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A B S T R A C T

This work describes the preparation of an electrochemical biosensor for polyphenols determination in propolis

samples. The biosensing scheme is based on a nanocomposite lm of laccase enzyme (Lac) immobilized on goldfi

nanoparticles (AuNPs) electrodeposited in a screen-printed carbon electrode (SPCE) modi ed with polypyrrolefi

(Ppy) through an in-situ electropolymerization. The electrodeposition of the AuNPs increases the available area

for Lac immobilization. The nanocomposite lm (Ppy/Lac/AuNPs/SPCE) was characterized by scanning electronfi

microscopy, energy dispersive X-ray spectroscopy and cyclic voltammetry. Polyphenols were detected in etha-

nolic extracts of propolis (EEP), where in presence of the Lac oxidized to the polyphenols, and so they can be

reduced on the Ppy/Lac/AuNPs/SPCE by amperometry at 450 mV vs Ag/AgCl. The calibration plot showed a−

linear response in the concentration range from 1 to 250 M expressed as ca eic acid, with a limit of detection ofμ ff

0.83 M. The time required for analysis was 15 min, compared to the time (85 min) by spectrophotometricμ

methods, especially the so-called Folin-Ciocalteu method. The method exhibited good selectivity, stability and

reproducibility for detecting polyphenols in propolis samples.

1. Introduction

Polyphenols are a broad class of compounds that are present in

many fruits, vegetables and their products [ ]. In recent years, nu-1

merous studies have associated the consumption of foods rich in poly-

phenols with the prevention of cardiovascular diseases, certain types of

cancer and other diseases because of their antioxidant properties [ ].2

Propolis is a resinous mixture that honey bees produce by mixing

saliva and beeswax with exudate gathered from tree buds, sap ows, orfl

other botanical sources. Polyphenols and avonoids are considered thefl

main bioactive components of propolis whose chemical composition

varies according to the ora of each region [ , ]. The determination offl 3 4

the polyphenols content is not an easy task because of their chemical

complexity, the di culty of extraction and the presence of di erentffi ff

interferents in the samples. One of the determinations widely applied

for its measurement is the total phenolics content, obtained by spec-

trophotometric methods, especially the so-called Folin-Ciocalteu

method [ ]. However, this spectrophotometric approach yields an5

overestimation of the total polyphenolics content [ ].6

Alternatively, the bioanalytical sensor appears to be suitable for

their detection and exhibits advantages such as easy sample prepara-

tion, selectivity, sensitivity, reproducibility and low cost [ , ] Elec-7 8

trochemical biosensors, in particular amperometric ones, are an at-

tractive strategy to current used analytical methods. Commonly used

amperometric biosensors are based on tyrosinase [ , ], peroxidase9 10 

[ ], pyrroloquinoline quinine dependent glucose dehydrogenase11

(GDH) [ ] or cellobiose dehydrogenase (CDH) [ ].12 13

Electrochemical methods have attracted increasing attention be-

cause of their high sensitivity, fast response, simplicity, low instru-

mental costs, small sample volumes, and portability. Among the many

electrochemical systems that can be applied for analytical purposes, the

combination of amperometric detection (A) with screen-printed carbon

electrodes (SPCE) can add mass production capabilities and represents

one of the most convenient alternatives [ , ].14 15

Moreover, the surface of the SPCE is amenable for modi cation byfi

electrodeposition with a variety of metallic nanoparticles (NPs) such as

copper, gold, platinum, palladium, or silver. Most of these modi ca-fi

tions can provide increases in surface area and make sensors with
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enhanced limits of detection and improved electrocatalytic character-

istics [ , ]. Following this line, gold nanoparticles (AuNPs) have16 17

great relevance, because of their good biocompatibility, excellent con-

ducting capability and high surface to volume ratio. The incorporation

of gold nanoparticles into electrochemical interfaces has infused new

vigor in electrochemistry [ ].18 20–

SPCE surface could be functionalized by electropolymerization of

conductive polymers [ ] and non-conductive polymers [ , ].21 25– 26 27

This process has been well studied and is one of the emerging additive

method of biofabrication that may be used to guide and deposit bio-

logical entities such as enzymes, antibodies, and even whole cells to

metallic or semi-conducting electrode sites of more complex devices

[ , ]. Polypyrrole (Ppy) is a conductive electroactive polymer, due to28 29

its simple deposition of dopant and entrained macromolecules onto

electrode surfaces, has been applied for the fabrication of ampero-

metric, voltammetric, and impedimetric biotransducers [ ].30 32–

Laccases (Lac) ( diphenol: oxygen oxidoreductase, E.C.: 1.10.3.2)p‑

are copper containing oxidoreductases detected in many plants [ ]33

and secreted by numerous fungi [ ]. They can oxidase many di erent34 ff

substrates, e.g. phenols and anilines, with the concomitant reduction of

oxygen to water [ , ]. Therefore, Lac has been applied to many in-35 36

dustrial processes including discolouration of dyes [ ] pulp deligni -37 fi

cation [ ], oxidation of organic pollutants [ ], microbial transfor-38 39

mation of natural products [ ] and the development of biosensors40

[ , ].41 42

In this work, we report the development of a nanostructured elec-

trochemical biosensor, where the laccase enzyme was immobilized on

AuNPs/SPCE modi ed with polypyrrole through in-situ electro-fi

polymerization. The nanocomposite lm was characterized by scanningfi

electron microscopy (SEM), energy dispersive X-ray spectroscopy

(EDS), and cyclic voltammetry (CV). This biosensor was applied to the

polyphenolic compounds determination in di erent propolis samples.ff

2. Materials and methods

2.1. Reagents and solutions

Analytical grade reagents and high purity solvents were used.

Tetrachloroauric (III) acid (HAuCl 4 ), potassium chloride (KCl), pyrrole,

ca eic acid (CA), potassium ferrocyanide/potassium ferricyanideff

(K4 [Fe(CN) 6 ]/K3 [Fe(CN)6 ]), sodium chloride (NaCl), monosodium

phosphate (NaH 2PO 4), ethanol, sodium acetate, acetic acid, 2,2 azi-′‑

no bis(3 ethylbenzthiazoline 6 sulfonic acid (ABTS) and laccase com-‑ ‑ ‑ ‑

mercial were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Polytetra uoroethylene membrane (PTFE) (0.2 m) was obtained fromfl μ

Millipore, USA. Aqueous solutions were prepared using ultrapure water

from a Milli-Q integral water puri cation system. Working Standard® fi

solutions were daily prepared by appropriate dilution of the stock so-

lutions with ultrapure water.

2.2. Apparatus

Amperometric measurements were performed using a BAS LC-4C

potentiostat, and a BAS 100 B/W electrochemical analyzer

(Bioanalytical System, West Lafayette, IN, USA) was used for voltam-

metric analysis in unstirred solutions, employing positive feedback

routine to compensate the ohmic resistance. Cyclic voltammograms

(CVs) and amperograms were obtained by employing a SPCE (DropSens

C110, Asturias, Spain). It was made up of a graphite circular working

electrode (Ø = 4 mm). Silver (Ag) and graphite electrodes were used as

the pseudo-reference and the auxiliary electrode, respectively. The

temperature for the electrochemical experiments was set at 25 ± 1 °C.

All pH measurements were made with an Orion expandable ion

analyzer (Orion Research Inc., Cambridge, MA, USA) Model EA 940

equipped with a glass combination electrode (Orion Research Inc.). The

morphology of AuNPs was studied by LEO 1450VP scanning electron

microscope (SEM). The elemental composition of the nanostructured

film was determined by energy dispersive X-ray spectroscopy (EDS)

using a Genesis 2000 spectrometer (LABMEM, Argentina).

2.3. Determination of enzymatic activity

The activity of the Lac was quanti ed using the assay based on thefi

ABTS oxidation. The assay reaction mixture consisted of 2.5 mM ABTS,

100 mM acetate/acetic acid bu er pH 3.50 and a suitable amount offf

enzyme to create a total reaction volume of 1 mL, which was incubated

at 25 °C. The oxidation of ABTS was followed by monitoring the in-

crease in absorbance at 420 nm. One unit of enzymatic activity (U) was

de ned as the amount of enzyme that is oxidized at 1 M ABTS perfi μ

minute under the assay conditions.

2.4. Modi cation of SPCEfi

An electrode pretreatment was carried out before each voltam-

metric experiment to improve the sensitivity and reproducibility of the

results. For the AuNPs electrodeposition, the SPCE was immersed in a

solution containing 0.01% HAuCl 4 in 0.1 mol L−1 KCl and applying a

constant potential value of 400 mV for 120 s. Then, the modi ed− fi

electrode was rinsed by stirring at 250 rpm for 30 s in puri ed waterfi

and nally, carefully dried under a Nfi 2 stream. Finally, 10 μL of

10 μg mL−1 Lac solution in 0.01 mol L−1 PBS pH 7.00 was placed on the

surface of the AuNPs/SPCE working electrode and incubated overnight

at 4 °C. After that, the modi ed electrode was immersed in 0.2 mol Lfi
−1

pyrrole solution in 0.1 mol L−1 KCl. In order to obtain the nano-

composite lm on the electrode (Ppy/Lac/AuNPs/SPCE), the electro-fi

polymerization was performed at +700 mV for 600 s. The Ppy/Lac/

AuNPs/SPCE was immersed and stored in PBS pH 7.0 at 4 °C when not

in use. shows the procedure of the biosensor preparation. Finally,Fig. 1 

the AuNPs/SPCE was optimized and characterized by SEM, EDS and

CV.

2.5. Sample pretreatment and electrochemical behavior of propolis samples

Propolis samples were collected from Argentina (A1, A2) and

Venezuela (V1, V3 and V7). Samples of Argentina were obtained by

Apiculture Research Center (CEDIA) of Santiago del Estero, Argentina,

while samples of Venezuela were obtained by the country beekeepers.

Samples were pulverized, homogenized, and stored in freezer at 4 °C

when not in use. 1 g of each sample was extracted separately with

100 mL ethanol with magnetic stirring at 50 °C for 30 min [ ]. Etha-43

nolic extracts of propolis (EEP) were ltered and stored in the dark infi

hermetically closed bottles at 4 °C. These ethanolic solutions were di-

rectly used for the analysis. CVs of EEP was obtained using a modi edfi

SPCE from 750 to +1500 mV vs Ag/AgCl at 75 mV s−

−1 in a

0.1 mol L−1 acetate bu er pH 3.50 as supporting electrolyte ( ).ff Fig. 2

The insert graph shows the voltammogram of the standard compound

CA, which represents a typical quasi-reversible oxidation process with

an anodic peak at +412 mV and a cathodic peak at +217 mV. CA is

one of the widely used standards in the study of total phenolic com-

pounds in di erent matrices [ , ], exhibiting a greater relativeff 44 45

sensitivity for biosensors that use laccase [ , ]. It is also one of the8 10

main constituents of propolis [ ].46

The same quasi-reversible electrochemical behavior was observed

for EEP, although shifted to cathodic potentials; which are around

−250 mV and +250 mV, respectively. However, other authors found

an irreversible electrochemical behavior of same EEP indicating that

the diversity of each propolis also a ect its electrochemical behaviorff

[ ]. The observed anodic peaks of the extracts were broader with47

respect to the standard. This may be due to the responses of several

antioxidants e.g. avonoids, phenolic acids and water-soluble vitaminsfl

with di erent oxidation potentials [ ].ff 48

Additionally, the total polyphenol contents were determined using
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the Folin Ciocalteu method [ ] in order to compare the results with– 49

the developed electrochemical biosensor. The samples were read at

765 nm by a spectrophotometer. The results were expressed in mg of CA

per g of propolis.

2.6. Amperometric determination of polyphenols in propolis samples in

Ppy/Lac/AuNPs/SPCE

Ppy/Lac/AuNPs/SPCE was conditioned with 0.1 mol L−1 acetate

bu er pH 3.50 before the quanti cation step. EEP was added at dif-ff fi

ferent concentrations on the electrochemical biosensor in drop mode.

The Lac immobilized onto the modi ed electrode ( ) oxidized thefi Fig. 1

EEP; subsequently, the EEP was reduced over Ppy/Lac/AuNPs/SPCE by

amperometry at 450 mV in 0.1 mol L−

−1 acetate bu er pH 3.50 asff

supporting electrolyte. Finally, the electrochemical biosensor was wa-

shed several times with 0.01 mol L−1 PBS pH 7.0 and stored at 4 °C

when not in use.

3. Results and discussion

3.1. Characterization of AuNPs/SPCE

Fig. 3 shows the SEM images for the surface of unmodi ed SPCE (a),fi

AuNPs/SPCE (b), and Ppy/Lac/AuNPs/SPCE (c). AuNPs with a dia-

meter ranging from 30 to 50 nm were obtained. Then, a uniform na-

nostructured lm of Ppy/Lac/AuNPs/SPCE was showed. The elementalfi

composition of the nanocomposite lm was determined by EDS. dfi Fig. 3

shows the four peaks of interest at 0.3, 0.4, 2.3 and 9.8 keV, corre-

sponding to the C, N and Au atoms, respectively.

K3 [Fe(CN) 6 ]/K 4 [Fe(CN)6 ] system is a convenient and valuable tool

to monitor the surface properties of the electrode during the mod-

i cation steps. shows the cyclic voltammograms for (a) blankfi Fig. 4 

solution (0.1 mol L−1 KCl at pH 6.50), (b) SPCE, and (c) AuNPs/SPCE,

which were recorded in 1 mmol L−1 K3 [Fe(CN)6]/K 4 [Fe(CN)6 ]

0.1 mol L−1 KCl pH 6.50 solution (scan rate = 50 mV s−1 ). Well de nedfi

CVs and characteristics of a di usion-controlled redox process wereff

observed. By studying the electrochemical behavior of the electrodes,

we could observe that the peak currents of the AuNPs/SPCE improved

due to the increase in the active surface area of the modi ed electrodefi

[ ].14

In the same way, during the polymerization stage with Ppy an in-

crease of the peak currents was generated in the presence and absence

of enzyme compared to the AuNPs/SPCE (insert graph in ). In theFig. 4

case of Ppy/AuNPs/SPCE, this feature is produced by the enhancement

in electrical conductivity and the electrocatalytic properties of the na-

nocomposite deposited on the surface of the SPCE. However, a slight

decrease in the generated current was observed for Ppy/Lac/AuNPs/

SPCE compared to Ppy/AuNPs/SPCE, because the immobilized enzyme

in the nanocomposite decreases the electrical conductivity and presents

higher resistance to electronic transfer [ ].44

3.2. Variables optimization for polyphenols determination

For the optimization steps, 1 M polyphenol standard solutions wereμ

used. As already described above, the electrodeposition of AuNPs on the

electrode surface was strongly a ected by several parameters, such asff

the electrodeposition time (t e) and electrodeposition potential (P e ). Both

factors have been optimized to obtain the best analytical performance

in our system. For the optimization of the t e the potential used was

−400 mV and the te was evaluated in a range from 20 to 140 s. In this

case, when the t e was ranged from 20 to 120 s, this situation leads to

SPCE

Laccase
immobiliza�on

AuNPs
electrodeposi�on

AuNPs/ SPCE Lac/AuNPs/ SPCE

Pyrrole
electropolimeriza�on

Ppy/Lac/AuNPs/SPCE

H2OO2 

LACred LACox

EEPox EEPred

-450 mV

Fig. 1. Schematic representation of the SPCE modi cation with the nanocomposite lm (Ppy/Lac/AuNPs) for the quanti cation of polyphenols in propolis samples.fi fi fi
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signi cant current increases, an e ect that plateaued at longer de-fi ff

position times. Therefore, an electrodeposition time of 120 s was se-

lected as optimum ( a). The e ect of the Fig. 5 ff P e was investigated using

a deposition time of 120 s and varying the potential applied to the

working electrode in the 50 to 500 mV range. As shown in b,− − Fig. 5

signi cant increases in the current were obtained when the potentialfi

applied was changed from 50 mV to 400 mV. Because no further− −

enhancements in the signal were obtained at lower potential values, an

electrodeposition potential of 400 mV was selected as optimum.−

The enzymatic response was studied in the pH range from 2.00 to

5.00, and showed maximum activity at pH 3.50. The pH value used was

3.50 in 0.1 mol L−1 acetate bu er ( c).ff Fig. 5

The e ect of the enzyme concentration was also investigated. Thisff

factor was evaluated using a range concentration from 2 to 20 μg mL−1.

As it can be observed in d, the response of the electrode increasedFig. 5

with respect to the solution concentration until reaching a concentra-

tion of 10 μg mL−1 . Consequently, a laccase concentration of

10 μg mL−1 was selected as optimum for the preparation of the bio-

sensor.

The pyrrole concentration to be employed in the immobilization

procedure was also considered. This parameter was evaluated in the

concentration range from 0.05 to 0.25 mol L−1 and reached a maximum

at 0.2 mol L−1 value. The optimum pyrrole concentration value used

was 0.2 mol L−1 (data not shown).

3.3. Analytical performance for the polyphenols detection using a Ppy/Lac/

AuNPs/SPCE

The polyphenols calibration plot was obtained by plotting current

( A) vs total polyphenols concentration (expressed as M CA, ). Inμ μ Fig. 6

the insert graph of can be seen the amperometric response ob-Fig. 6 

served after successive additions of CA in 0.1 mol L−1 acetate bu er atff

pH 3.50 for Ppy/Lac/AuNPs/SPCE. Applied potential of 450 mV vs−

Ag/AgCl. A linear relation was observed in the range from 1 to 250 Mμ

CA in propolis. The linear equation is represented by

i = 0,020 + 0,883 × C polyphenols . The correlation coe cient (rffi
2 ) for this

plot was 0.998. The coe cient of variation (CV) for the determinationffi

of polyphenols was below 4.9% (n = 6). The limit of detection (LOD)

was 0.83 M. These values indicate that the proposed method exhibits aμ

wide concentration range and a low LOD.

The precision of the electrochemical assay was tested with standards

at 5, 20 and 40 M CA. These series of analyses were repeated for 3μ

consecutive days in order to estimate the between-assay precision. The

a)

c)

b)

d)

N 

Fig. 3. Surface characterization by SEM of a) SPCE, b) AuNPs/SPCE, c) Ppy/Lac/AuNPs/SPCE and the corresponding elemental composition of d) Ppy/Lac/AuNPs/

SPCE by EDS.

-200 0 200 400 600
-35
-30
-25
-20
-15
-10

-5
0
5

10
15
20
25
30
35

C
ur

re
nt

 (
μ μ μμμ A

)

Potential (mV)

 a
 b
 c

-800 -400 0 400 800

Potential (mV)

 c
 d
 e

100 ( μμμμμA)

Fig. 4. Electrochemical characterization of a) blank solution (0.1 mol L−1 KCl

at pH 6.50), b) SPCE, and c) AuNPs/SPCE. Cyclic voltammograms obtained in

1 mmol L−1 K3 [Fe(CN)6]/K 4 [Fe(CN)6] in 0.1 mol L−1 KCl pH 6.50 solution

from 200 to +600 mV vs Ag/AgCl at scan rate: 50 mV s−

−1 . Insert: cyclic

voltammograms of d) Ppy/AuNPs/SPCE and e) Ppy/Lac/AuNPs/SPCE in the

same conditions.

L.G. Mohtar et al. Microchemical Journal 144 (2019) 13–18

16



polyphenols assay showed a CV within-assay values were below 4.3%

and the between-assay values were below 6.6%.

In this work, three propolis samples from Venezuela (V1, V3, V7),

two propolis samples from Argentina (A1, A2) and a blank solution by

electrochemical biosensor were analyzed. The content of polyphenols of

these samples was previously determined by the Folin-Ciocalteu spec-

trophotometric method, as can be seen in . As expected, takingTable 1

into account the completely di erent analytical methodologies used byff

both types of methods, the absolute values of the polyphenol indices

obtained are signi cantly di erent. The methodologies involved withfi ff

the electrochemical biosensor have some advantages over the Folin-

Ciocalteu method such as a high simplicity, a shorter detection time.

These results prove that Ppy/Lac/AuNPs/SPCE has an excellent se-

lectivity and sensitivity for the speci c detection of polyphenols infi

propolis samples. Additionally, this enzymatic biosensor shows good

reproducibility and long-term stability with more than 85% activity

retention after one-month storage at 4 °C. Due to its low cost and easy-

handling process, our proposed enzymatic sensor has the potential

application in polyphenols quanti cation in propolis samples.fi

4. Conclusion

This article described the development of an electrochemical bio-

sensor for polyphenols detection using a nanostructured functional

platform. Ppy/Lac/AuNPs/SPCE nanocomposite was synthesized using

soft conditions and the resulting material showed a good stability. Each

nanomaterial used enhance the electronic transference and increase the

response of the electrode. On the other hand, the developed method

showed many advantages like portability, low cost, wide linear range,
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Table 1

Comparison between the electrochemical biosensor and spectrophotometric

Folin-Ciocalteu method.

Samples Electrochemical biosensor Folin-Ciocalteu

V1 2.04 ± 0.08 a 4.44 ± 0.62 a

V3 1.22 ± 0.05 2.33 ± 0.13

V7 6.20 ± 0.10 6.29 ± 0.80

A1 27.40 ± 0.80 28.43 ± 1.90

A2 42.04 ± 0.86 49.60 ± 1.70

a
Expressed in CA mg g

−1
.
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accuracy with excellent LOD. Another important parameter was the

analysis time that was only 15 min against the 85 min that takes the

spectrophotometric method. Finally, this method could be a very pro-

mising analytical tool for the direct determination of polyphenols in the

food production, ensuring safety and food quality, as well as consumer's

health.
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