥ = {0}
because

S A NI =kerdn &. (3)
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If (4, %) is compatible , then there is a distinguished element in 2(4, %), namely
the unique projection Py o onto & with kernel A~'(#4) © (ker A N ). The
elements of 2(4,.%) can be parametrized by the set of relative supplements of
ker A n & into A~ 1(F).

The set 2#(4,%) can also be characterized using the matrix operator
decomposition induced by the orthogonal projection P = Py. Under this
representation, 4 has a matrix form

a=[a P 4
_b* C’ ()

where a € L(¥)", be L(Y*, %) and c e L(Y*)*. Observe that P = (; {),
PA= (3 ?) and PAP = (¢ 0). Every projection Q with range % has the

matrix form Q= (; ) for some x € L(¥*, ). It is easy to see that Q €

P4, %) if and only if x satisfies the equation ax = b. Then

1 X N
PA,S)=4q 0= 0 0 x e (S, F)and ax=b ;. &)

Note that Eq. (5) implies that if (4,.%) is compatible, then R(b) < R(a). As a
corollary of a well-known theorem of R.G. Douglas, it can be shown that
these two conditions are, indeed, equivalent. First, we recall Douglas’
theorem [10]:

THEOREM 2.1. Let B,C e L(#). Then the following conditions are
equivalent:

1. R(B) c R(C).

2. There exists a positive number A such that BB* <1CC*.

3. There exists D e L(A') such that B = CD.Moreover, there exists a
unique operator D which satisfies the conditions

B=CD, ker D=ker B and R(D)c R(C%).

In this case, ||D||> = inf{A: BB*</CC*}; D is called the reduced solution of
the equation CX = B. If R(C) is closed, then D = C'B.

COROLLARY 2.2. Let AeL(#)" and & <A a closed subspace.
If A has matrix form as in (4), then (4, %) is compatible if and only if R(b) <
R(a).
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The next theorem describes some properties of 2(4,) and P,y. The
norm of P, o will be computed in Section 5.

THEOREM 2.3. Let A € L(A#)" with matrix form (4), such that the pair
(4, ) is compatible.

1. The distinguished projection Py € P(A,S) has the matrix form

o1 d
AS — 0 0 5

where d € L(*, %) is the reduced solution of the equation ax = b.
2. P(A,) is an affine manifold which can be parametrized as

‘@(Aa y) = PA,Q‘/' +L(yL’JV)a

where /' =AY (S NS =ker A n S and L(S*, N") is viewed as a subspace
of L(F). A matrix representation of this parametrization is

1 0 d\syexs
PA,S)Q=Pyg+z=|0 1 z | N . (6)
0 0 0/ &+

3. Pyy has minimal norm in PA4,%), ie ||Piy|=min{||Q|: Qe
P(A,S)}.

Proof.

() IfQ=(; &), then Qe 2(4, %) and ker Q = A~'(#™). Since Py o is
characterized by the properties R(Pyo) = & and ker Pyy = A~ (SH) © N
then, in order to show that O = P, « it suffices to prove that ker O c A~ L
Let & € ker O and write & = &, 4+ & with & €% and & € %+, Then 0 =
08 =¢& +d&. Ifne A, then <& ny = {&p,n) = —<d&,,ny = 0 because, by
Theorem 2.1, R(d) < R(a) and, as an operator in L(¥), ker a = & N ker PAP
=S kerd=.N.

(2) Let 0= (; ?) with yeL(¥*, ) and let d e (¥, %) be the
reduced solution of the equation ax = b. Then Q € #(4, %) if and only if
ay = b. Therefore, if z=y — d, then Qe 2(4, %) ifand onlyif Q =Py o + 2
and R(z) < ker a = /. Concerning the matrix representation (6), recall that
R(d) < R(a) = (ker a)" = & © A Therefore,

1 0 d 0 0 0\ yeur
O=Pig+z=]0 1 0l+1]0 0 z | A
0 0 0 0 0 0/ #+
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(3) If Q € (4, &) has the matrix form given in Eq. (6), then

2

0 0 d
IOF =1100¥I =1+ {[[ 0 0 =z ||| Z1+IdI =[Pl ¥
0 0 0

Remark 2.4. Under additional hypothesis on 4, other characterizations
of compatibility can be used. We mention a sample of these, taken from
[6, 7]:

1. If 4 is injective then the following conditions are equivalent: (a)The
pair (4, %) is compatible. (b).#* < R(4 + (1 — P)) for some (and then for
any) 2> 0. () P(A(S)) = & and A(¥) n &+ = {0}.

2. If 4 has closed range then the following conditions are equivalent:
(a)The pair (4, &) is compatible. (b)R(PAP) is closed. (¢) + ker A is closed.

3. If R(PAP) is closed (or, equivalently, if R(P4'/?) or A'/2(¥) are
closed), then (4,.%) is compatible. Indeed, using the matrix form (4), the
positivity of 4 implies that R(b) < R(a'/?) (see, e.g., [1]). If R(PAP) = R(a) is
closed, then R(b) = R(a'/?)=R(a) so that (4,%) is compatible by
Corollary 2.2.

3. SPLINES AND A4-SELF-ADJOINT PROJECTIONS

In this section, we characterize the existence of splines in terms
of the existence of A-self-adjoint projections. The first result extends a
theorem of Izumino [13] to operators whose ranges are not necessarily
closed.

PrROPOSITION 3.1. Let Te L(AH,#), A=TTel(H) and & < K a
closed subspace. Then, for any & € H,
spT. S8 = E+S)n g
In particular, sp (T,%,&) is an affine manifold of L(A) and, if nesp,
(TF,&), then sp (T, S, &) =n+kerT n <.
Proof. Suppose that ne ({+ &) nA () and o € &. Then {4dn,c)
= {4a,1) =0 and

1T + o)II* = A + 0),n + o) = {An,n) + (A, ey = {An,n> = [|Ty|I*.
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Therefore, nesp (T, %, ). Conversely, if yesp (T,,¢&) and ¢ € &, then,
for any ¢ € R,

IT9IP <IT(p + to)l* = <A + ta),n + to>
= {An,n) + (40,6 + 2t Reddn, )
=|ITyl* + *<do,0) + 2t RedAn, o,

therefore (A, > + 2t Re{4n, 6> >0 for all t € R and a standard argument
shows that (4n,¢> =0 and then n e (¢ + L) nA~(L). 1

THEOREM 3.2. Let T e L(H, H1), A= T*T e L(H) and & < H a closed
subspace.

1. Ifée A, sp (T,,¢) is not empty £ € S + A (FH).

2. The following conditions are equivalent: (a)sp (T, ¥, &) is not empty
for every E € H. (b)S + A~ NS = A, (c)The pair (4, ) is compatible.

3. If (4,%) is compatible and &e H\SF, it holds sp (T,¥,&) =
{U—0):0e 24, )}

4. If (4, &) is compatible, then for every & € #, (I — Py o)E is the unique
vector in sp (T, %, &) with minimal norm.

Proof. The first assertion follows directly from Proposition 3.1. Indeed,
if nesp(T,%,&) and n=¢+0 with €%, then {=—-0+ne S+
A~'(F*); the converse implication is similar. The second assertion follows
from the first one and Eq. (2). In order to prove the third item, let £ € # and
0 e P(4,%). Then, by Proposition 3.1 and Eq. (2),

I-QE=¢-0¢eE+P)nkerQc(E+P)nA (I =sp (T,,0).

Conversely, let nesp (T,%,¢) and 6 € ¥ such that £ =0 +1n. We are
looking for some Q € 2(4, %) such that Q¢ = ¢g. Let n, = (I — Pyo)¢ and
o1 =¢—n =Py y&e . Then, by Proposition 3.1,

c—a=10—-neLNA NI )Y=kerdn &.

If ¢=0,+p with 6, and 0#p e ¥+, choose ze L(S*, ker A n %)
(c L()) such that z(p) = ¢ — 0;. By Theorem 2.3, 0 =Py o +z€ P(4,%)
and clearly Q¢ = a.

The minimality of ||(1 — Pyo)E|| is proved as follows. If £ e %, then
(I — Py)¢ = 0, which must be minimal. If ¢ .7, let £ = g2 + p with g, € &
and 0#p € #*+. By Theorem 2.3, any Q € 2(4, %) has the form Q = Py 4 + z,
with ze (S, ker A 0 F) (c L(A)). Recall that R(Pyy) =S O (ker A
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). Therefore,

I — QP = I — Q)pll* = llp — Paz(p) — 2()II* = llpl* + 1P (I + llz(p)II>

> lpl? 4+ 1PLr (I = llp — Pag@)IP = 11 — Pig)é|. B

COROLLARY 3.3. Let TeL(H, #1), A=T*Tel(H) and S < H a
closed subspace. Then the following are equivalent:

1. sp (T,%,¢&) has a unique element for every & € # .
2. The pair (4, %) is compatible and ker T n & = {0}.

Remark 3.4. Let Te L(AH, H#1), A=T*T e L(#) and & < A a closed
subspace.

1. If (4, &) is compatible then, by item 4 of Theorem 3.2, the projection
1 — P4 4 coincides with the so-called s pline projection for T and &
when 7 has a closed range.

2. If R(T) is closed, then, by Remark 2.4 and Theorem 3.2, sp (T, %,
&)#0 for every & € A if and only if ker T + & is closed. In case that
ker T n & = {0}, then it is equivalent to the condition that the
inclination between ker T and & is less than one (see [4, 8]).

3.1If (e, then sp (T,%,8) =kerT nS. On the other hand,
(I — Q)¢ =0 for every Qe 2(4,). So the equality of item 3 of
Theorem 3.2 may be false in this case.

4. CHARACTERIZATIONS OF THE SPLINE PROJECTION P, &

Fix A € L(s#)" and a closed subspace . < #. As before, we denote P =
Py. In this section, two different descriptions of the spline projection Py ¢
are given and, as a consequence, we relate P, o with the shorted operator
(see [1] and Remark 4.4 below).

By Corollary 2.2, it holds that the pair (4, &) is compatible if and only if
R(PA) < R(PAP). In case that A4 is invertible, it is known (see [2]) that, in the
matrix form (4), a is invertible in L(.¥) and

P a’! 0 A — 1 a'b 7
A W' 0 “\o 0

because a~'b is the reduced solution of ax = b (see Theorem 2.3). Rewriting
(7), we get (PAP)P,» = PA. Thus, if 4 is invertible, P, & is the reduced
solution of the equation (PAP)X = PA. Let us consider the general case, in
other words, if the pair (4, ) is compatible, let us relate P, with the



OBLIQUE PROJECTIONS AND SPLINES 197

reduced solution Q of the equation

(PAP)X = PA. (®)

Observe that, in general, R(PAP) is strictly contained in .%. Therefore, R(Q)
may be smaller that ¥ = R(Py).

ProrosiTION 4.1.  If the pair (4,9) is compatible, Q is the reduced
solution of Eq. (8) and N = ker A n &, then

Py =Py + 0.
Moreover, Q verifies the following properties:

1. =0, kerQ=4"(9*) and R(Q) = ¥ © N
2. Q is A-self-adjoint.
3. 0=Pryo.r-

Proof.  Using the matrix form (4) of 4, observe that, in L(Y), kera = N~
and R(a) =R(a'/?)=% © /. Note that R(Q) < R(a). Also ker Q = ker (PA)
=4I If ¢e ¥ © N, then

a(Q%) = (PAP)QE = PAE = PAPE = a(?).

Since « is injective in ¥ © A", we can deduce that Q& = ¢ for all e
S © /. Now, the compatibility of (4,.%) implies that & + 4~ (¥*) = #.
Also AN S =kerdn S = N. Therefore A" (IS H)HF O N) =
. Then Q> = Q and R(Q) = . © /. Note that

ker Q=47 (") cAd (¥ © A4)") = RO)™,

so that Q is A-self-adjoint by Eq. (2). On the other hand, (¥ © /) N
ker A = {0}, so that Q is the unique element of P(4, ¥ © A7), by Theorem
2.3. Observe that R(Q) ¢ A+ and N Chkerd c A~ '(F') = ker Q. There-
fore, (P + Q) =Py + Q, R(Py + Q) = & and ker (P + Q) = (4" (#1))
©./". These formulae clearly imply that P, + Q= P, » (see Theorem
2.3). 1

PrROPOSITION 4.2. If (A,%) is compatible and M = AV*(S), then
R(P 4A'?) € R(4'/2P). Moreover, Eq. (8) and

A'?P)x = P ,4? )
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have the same reduced solution. In particular, if A\>(F) is closed and ker A N
& = {0}, then

Piy = (A'?P)'P 44" = (4'PP)'4'? = (1P)'T (10)
for every T € L(A#, A1) such that T*T = A.

Proof. Denote B = A'/2. Recall that .# = B(¥) = B"'(#*)*. Observe
that

BP B = AP, g = APP, o : (11)

in fact, for ¢ € #, let n = Pyy&and p = & — ne A~ (*); then By e .4 and
Bp e B~ (") = .#*. Hence, BP B = An = APy 4¢. By Proposition 4.1,
the projection Q = P4+ — P, is the reduced solution of the equation PAP
X = PA. We shall see that Q is the reduced solution of Eq. (9). First note
th'dt, by Eq (11), BP//B = (AP)PA’g) = (AP)Q, SO B(P//B — BPQ) = 0. But
R(P4B — BPQ) c R(B) = (ker B)*. Hence, Q is a solution of (9). Note that
ker PyB = B~ '(B~Y(9*)) = A~ '(#1) = ker Q by Proposition 4.1. Finally,

R((BP)*) = R(PB) = R(PAP) = & © N = R(Q).

The first equality of Eq. (10) follows directly. The second, from the fact that
(4'2P) P, = (4'2P)". The last equality follows easily using the polar
decomposition of T because A'/2 = |T|. 1

Formula (10), for operators with closed range, is due to Golomb [11].

COROLLARY 4.3.  Under the notations of Proposition 4.2, the pair (A, S) is
compatible if and only if R(P4A'?) < R(4'/?P).

Proof. Suppose that R(P,A'?) = R(4'/2P). Then, given &€ #, there
must exist ¢ €. such that P,A4'2¢ = A'%¢. Therefore, A'?(¢ — o) =
(1—Py)A4"?¢ and

14" 2(€ = o)l = (1 — PA?E|| = d(A'*E,42(7))
=inf{||[4"*(& +7)||: T ). (12)

Hence, ¢ —~oesp (T,%,8) and sp (T,,E)#0 for every &e #. This
implies compatibility by Theorem 3.2. The converse implication was shown
in Proposition 4.2. 1
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Remark 4.4. 1f Ae L(#)" and ¥ € # is a closed subspace, then the set
(X e L(#) :X<A4 and RX) c &}

has a maximum (for the natural order relation in L(#)"), which is called the
shorted operator of A to ¥*. We denote it by X(P, A). This notion, due to
Krein [14] and Anderson-Trapp [1], has many applications to electrical
engineering. It is well known (see [16]) that

S(P,A)=A"2PrA',

where 7 = 47"2(9+) = A'2(#)*. From the proof of Proposition 4.2, it
follows that, if (4,%) is compatible, then A'/?(1 — P7)4'/? = AP, .
Therefore, in this case, 2(P,4) = A(1 — Py y). More generally, it can be
shown that X(P,4) = A(1 — Q) for every Q € (4, %) (see [7]).

5. CONVERGENCE OF SPLINE PROJECTIONS

This section is devoted to the study of the convergence of abstract splines
in the general (i.e. not necessarily closed range) case. Given 4 € L(#)", let
us consider a sequence of closed subspaces .%, such that all pairs (4, %) are
compatible. Following de Boor [4] and Izumino [13], it is natural to look for
conditions which are equivalent to the fact that Py, —5°7 0 (i.e. the spline
projections converge to I), where —5°7 means convergence in the strong
operator topology. This problem has a well-known solution under the
assumption that R(A4) is closed (see [4] or [13]). However, in our more general
setting, it is possible that the sequence {.#,} decreases to {0}, while ||Py ||
tends to infinity (see Example 5.7). This induces us to consider the following
weaker convergence:

DEFINITION 5.1. Let A € L(#)" and T,, T € L(#), n € N. We shall say
that the sequence 7, converges 4-SOT to T: T, »4=50T T if

(T, — T)¢|l; » 0 for every e .
Note that 7, -»4=5°T T if and only if 4'/2T, —5°T 41/2T.
We start with the computation of the norm of P, ¢ for any compatible
pair (4,.%). Before that, recall the following formula, due to Ptak [17] (see

also [5, 7]): if Q1 and O, are orthogonal projections such that R(Q;)+
R(O;) = A, then the norm of the unique projection Qs with ker O3 = R(Q))
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and R(Q3) = R(Q») is
10511 = (1 = 101072 (13)

PROPOSITION 5.2. Let A € L(#)" such that the pair (4, ) is compatible.
Then,

|Ps.o|I* = inf{/>0: PA2P<J(PAP)*}. (14)
If, in addition, ker A n ¥ = {0}, then
1Pl = (1 = [|OPIP) /2, (15)

where Q denotes the orthogonal projection onto A~ (S7%).

Proof. Let Q be the reduced solution of the equation (PAP)X = PA. Then
lOII> equals the infimum of Eq. (14) by Douglas Theorem. On the other
hand, by Proposition 4.1, ||Q|| = ||P4.#||, showing formula (14). If ker 4 N
& = {0}, then Theorem 2.3 assures that R(Py«)=.% and ker Py sy =
A=Y (1), Therefore, (15) follows from Ptak formula (13). 1

Remark 5.3. Let A € L(#)" such that the pair (4,.%) is compatible and
ker A n &% = {0}. Then, if P, 4 is the orthogonal projection onto ker A, then

1Posll = (1 — ||Prer aPIP) /2.

Indeed, if Q is the projection of Eq. (15), then P, 4<Q because ker A <
A7N(FY). Then ||Peor 4PIP = |PPeer 4P| <IIPOP|| = |OPIF. This inequality,
shown by de Boor [4] in the closed range case, relates the norm of Py ¢ with
the angle between ker 4 and &

PROPOSITION 5.4. Let A e L(#)" and let &, (n € N) be closed subspaces
such that all pairs (4, %) are compatible. Denote M, = A/2(¥,), n € N.

1. The following conditions are equivalent: (a)Pyq, —4750T 0.
(b){APy 4 ,E,EY — 0, for every Ee H (ie. APyy, —"OT 0 by polarization).
(©)APyy, —50T 0. (d)Z(Py,, ) =T A. (e)P,,A'> —5OT (),

2. If there exists C >0 such that ||Py.¢,||<C for all n € N and Py, A —5°T
0, then Pyg, —4750T 0.

3. IfPA,yn —A-SoT 0, then Py"A —Sor 0.

Proof.

1. Because Pj, A= APyy,, it is clear that conditions (a)-(c) are
equivalent. By Remark 4.4, 2(Py,,A) = A(1 — P4 ) so that (c) is equivalent
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to (d). Finally, by Proposition 4.2, we know that 4'/2P; 4 = P, A'/* and
this shows that (a) is equivalent to (e).

2. Suppose that there exists C>0 such that ||[Py ¢, ||<C for all ne N
and that Py A —5°T 0. Denote P, = Ps,. The fact that R(P;¢,) = R(P,)
implies that P,P; o, = P4.,. Therefore, for every ¢ € J#,

1P} o, LI = 1P} o, PaAEll - 0,

since  ||Py,|| is bounded. Hence Pf, A=APsy, -7 0 so that
Py, —»A750T 0 by item 1.

3. Suppose that Py, —4759T 0. Then, by item 1, 4P ¢, —5°T 0. Note
that Py, P, = Py, so that P,,Pj‘,v(/n = P,. Given ¢ € #, we have that

IPAEI = [IPPY , AE|l = PPy, EI| < IAPys, &l — 0.

Remark 5.5.  With the notations of Proposition 5.4, it follows that Py ¢,
—A=S0T (0 if and only if A'2(1 — Py o )¢ — A'/2E for every ée # or,
equivalently, the spline interpolants &, = (1 — Py ¢, )¢ satisfy that T¢, — T¢
in #,if T e L(A, #1) and T*T = A. In particular, if Py o, »*475°T 0, then
min{[|T(E + it € S} = IT(A = P, )l = ITE]I-

PROPOSITION 5.6. Let A eL(.)f)+ and > c S < H be closed sub-
spaces. Suppose that (4, ) is compatible. Denote by P, = Py,, i = 1,2 and
ay = P]AP] EL(¢¢1)+. Then

(4, ) is compatible if and only if (a1,%>) is compatible in L(S)).
Proof: We know that, if 4 = (Z,L ’c’:), in the matrix decomposition
1

induced by Py, then R(b) < R(a;). Hence also R(P2b;) < R(Pyay). If a) =

<Zi fj), using now the matrix decomposition induced by P,, then Pa; =
2

a> + by and P,A(1 — P,) = b, + P>b;. Hence,
R(Pyb1) € R(Pyay) = R(az) + R(by) and R(PA(1 — P»)) = R(b2) + R(P2by).

Therefore, the pair (4,.%») is compatible if and only if R(PA(1 — P)) <
R(P,AP>) = R(ay) if and only if R(b,) < R(ay) if and only if the pair (a;, S) is
compatible. 1

EXAMPLE 5.7. Let 4 e L(#)" injective but not invertible. With the
notations of Proposition 5.6 it is easy to see that PPy y,P = Py o,P €
P(ay,S>). Note that a; is injective, so that Z£(a;,¥,) has a unique
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element and
Py 7y = Pio,Pr = [|Py,os | 2 |Pay 5. (16)

We shall see that there exists a sequence ., n € N, of closed subspaces of
A such that

1. the pair (4, %,) is compatible for every n € N,
2. S < Sy forevery ne N,

3. Mys1 L n = {0}, so that Py, -5°7 0,

4. [|Pag, |l = 0.

In order to prove this fact, we need the following lemma:

LEMMA 5.8. Let Be L(#)" be injective non-invertible. Then, for every
&> 0, there exists a closed subspace & < A such that the pair (B,S) is
compatible, Py BPy is not invertible in L(¥) and ||Pp,o||=¢"".

Proof. Let n e # be a unit vector. Denote by & = By and consider the
subspace & = {¢}F and P = Py. It is clear that y € B~1(%%). First note that
&y = {Bn,ny>0,so that n¢ .. Since ¥ is an hyperplane, this implies
that & + B~'(#*) = # and the pair (B,.%) is compatible. Also PBP is not
invertible because dim ¥+ = 1<o00. Note that B~!(#*1) is the subspace
generated by 5. Hence, if O = Py.i(4), it is easy to see that ||PO|| = [|Pn]|.
Then, by Eq. (15),

IPg.gll = (1 —IPOIM) " = (1 — |PylH) ™2 = |I(1 — Pyl ™"

and

(1 = Pyyl| = ‘<,1 < >‘ _ {n,Bn)

e/l 1Bl

So, it suffices to show that there exists a unit vector # such that {y#,Bn)<e
|IBy||. Consider p € #\R(B'/?) a unit vector. Let p, be a sequence of unit
vectors in R(B'/?) such that p, — p. Let u, € # such that B'/?u, = p,, ne
N, and denote by &, = B'/?p, = Bu,, and & = B'/?p. It is easy to see, using
that B(u,) = &, — & ¢ R(B), that ||, || — co. Denote by 1, = p,[lu,[|”". Then

CeBny By Bl 1
1B T PUB L sl 1Bl Tl 1

because &, —» £#0. 1
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By an inductive argument, using Lemma 5.8, Proposition 5.6 and
Eq. (16), we can construct a sequence of compatible subspaces &,, n e N,
such that &, 1 < &, and ||Py,#,|| — c0. We can also get that Py, —»5°T 0 by
interlacing, before constructing the subspace ¥, 1, a spectral subspace 7,
of Py APy, (as an operator in L(%,)), in such a way that Py APy, is not
invertible and the projections P7, —5°T 0 (this can be done recursively by
testing the projections P, in the first n elements of a countable dense subset
of &), and taking &, as a subspace of 7 ,. Note that the pairs (Py,A4
Py, 7 ,) are clearly compatible, so that also the pairs (4, 7 ,) are compatible
by Proposition 5.6.

Remark 5.9. Recall from Remark 4.4 that if (4, %) is compatible, then
A(l — Py g) = Z(P,A). Then

0<AP;y = A — 3(P,A)<A.

This implies that ||APy || <||4]||, while [|P4«|| can be arbitrarily large.

6. SOME EXAMPLES

In this section, we present several examples of pairs (4, %) which are not
compatible and pairs (4,.%) which are compatible and such that the spline
projector Py & can be explicitly computed. Observe that Example 6.4 cannot
be studied under the closed range hypothesis, considered by Atteia, de Boor
and Izumino.

EXAMPLE 6.1. Let 4 e L(#)" and

A A1/2 A1/2 0 A1/2 I N
- pu— L c% \‘# .
A2 ;o o)l o o)EHTON

1/2

Denote by & = # @ {0} and by N = AO (]) . Since M = N*N, then ker
M = ker N = {¢ @ —A'/2&: & e #} which is the graph of —4'/2. Note that
R(N) = (R(4'?) 4+ R(I)) ® {0} = &, so that R(M) is also closed. If 4 is
injective with non-closed range, then (M, %) is not compatible (because R(A4)
is properly included in R(4!/2)). Observe that this implies that the inclination
between % and ker M is one, cf. [4].

Remark 6.2. Let Pe 2, R(P)=% and 4= (& ") eL(#)". It is well
known that the positivity of 4 implies that R(b) < R(a'/?). Therefore, if
dim & < oo then the pair (4,.%) is compatible : in fact in this case R(a) =
R(PAP) must be closed, so R(b) = R(a'/?) = R(a) and Corollary 2.2, can be
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applied. On the other hand, if dim ¥+ <oo and R(4) is closed then, by
Remark 2.4, (4, %) is compatible. However, if R(4) is not closed, then the
pair (4, %) can be non-compatible:

PROPOSITION 6.3. Let Pe 2, R(P) =% and A € L(#)". Suppose that A
is injective non-invertible and dim S+ <oo. Then (4, %) is compatible if and
only if 9+ < R(A).

Proof. By Eq. (2), (4, %) is compatible if and only if A~ (&) + ¥ =
A . Since A is injective, Eq. (3) says that 4~ (%) n % = {0}. Now the
result becomes clear because dim A~ (S*) = dim (9 ~ R(4)). 1

EXAMPLE 6.4. Let T € L(#,L%) given by Te,, = ¢ where e,, (m € N)
€m

is an orthonormal basis of #. Then A = T*T is given by Ae,, = - which is

injective non-invertible. Let &;,...,¢, € R(4), denote by & = {51,...,«5,,}L
and P = Py. If & = (g“}”, 51(2)’ e f,(”’), ...), 1<i<n, denote by

n = (W, 48D md™ e, 1<i<n,

and Q the orthogonal projection onto the subspace 7 generated by
Ni». . .1, Itis clear that 7 = A~'(1). Then (4, &) is compatible and Py o
is the projection onto . with kernel 7. Therefore (cf. [5] or [17]), ||PO|| < 1,

Piy=01-0P)'1-0) =3 " (OP)(1-0)

and [Pyl = Il — Pyoll = (1 —(|POIP)"V2.

Remark 6.5. Let Be L(#)" be injective and non-invertible. Let ¢ € #
be a unit vector, & = {é}*, P=Py and P =1 —P. Let B= (s f) in
terms of P. By Proposition 6.3, (B, %) is compatible if and only if ¢ € R(B).
Note that the sequence &, (in R(B)) of Lemma 5.8 converges to ¢ ¢ R(B). This
is, precisely, the fact which implies that [|Py . .|| converges to infinity.

ExaMPLE 6.6. Fix & a closed subspace of # and consider the set
Ay =1{4 e L(A)": the pair (4,.%) is compatible}

and the map a: &/ — 2 given by a(4) = P4». We shall see that « is not
continuous. Indeed, let 4 = (% ”), and suppose that R(b) = R(a) is a closed
subspace .# properly included in <. Denote by 4" = % © .# and consider

the projection P, and some element u € L(S*, A7) < L(#), u#0. Consider,
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for every n e N,

0 u \ N
A, =A+ % Py +u)*(Py +u) = A +% — o o o |«
w0 wru ) ot
1 0 1y
= 0 a b =A4=0.
Lo b* c+1utu

It is clear that 4, — A. Note that a is invertible in L(.#). Then, by Theorem
2.3,

1 0 0 N
Piy=10 1 alb | .
0 0 0 gt

>

Also a + %PA/- is invertible in L(¥) for every n € N. Then,
0 0

n % 0 % u
Pioy=10 a! 0 0 a b
0 0 0 % u* b* c +% u*u
1 0 u N
=|0 1 a'b |4
0 0 0 )+

for all n € N. Therefore, a(4,) = Py, vP19 = a(4). Note that the sequence
o(4,) converges (actually, it is constant) to Ps¢ + u, which belongs to
P(A,9) by Theorem 2.3.
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