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1. Introduction

Model predictive control (MPC) is widely recognized as a high performance, yet practical,
control technology. This model-based control strategy solves at each sample a discrete-time
optimal control problem over a finite horizon, producing a control input sequence. An
attractive attribute of MPC technology is its ability to systematically account for system
constraints. The theory of MPC for linear systems is well developed; all aspects such
as stability, robustness,feasibility and optimality have been extensively discussed in the
literature (see, e.g., (Bemporad & Morari, 1999; Kouvaritakis & Cannon, 2001; Maciejowski,
2002; Mayne et al., 2000)). The effectiveness of MPC depends on model accuracy and the
availability of fast computational resources. These requirements limit the application base for
MPC. Even though, applications abound in process industries (Camacho & Bordons, 2004),
manufacturing (Braun et al., 2003), supply chains (Perea-Lopez et al., 2003), among others, are
becoming more widespread.
Two common paradigms for solving system-wide MPC calculations are centralised and
decentralised strategies. Centralised strategies may arise from the desire to operate the
system in an optimal fashion, whereas decentralised MPC control structures can result from
the incremental roll-out of the system development. An effective centralised MPC can be
difficult, if not impossible to implement in large-scale systems (Kumar & Daoutidis, 2002;
Lu, 2003). In decentralised strategies, the system-wide MPC problem is decomposed into
subproblems by taking advantage of the system structure, and then, these subproblems
are solved independently. In general, decentralised schemes approximate the interactions
between subsystems and treat inputs in other subsystems as external disturbances. This
assumption leads to a poor systemperformance (Sandell Jr et al., 1978; Šiljak, 1996). Therefore,
there is a need for a cross-functional integration between the decentralised controllers, in
which a coordination level performs steady-state target calculation for decentralised controller
(Aguilera & Marchetti, 1998; Aske et al., 2008; Cheng et al., 2007; 2008; Zhu & Henson, 2002).
Several distributed MPC formulations are available in the literature. A distributed MPC
framework was proposed by Dumbar and Murray (Dunbar & Murray, 2006) for the class
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of systems that have independent subsystem dynamic but link through their cost functions
and constraints. Then, Dumbar (Dunbar, 2007) proposed an extension of this framework that
handles systemswith weakly interacting dynamics. Stability is guaranteed through the use of
a consistency constraint that forces the predicted and assumed input trajectories to be close to
each other. The resulting performance is different from centralised implementations in most
of cases. Distributed MPC algorithms for unconstrained and LTI systems were proposed in
(Camponogara et al., 2002; Jia & Krogh, 2001; Vaccarini et al., 2009; Zhang & Li, 2007). In (Jia
& Krogh, 2001) and (Camponogara et al., 2002) the evolution of the states of each subsystem
is assumed to be only influenced by the states of interacting subsystems and local inputs,
while these restrictions were removed in (Jia & Krogh, 2002; Vaccarini et al., 2009; Zhang &
Li, 2007). This choice of modelling restricts the system where the algorithm can be applied,
because inmany cases the evolution of states is also influenced by the inputs of interconnected
subsystems. More critically for these frameworks is the fact that subsystems-basedMPCs only
know the cost functions and constraints of their subsystem. However, stability and optimality
as well as the effect of communication failures has not been established.
The distributed model predictive control problem from a game theory perspective for LTI
systems with general dynamical couplings, and the presence of convex coupled constraints
is addressed. The original centralised optimisation problem is transformed in a dynamic
game of a number of local optimisation problems, which are solved using the relevant
decision variables of each subsystem and exchanging information in order to coordinate
their decisions. The relevance of proposed distributed control scheme is to reduce the
computational burden and avoid the organizational obstacles associated with centralised
implementations, while retains its properties (stability, optimality, feasibility). In this context,
the type of coordination that can be achieved is determined by the connectivity and capacity of
the communication network as well as the information available of system’s cost function and
constraints. In this work we will assume that the connectivity of the communication network
is sufficient for the subsystems to obtain information of all variables that appear in their local
problems. We will show that when system’s cost function and constraints are known by all
distributed controllers, the solution of the iterative process converge to the centralised MPC
solution. This means that properties (stability, optimality, feasibility) of the solution obtained
using the distributed implementation are the same ones of the solution obtained using the
centralised implementation. Finally, the effects of communication failures on the system’s
properties (convergence, stability and performance) are studied. We will show the effect of
the system partition and communication on convergence and stability, and we will find a
upper bound of the system performance.

2. Distributed Model Predictive Control

2.1 Model Predictive Control
MPC is formulated as solving an on-line open loop optimal control problem in a receding
horizon style. Using the current state x(k), an input sequence U(k) is calculated to minimize
a performance index J (x(k),U(k)) while satisfying some specified constraints. The first
element of the sequence u(k, k) is taken as controller output, then the control and the
prediction horizons recede ahead by one step at next sampling time. The new measurements
are taken to compensate for unmeasured disturbances, which cause the system output to be
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different from its prediction. At instant k, the controller solves the optimisation problem

min
U(k)

J (x(k),U(k))

st. (1)

X(k + 1) =Γx(k) +HU(k)

U(k) ∈U

where Γ and H are the observability and Haenkel matrices of the system (Maciejowski, 2002)
and the states and input trajectories at time k are given by

X(k) = [x(k, k) · · · x(k + V, k)]T V > M,

U(k) = [u(k, k) · · · u(k + M, k)]T .

The integers V and M denote the prediction and control horizon. The variables x(k + i, k) and
u(k + i, k) are the predicted state and input at time k + i based on the information at time k
and systemmodel

x(k + 1) = Ax(k) + Bu(k), (2)

where x(k) ∈ Rnx and u(k) ∈ U ⊆ Rnu . The set of global admissible controls U = {u ∈ Rnu

|Du ≤ d, d > 0} is assumed to be non-empty, compact and convex set containing the origin in
its interior.

Remark 1. The centralised model defined in (2) is more general than the so-called composite model
employed in (Venkat et al., 2008), which requires the states of subsystems to be decoupled and allows
only couplings in inputs. In this approach, the centralised model can represent both couplings in states
and inputs.

In the optimisation problem (1), the performance index J (x(k),U(k)) measures of the
difference between the predicted and the desired future behaviours. Generally, the quadratic
index

J (x(k),U(k)) =
V

∑
i=0

xT(k + i, k)Qix(k + i, k) +
M

∑
i=0

uT(k + i, k)Riu(k + i, k) (3)

is commonly employed in the literature. To guarantee the closed–loop stability, the weighting
matrices satisfy Qi = Q > 0, Ri = R > 0 ∀i ≤ M and Qi = Q̄ ∀i > M, where Q̄ is given by
ATQ̄A− Q̄ = −Q (Maciejowski, 2002). For this choice of the weighting matrices, the index
(3) is equivalent to a performance index with an infinite horizon.

J∞ (x(k),U(k)) =
∞

∑
i=0

xT(k + i, k)Qx(k + i, k) + uT(k + i, k)Ru(k + i, k).

In many formulations an extra constraint or extra control modes are included into (1) to ensure
the stability of the closed-loop system (Maciejowski, 2002; Rossiter, 2003).

2.2 Distributed MPC framework
Large-scale systems are generally composed of several interacting subsystems. The
interactions can either be: a) dynamic, in the sense that the states and inputs of each subsystem
influence the states of the ones to which it is connected, b) due to the fact that the subsystems
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share a common goal and constraint, or c) both. Systems of this type admit a decomposition
into m subsystems represented by

xl(k + 1) =
m

∑
p=1

Al pxp(k) + Bl j∈Np
uj∈Np

(k) l = 1, . . . ,m (4)

where xl ∈ Rnxl ⊆ Rnx and ul ∈ Ul ⊆ Rnul ⊂ Rnu are the local state and input respectively.
The set of control inputs indices of subsystem l is denotedNl , and the set I denotes all control
input indices such that u(k) = uj∈I(k).

Remark 2. This is a very general model class for describing dynamical coupling between subsystems
and includes as a special case the combination of decentralised models and interaction models in (Venkat
et al., 2008). The subsystems can share input variables such that

m

∑
l=1

nul ≥ nu. (5)

Each subsystem is assumed to have local convex independent and coupled constraints, which
involve only a small number of the others subsystems. The set of local admissible controls
Ul = {ul ∈ Rnul | Dlul ≤ dl , dl > 0} is also assumed to be non-empty, compact, convex set
containing the origin in their interior.
The proposed control framework is based on a set of m independent agents implementing a
small-scale optimizations for the subsystems, connected through a communication network
such that they can share the common resources and coordinate each other in order to
accomplish the control objectives.

Assumption 1. The local states of each subsystem xl(k) are accessible.

Assumption 2. The communication between the control agents is synchronous.

Assumption 3. Control agents communicates several times within a sampling time interval.

This set of assumption is not restrictive. In fact, if the local states are not accessible they
can be estimated from local outputs yl(k) and control inputs using a Kalman filter, therefore
Assumption 1 is reasonable. As well, Assumptions 2 and 3 are not so strong because in
process control the sampling time interval is longer with respect the computational and the
communication times.
Under these assumptions and the decomposition, the cost function (3) can be written as
follows

J (x(k),U(k), A) =
m

∑
l=1

αl Jl

(
x(k),Uj∈Nl

(k),Uj∈I−Nl
(k)

)
, (6)

where A = [αl ] , αl ≥ 0, ∑m
l=1 αl = 1, Uj(k) is the j-th system input trajectory. This

decomposition of the cost function and input variable leads to a decomposition (1) into m
coupled optimisation problems

min
Uj∈Nl

(k)
J (x(k),U(k), A)
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st.

X(k + 1) = Γx(k) +HU(k) (7)

Uj∈Nl
(k) ∈ Uj∈Nl

Uj∈I−Nl
(k) ∈ Uj∈I−Nl

where Uj∈I−Nl
denotes the assumed inputs of others agents. The goal of the decomposition is

to reduce the complexity of the optimisation problem (1) by ensuring that subproblems (7) are
smaller than the original problem (fewer decision variables and constraints), while they retain
the properties of the original problem. The price paid to simplify the optimisation problem (1)
is the needs of coordination between the subproblems (7) during their solution. In this way,
the optimisation problem (1) has been transformed into a dynamic game of m agents where each
one searches for their optimal decisions through a sequence of strategic games, in response to
decisions of other agents.

Definition 1. A dynamic game 〈m,U , Jl (x(k),Uq(k), A) ,D(q, k)〉 models the interaction of m
agents over iterations q and is composed of: i) m ∈ N agents; ii) a non empty set U that corresponds
to the available decisions Uq

l (k) for each agent; iii) an utility function Jl (x(k),Uq(k), A) : x(k) ×
Uq(k)→ R+ for each agent; iv) an strategic game G(q, k) that models the interactions between agents
at iteration q and time k; v) a dynamic process of decision adjustment D(q, k) : (Uq(k),G(q, k), q)→
Uq+1(k).

At each stage of the dynamic game, the joint decision of all agents will determine the outcome
of the strategic game G(q, k) and each agent has some preference Uq

j∈Nl
(k) over the set of

possible outcomes U . Based on these outcomes and the adjustment process D(q, k), which
in this framework depends on the cost function Jl(· ) and constraints, the agents reconcile
their decisions. More formally, a strategic game is defined as follows (Osborne & Rubinstein,
1994)

Definition 2. A finite strategic game G(q, k) = 〈m,Ul , Jl (x(k),Uq(k), A)〉 models the interactions
between m agents and is composed of: i) a non empty finite set Ul ⊆ U that corresponds the set
of available decisions for each agent; ii) an utility function Jl (x(k),Uq(k), A) : x(k) × Uq(k) →
R Uq(k) ∈ U for each agent.

In general, one is interested in determining the choices that agents will make when faced with
a particular game, which is sometimes referred to as the solution of the game. We will adopt
the most common solution concept, known as Nash equilibrium (Nash, 1951): a set of choices
where no individual agent can improve his utility by unilaterally changing his choice. More
formally, we have:

Definition 3. A group of control decisions U(k) is said to be Nash optimal if

Jl

(
x(k),Uq

j∈Nl
(k),Uq−1

j∈I−Nl
(k)

)
≤ Jl

(
x(k),Uq−1

j∈Nl
(k),Uq−1

j∈I−Nl
(k)

)
where q > 0 is the number of iterations elapsed during the iterative process.

If Nash optimal solution is achieved, each subproblem does not change its decision Uq
j∈Nl

(k)
because it has achieved an equilibrium point of the coupling decision process; otherwise the
local performance index Jl will degrade. Each subsystem optimizes its objective function
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using its own control decisionUq
j∈Nl

(k) assuming that other subsystems’ solutionsUq
j∈I−Nl

(k)
are known. Since the mutual communication and the information exchange are adequately
taken into account, each subsystem solves its local optimisation problem provided that the
other subsystems’ solutions are known. Then, each agent compares the new solution with
that obtained in the previous iteration and checks the stopping condition∥∥∥Uq

j∈Nl
(k)−Uq−1

j∈Nl
(k)

∥∥∥
∞
≤ ε l l = 1, . . . ,m. (8)

If the algorithm is convergent, condition (8) will be satisfied by all agents, and the whole
system will arrive to an equilibrium point. The subproblems m (7) can be solved using the
following iterative algorithm

Algorithm 1

Given Ql , Rl , 0 < qmax < ∞, ε l > 0 ∀l = 1, · · · ,m
For each agent l l = 1, · · · ,m
Step 1 Initialize agent l

1.a Measure the local state xl(k), q = 1,
ρl = φε l φ � 1

1.b U0(k) = [u(k, k− 1) · · · u(k + M, k− 1) 0 ]
Step 2 while ρl > ε l and q < qmax

2.a Solve problem (7) to obtain Ũq
j∈Nl

(k)

2.b for p = 1, · · · ,m and p �= l
Communicate Ũq

j∈Nl
(k) to agent p

end
2.c Update the solution iterate q ∀j ∈ Nl

Uq
j (k) = ∑m

p=1 αpŨq
i∈Np∩j(k)

+
(
1−∑m

p=1 αp card ( j ∩Nl)
)

Uq−1
j (k)

2.d ρl =
∥∥∥Uq

j∈Nl
(k)−Uq−1

j∈Nl
(k)

∥∥∥
∞

q = q + 1
end

Step 3 Apply ul(k, k)

Step 4 k = k + 1 and goto Step 1

At each k, qmax represents a design limit on the number of iterates q and ε l represents the
stopping criteria of the iterative process. The user may choose to terminate Algorithm 1 prior
to these limits.

3. Properties of the framework

3.1 Performance
Given the distributed scheme proposed in the previous Section, three fundamental questions
naturally arise: a) the behavior of agent’s iterates during the negotiation process, b) the

70 Advanced Model Predictive Control



Distributed Model Predictive Control
Based on Dynamic Games 7

location and number of equilibrium points of the distributed problem and c) the feasibility
of the solutions. One of the key factors in these questions is the effect of the cost function and
constraints employed by the distributed problems. Therefore, in a first stage we will explore
the effect of the performance index in the number and position of the equilibrium points.
Firstly, the optimality conditions for the centralised problem (1) are derived in order to have
a benchmark measure of distributed control schemes performance. In order to make easy the
comparison, the performance index (3) is decomposed into m components related with the
subsystems, like in the distributed problems (7), as follows

J (x(k),U(k),Θ) =
m

∑
l=1

θl Jl (x(k),U(k)) , θl ≥ 0,
m

∑
l=1

θl = 1. (9)

This way writing the performance index corresponds to multiobjective characterization of the
optimisation problem (1). Applying the first–order optimality conditions we obtain

m

∑
l=1

θl
∂Jl (x(k),U(k))

∂Uj∈Np
(k)

+ λT Dj∈Np = 0 p = 1, . . . ,m, (10a)

λT
(

Dj∈NpUj∈Np
(k)− b

)
= 0, (10b)

where Dj is the j–th column vector of D. The solution of this set of equations U∗(k) is the
optimal solution of the optimisation problem (1) and belongs to Pareto set, which is defined as
(Haimes & Chankong, 1983).

Definition 4. A solution U∗(k) ∈ U is said to be Pareto optimal of the optimisation problem (1) if
there exists no other feasible solution ∀U(k) ∈ U such that Jl (x(k),U(k)) ≤ Jl (x(k),U∗(k)) ∀l =
1, . . . ,m.

In distributed control the agents coordinate their decisions, through a negotiation process.
Applying the first–order optimality conditions to decentralised cost (6) we obtain

m

∑
l=1

αl
∂Jl (x(k),U(k))

∂Uj∈Np
(k)

+ λT Dj∈Np = 0 p = 1, . . . ,m, (11a)

λT
(

Dj∈NpUj∈Np
(k)− b

)
= 0. (11b)

By simple inspection of (10) and (11) we can see that these equations have the same structure,
they only differ on the weights. Therefore, the location of the distributed schemes equilibrium
will depend on the selection of αl l = 1, . . . ,m. There are two options:

• If αl = 1, αp �=l = 0 the optimality condition (11) becomes

∂Jl (x(k),U(k))
∂Uj∈Nl

(k)
+ λTDj∈Nl = 0 l = 1, . . . ,m, (12a)

λT
(

Dj∈Nl Uj∈Nl
(k)− b

)
= 0. (12b)

This condition only evaluates the effect of Uj∈Nl
, given Uj∈I−Nl

, in subsystem l
without taking into account its effects in the remaining agents (selfish behavior). This
configuration of the distributed problem leads to an incomplete and perfect information
game that can achieve Nash optimal solutions for a pure strategy (Cournot equilibrium)
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(Osborne & Rubinstein, 1994). By simple comparison of (10) and (12) we can conclude
that the solution of this equations lies outside of the Pareto set (Dubey & Rogawski,
1990; Neck & Dockner, 1987). The reason of Nash equilibrium inefficiency lies in the fact
that the information of each agent decision variable effects’ on the remaining agents is
neglected (αp �=l = 0 incomplete information game). Therefore, each agent minimizes their
performance index, accommodating the effects of other agents’ decisions, without taking
in account its effects on the rest of the system. Besides the lack of optimality, the number of
equilibrium points generated by the optimality condition (12) can grow with the number
of agents (Bade et al., 2007).

• If αl > 0 the optimality condition (11) becomes

m

∑
l=1

αl
∂Jl (x(k),U(k))

∂Uj∈Np
(k)

+ λTDj∈Np =0 p = 1, . . . ,m (13a)

λT
(

Dj∈NpUj∈Np
(k)− b

)
=0. (13b)

This condition evaluates the effect of Uj∈Nl
, given Uj∈I−Nl

, in the entire system, taking in
account the effect of interactions between the subsystems (cooperative behavior), leading
to a complete and perfect information game. By simple comparison of (10) and (13) it is
easy to see that these two equations have a similar structure, therefore we can conclude
that their solutions lie in the Pareto set. The position of distributed MPC solutions will
depend on the values of αl . In the particular case of αl = θl l = 1, . . . ,m the solution of
the centralised and distributed schemes are the same.

The value of weights αl l = 1, . . . ,m depends on the information structure; that is the
information of the cost function and constraints available in each agent. If the cost function
and constraints of each agent are known by all the others, for example a retailer company,
αl can be chosen like the second distributed scheme (αl > 0 ∀l = 1, . . . ,m). In this
case the centralised optimisation problem is distributed between m independent agents that
coordinate their solutions in order to solve the optimisation problem in a distributed way. For
this reason we call this control scheme distributed MPC. On the other case, when the local
cost function and constraints are only known by the agents, for example a power network
where several companies compete, the weights αl should be chosen like the first scheme
(αl = 1, αp �=l = 0 ∀l, p = 1, . . . ,m). In this case the centralised optimisation problem is
decentralised into m independent agents that only coordinate the effects of their decisions to
minimize the effect of interactions. For this reason we call this control scheme coordinated
decentralised MPC.

Remark 3. The fact that agents individually achieve Nash optimality does not imply the global
optimality of the solution. This relationship will depend on the structure of agents’ cost function and
constraints, which depends on the value of weights αl , and the number of iterations allowed.

The structure of Uj∈Nl
determine the structure of constraints that can be handled by the

distributed schemes. If the subproblems share the input variables involved in the coupled
constraints (Nl ∩Np �=l �= ∅), the distributed MPC schemes can solve optimisation problems
with coupled constraints. On the other hand, when subproblems do not include the input
variables of coupled constraints (Nl ∩ Np �=l = ∅), the distributed MPC schemes can only
solves optimisation problems with independent constraints (Dunbar, 2007; Jia & Krogh, 2001;
Venkat et al., 2008). These facts become apparent from optimality conditions (12) and (13).
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3.2 Convergence
During the operation of the system, the subproblems (7) can compete or cooperate in the
solution of the global problem. The behavior of each agent will depend on the existence,
or not, of conflictive goals that can emerge from the characteristics of the interactions, the
control goals and constraints. The way how the system is decomposed is one of the factors
that defines the behavior of the distributed problem during the iterations, since it defines how
the interactions will be addressed by distributed schemes.
The global system can be partitioned according to either the physical system structure or
on the basis of an analysis of the mathematical model, or a combination of both. Heuristic
procedures for the partitioning the system based on input–output analysis (see (Goodwin
et al., 2005; Henten & Bontsema, 2009; Hovd & Skogestad, 1994)), an state–space analysis
based (see (Salgado & Conley, 2004; Wittenmark & Salgado, 2002) or on performance metric
for optimal partitioning of distributed and hierarchical control systems (see (Jamoom et al.,
2002; Motee & Sayyar-Rodsari, 2003)) have been proposed. In all these approaches the
objective is to simplify the control design by reducing the dynamic couplings, such that the
computational requirements are evenly distributed to avoid excessive communication load.
It is important to note that the partitioning of a state–space model can lead to overlapping
states both due to coupled dynamics in the actual continuous system and due to discrete-time
sampling, which can change the sparsity structure in the model.

Assumption 4. The model employed by the distributed MPC algorithms are partitioned following the
procedures described in (Motee & Sayyar-Rodsari, 2003).

To analysed the effect of the system decomposition on the distributed constrained scheme,
firstly we will analysed its effects on unconstrained problem. Solving the optimality condition
(11) for an unconstrained system leads to

Uq(k) = K0Uq−1(k) +K1x(k) ∀q > 0, (14)

whichmodels the behavior of the distributed problemduring the iterative process. Its stability
induces the convergence of the iterative process and it is given by

|λ (K0)| < 1. (15)

The gain K1 is the decentralised controller that computes the contribution of x(k) to U(k) and
has only non–zero elements on its main diagonal K1 = [Kll ] l = 1, . . . ,m. On other hand,
K0 models the interaction between subsystems during the iterative process, determining its
stability, and has non zero elements on its off diagonal elements

K0 =

⎡
⎢⎢⎢⎣

0 K12 · · · K1m
K21 0 K2m
...

. . .
...

Km1 · · · Kmm−1 0

⎤
⎥⎥⎥⎦ . (16)

The structure of the components of K0 and K1 depends on the value of the weights αl :

• If the coordinated decentralised MPC is adopted (αl = 1, αp �=l = 0) the elements of K0 are
given by given by

Kl p = −KllHl p l, p = 1, . . . ,m (17)
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where Kll =
(
HT

llQllHll + Rll
)−1HT

ll Qll. Therefore, the way in which the global
problem (1) was partitioned and how the controllers’ parameters were tuned defines the
convergence of the coordinated decentralised MPC. Under Assumption 2 the convergence of
the algorithm can be guaranteed for those systems that exhibit weak interactions.

• On the other hand, when the distributed MPC is adopted (αl > 0) the gain K0 is given by

Kl p = −KlpHl p l, p = 1, . . . ,m (18)

where the controller gains are given by Klp =
(
HT

lpQlpHl p + Rlp

)−1
HT

lpQlp. Since the
distributed MPC is designed to guarantee the stability of the entire system, its convergence
is guaranteed independently of the way of partitioning the system.

Now, we will consider constrained systems. In this case, under Assumption 2, the
convergence for constrained systems can be analysed using Lyapunov arguments. The key
idea is to show the contractivity of the sequence of global cost functions J (x(k,Uq(k)), A)
generated by Algorithm 1 along the iterative process.

Lemma 1. Let’s assume that the system has been partitioned following a decentralised design procedure
and the distributed MPC problems (7) ∀l = 1, . . . ,m are feasible, then the sequence of cost functions
J (x(k,Uq(k)), A) generated by Algorithm 1 during the iterative process is non increasing ∀q > 0 at
any time k.

Proof. See appendix 8.A.

3.3 Feasibility
Although in current literature it is typically assumed that an initial centralised feasible
solution exist and is available, in this Section we will provide a simple and implementable
way of constructing it in a distributed way assuming that the global initial state is available in
advanced.
An initial feasible solution input U0

j∈Nl
(k) at k = 0 can be computed locally by using an inner

approximation of the global feasible set U based on all the constraints appearing in (1) and
the global initial state x(0), which is assumed to be available. Consider an inner-hyperbox
approximation Ω of U , which then takes the form of a Cartesian product

Ω = Ω1 × · · ·Ωm ⊂ U . (19)

This approximation essentially decomposes and decouples the constraints among subsystems
by performing constraint tightening. Each subsystem l will thus have to include Ωl in their
local problem setup. Since the Cartesian product of these local constraint sets are included
in the globally feasible set U , any combination of local solutions within Ωl will be globally
feasible as well. The local constraint sets that arise from this inner-hyperbox approximation
will be in general quite conservative, but at the same time will allow the construction of a
feasible solution locally to initialize Algorithm 1.
Calculation of the inner-hyperbox approximation can be performed a priori and the local
Ωl constraints distributed to each subsystem. A polynomial-time procedure to compute a
maximum volume inner box of could follow the procedure described in (Bemporad et al.,
2004). Obtaining the local component-wise constraints Ωl is then straightforward. For time
steps k > 0, we construct a feasible solution by performing Step 1 of Algorithm 1

U0
j∈Nl

(k) =
[

uj∈Nl
(k, k− 1) · · · uj∈Nl

(k + M, k− 1) 0
]
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The feasibility throughout the iterations is maintained because in step 2.a m feasible solutions
Ũq

j∈Nl
(k) are obtained. Then, in step 2.c, the new control profile Uq

j∈Nl
(k) is built as a convex

combination of these solutions. Since problem (7) is a convex constrained QP, any convex
combination of Uq

j∈Nl
(k) also satisfies the convex constraint set. Therefore Uq(k) is a feasible

solution of optimisation problem (7) for all l.

3.4 Stability
Showing nominal stability of the resulting closed-loop system follows standard arguments for
the most part (Mayne et al., 2000). The proof in this section is closely related to the stability
proof of the FC-MPC method in (Venkat et al., 2008) with the addition of Assumption 2. The
key idea is to show the contractivity of the sequence of global cost functions J generated by
Algorithm 1 along the system operation and the stability of the origin.

Theorem 1. Let us assume that the system has been partitioned following a decentralised design
procedure and the optimisation problem (7) solved using Algorithm 1 is feasible, then the origin is an
exponentially stable equilibrium point.

Proof. See appendix 8.B.

4. System behavior under communication failures

In the proposed framework agents coordinate their actions by exchanging information
through the communication network. Since the agents extensively use the communication
network some questions related to the system behavior arise if communications fail: Which
are the conditions for the convergence of the iterative process? How closed-loop stability is
affected? How does system performance change?
In a first stage, the failures in the communication system are modeled introducing three
matrices: i) the connection matrix C which represents the communication structure, ii) the
transmission failure matrix T which models the transmission failures and iii) reception failure
matrices R that models the reception failures in the system. The matrix C is defined as

C =
[
clp

]
, clp =

{
0 l = p,

1 or 0 l �= p, (20)

where clp = 1 indicates the connection between agents l and p, while clp = 0 shows no
connection between these agents. Then, the failures in the communication system can be
modeled combining the connection matrix with the others matrices that models the reception
(R ) and transmission (T ) failures,RCT , which are given by

R =
[
rlp

]
, rlp =

{
1 l = p,
0 l �= p, (21a)

T =
[
tlp

]
, tlp =

{
1 l = p,
0 l �= p.

(21b)

An element tll = 1 (rll = 1) corresponds to a perfect transmission (reception) of agent l, while
tll = 0 (rll = 0) corresponds to a transmission (reception) failure of agent l. A failure between
agents l and p is represented with the transition from 1→ 0 of the corresponding elements of
R and T .
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Following the same procedure like in Section 3.2, the solution for the distributed problem at
each iteration is

Uq(k) = K0RCT Uq−1(k) +K1RCT x(k) q ≥ 1

Its behavior is related with its stability, which is given by

‖λ (K0RCT )‖1 < 1 (22)

Under communication failure each agent cannot exchange information properly, which will
modify the iterative process driving it to another solution. In this case, the agent with
communication failure will become a decentralised controller that will receive information
about the decision of the others agents through the system. This will deteriorate the stability
margins and performance due to the presence of the interactions not accounted during the
iterative process, which will act like non measurable disturbances. In the extreme case
K0RCT = 0, the control structure will correspond to the fully decentralised control architecture,
and the stability will depend on the way that the system was partitioned. If the controllers
are designed following a decentralised design procedure (Wittenmark & Salgado, 2002), the
stability of the closed-loop system can be guaranteed.
Once the convergence of the iterates can be guaranteed, the next issue to be addressed is the
effect of the communication failures on the closed-loop stability. In order to establish their on
the closed-loop behavior, the control action

Ũ(k) = (I −K0RCT )−1 K1RCT Γx(k)

is replaced in the open-loop model of the system, leading to the closed-loop system

x(k + 1) =
(

A− BI (I −K0RCT )−1K1RCT Γ
)

x(k).

Then, the stability of the closed–loop system under communication failures is determined by∣∣∣λ (
A− BI (I −K0RCT )−1K1RCT Γ

)∣∣∣ < 1. (23)

Under the communication failure, each agent can not exchange information properly therefore
the stability of the closed–loop system will depend on the dynamic characteristics of the
interactions between subsystems. In the extreme case RCT = 0, the stability condition is
always satisfied corresponding to the full decentralised architecture. The interactions act like
non measurable disturbances for the controllers, reducing the stability margins and degrading
the system performance.

Theorem 2. Let us assume that the system has been partitioned in a way that the convergence
condition (15) is satisfied, its performance at time instant k under the local communication failure is

J̃(k) ≤
(
1+

‖W(k)‖
λmin(F )

)
J∗ , (24)

where the performance degradation is bounded by

J̃(k)− J∗

J∗
≤ ‖Wmax‖

λmin(F )
(25)
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where λmin (F ) denotes the minimal eigenvalue of

F =
(
K−11 (I −K0)−H

)T
Q
(
K−11 (I −K0)−H

)
+ R,

Wmax = ST
max

(
HTQH+ R

)
Smax,

Smax = 2I −
[

I + (I −K0)
−1 (I +K0)

]−1
.

Proof. See appendix 8.C.

5. Simulations

In this Section, we will illustrate the applicability and limitations of the theoretical results
presented in this paper through two problems: i) a LTI MIMO system and ii) the operation of
a heat–exchanger network (HEN). In the first case we analyse and evaluate the ideas discussed
in previous sections through the control of a strongly coupled MIMO LTI system. In the
second problemwe will evaluate the applicability and limitations of the proposed framework
to system with complex dynamic.

5.1 LTI System
To explore the ideas discussed in previous Sections, let’s consider the following MIMO linear
system [

y1(s)
y2(s)

]
=

[
1

10s+1
−1

7.5s+1
1.5

11s+1
1.5
8s+1

] [
u1(s)
u2(s)

]
(26)

This system shows a strong interaction with a non cooperative behavior between both
subsystem due to the difference in the sign of the gain. Besides, the interaction between
y1 and u2 is faster than the dynamic between y1 and u1. The models for the distributed
and coordinated decentralized MPC algorithms were obtained by dividing the system in two
agents

Agent 1 : y1(s) =
1

10s + 1
u1(s)−

1
7.5s + 1

u2(s), (27a)

Agent 2 : y2(s) =
1.5

11s + 1
u1(s) +

1.5
8s + 1

u2(s). (27b)

Agent 1 solves the optimization problem using u1 as decision variable, while agent 2 solves
its optimization problem using u2. The parameters of the predictive control algorithms are
M = 5, V = 20, Qi = I2×2, Ri = 2I2×2 i = 0, · · · , M− 1, and the stopping condition for the
decentralized and distributed MPC algorithms was fixed to ε1 = ε2 = 0.005 and qmax = 30.
Figure 1 shows the closed–loop responses for different MPC schemes. In this figure we can
see that the performance of centralized and distributed MPC are similar, while the performance
of the coordinated decentralized MPC is worst than the others control schemes. In general,
the response obtained by the coordinated decentralized MPC shows stronger interactions that
deteriorate the overall system performance. This phenomenon is due to the fact that the
coordinated decentralized MPC does not optimize the effect of the agents decision variable on
the performance of the other agent. Figure 1.b shows the resulting manipulated variables
where we can see the behavior of the three MPC schemes. Even though all algorithms achieve
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(a) System output (b) Manipulated variables

Fig. 1. System responses to different MPC schemes (- - Centralized MPC, — Distributed MPC
and -.- Coordinated decentralized MPC).

Fig. 2. Behavior of the controllers’ cost functions during the iterative procedure (- -
Centralized MPC, — Distributed MPC and -.- Coordinated decentralized MPC).

the same steady–state conditions, the inputs / outputs trajectories followed by the coordinated
decentralized MPC are different from the centralized and distributed MPC.
Figure 2 shows the behavior of MPC controllers cost functions during the iterative procedure
for the first set point change. The first thing to see is the oscillatory behavior of the iterative
process of the coordinated decentralized MPC, in contrast with the monotonous behavior of
the distributed MPC. This behavior is due to the nature interactions and the characteristics
Balderud et al. (2008). The cost function of the distributed MPC converges to the solution
of the centralized MPC, which is globally optimal, in few iterations. If the iterative process
is stopped before (q < 4), the resulting solution will be suboptimal however it will lead
to a stable closed–loop system. The earlier the iterative process is stopped, the bigger the
difference to the centralized solution.
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5.2 Heat-exchanger network
The heat-exchanger network (HEN) system studied here is represented schematically in
Figure 3. It is a system with only three recovery exchangers (I1, I2 and I3) and three service
(S1, S2 and S3) units. Two hot process streams (h1 and h2) and two cold process streams (c1
and c2) take part of the heat exchange process. There are also three utility streams (s1, s2 and
s3) that can be used to help reaching the desired outlet temperatures.

Fig. 3. Schematic representation of the HEN system.

The main purpose of a HEN is to recover as much energy as necessary to achieve the system
requirements from high–temperature process streams (h1 and h2) and to transfer this energy
to cold–process streams (c1 and c2). The benefits are savings in fuels needed to produce utility
streams s1, s2 and s3. However, the HEN has to also provide the proper thermal conditioning
of some of the process streams involved in the heat transfer network. This means that a
control system must i) drive the exit process–stream temperatures (y1, y2, y3 and y4) to the
desired values in presence of external disturbances and input constraints while ii) minimizes
the amount of utility energy.
The usual manipulated variables of a HEN are the flow rates at bypasses around heat
exchangers (u1, u2 and u4) and the flow rates of utility streams in service units (u3, u5 and
u6), which are constrained

0 ≤ uj(k) ≤ 1.0 j = 1, . . . , 6.

A fraction 0 < uj < 1 of bypass j means a fraction uj of corresponding stream goes through
the bypass and a fraction 1− uj goes through the exchangers, exchanging energy with other
streams. If uj = 0 the bypass is completely closed and the whole stream goes through the
exchangers, maximizing the energy recovery. On the other hand, a value of uj = 1 the bypass
is completely open and the whole stream goes through the bypass, minimizing the energy
recovery.
The HEN studied in this work has more control inputs than outlet temperatures to be
controlled and so, the set of input values satisfying the output targets is not unique. The
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possible operation points may result in different levels of heat integration and utilities
consumption. Under nominal conditions only one utility stream is required (s1 or s3) for the
operation of the HEN, the others are used to expand the operational region of the HEN.
The inclusion of the control system provides new ways to use the extra utility services (s2 and
s3) to achieve control objectives by introducing new interactions that allow the redirection of
the energy through the HEN by manipulating the flow rates. For example, any change in the
utility stream s3 (u6) has a direct effect on output temperature of c1 (y4), however the control
system will redirect this change (through the modification of u1) to the output temperature of
h1 (y1), h2 (y2), and c2 (y3). In this way, the HEN has energy recycles that induces feedback
interaction, whose strength depends on the operational conditions, and leads to a complex
dynamic: i) small energy recycles induce weak couplings among subsystems, whereas ii) large
energy recycles induce a time scale separation, with the dynamics of individual subsystems
evolving in a fast time scale with weak interactions, and the dynamics of the overall system
evolving in a slow time scale with strong interactions Kumar & Daoutidis (2002).
A complete definition of this problem can be found in Aguilera & Marchetti (1998). The
controllers were developed using the following linear model

Y = A(s) ∗U,

where

A(s) =

⎡
⎢⎢⎢⎢⎣

20.6 e−61.3s

38.8s+1
19.9 e−28.9s

25.4s+1
17.3 e−4.8s

23.8s+1 0 0 0
4.6 e−50.4s

48.4s+1 0 0 79.1 31.4s+0.8
31.4s+1.0

20.1 e−4.1s

25.6s+1.0 0
16.9 e−24.7s

39.5s+1 −39.2 22.8s+0.8
22.8s+1.0 0 0 0 0

24.4 48.2s2+4.0s+0.05
48.2s2+3.9s+0.06 0 0 −8.4 e−18.8s

27.9s+1 0 16.3 e−3.5s

20.1s+1.0

⎤
⎥⎥⎥⎥⎦

and

U = [ u1 u2 u3 u4 u5 u6 ]
T ,

Y = [ y1 y2 y3 y4 ]
T .

The first issue that we need to address in the development of the distributed controllers is
selection of the input and output variables associated to each agent. The decomposition was
carried after consideration of themulti-loop rules (Wittenmark& Salgado, 2002). The resulting
decomposition is given in Table 1: Agent 1 corresponds to the first and third rows of A(s),
while agents 2 and 3 correspond to the second and fourth rows of A(s) respectively. Agents 1
and 2 will mainly interact between them through the process stream c1.
For a HEN not only the dynamic performance of the control system is important but also the
cost associated with the resulting operating condition must be taken into account. Thus, the
performance index (3) is augmented by including an economic term JU , such that the global
cost is given by J + JU , defined as follows

JU = uT
SSRUuSS. (28)

where uSS = [u3(k + M, k) u5(k + M, k) u6(k + M, k)] for the centralized MPC. In the case of
the distributed and coordinated decentralized MPC, uSS is decomposed among the agents of the
control schemes (uSS = u3(k + M, k) for Agent 1, uSS = u5(k + M, k) for Agent 2 and uSS =
u6(k + M, k) for Agent 3). Finally, the tuning parameters of the MPC controllers are: ts =
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0.2min; Vl = 50; Ml = 5; ε l = 0.01; qmax = 10 l = 1, 2, 3, the cost functions matrices are
given in Table 2.
MATLAB based simulation results are carried out to evaluate the proposed MPC algorithms
(coordinated decentralized and distributed MPC) through performance comparison with a
centralized and decentralized MPC. The MPC algorithms used the same routines during the
simulations, which were run in a computer with an Intel Quad-core Q9300 CPU under Linux
operating system. One of the processors was used to execute the HEN simulator, while the
others were used to execute the MPC controllers. Only one processor was used to run the
centralized MPC controller. In the case of the distributed algorithms, the controllers were
distributed among the other processors. These configurations were adopted in order to make
a fair comparison of the computational time employed for each controller.
We consider the responses obtained for disturbance rejection. A sequence of changes is
introduced into the system: after stabilizing at nominal conditions, the inlet temperature of h1
(Tin

h1
) changes from 90°C to 80°C; 10min later the inlet temperature of h2 (Tin

h2
) goes from 130°C

to 140°C and after another 10min the inlet temperature of c1 (Tin
c1 ) changes from 30°C to 40°C.

Fig. 4. Controlled outputs of the HEN system using (—) distributed MPC and (-.-)
coordinated decentralized MPC.

Figures 4 and 5 show the dynamic responses of the HEN operating with a distributed MPC
and a coordinated decentralized MPC. The worse performance is observed during the first and
second load changes, most notably on y1 and y3. The reasons for this behavior can be found
by observing the manipulated variables. The first fact to be noted is that under nominal
steady-state conditions, u4 is completely closed and y2 is controlled by u5 (see Figures 5.b),
achieving the maximum energy recovery. Observe also that u6 is inactive since no heating
service is necessary at this point. After the first load change occurs, both control variables u2
and u3 fall rapidly (see Figures 5.a). Under this conditions, the system activates the heater
flow rate u6 (see Figures 5.b). The dynamic reaction of the heater to the cool disturbance is
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also stimulated by u2, while u6 takes complete control of y1, achieving the maximum energy
recovery. After the initial effect is compensated, y3 is controlled through u2 –which never
saturates–, while u6 takes complete control of y1. Furthermore, Figure 5.b show that the cool
perturbation also affects y2, where u5 is effectively taken out of operation by u4. The ensuing
pair of load changes are heat perturbations featuring manipulated movements in the opposite
sense to those indicated above. Though the input change in h2 allows returning the control of
y1 from u6 to u3 (see Figures 5.a).

(a) u1(t), u2(t), u3(t) (b) u4(t),u5(t),u6(t)

Fig. 5. Manipulated inputs of the HEN system using (—) distributed MPC and (-.-)
coordinated decentralized MPC.

In these figures we can also see that the coordinated decentralized MPC fails to reject the first
and second disturbances on y1 and y3 (see Figures 4.a and c) because it is not able to properly
coordinate the use of utility service u6 to compensate the effects of active constraints on u2 and
u3. This happens because the coordinated decentralized MPC is only able to address the effect
of interactions between agents but it can not coordinate the use of utility streams s2 and s3 to
avoid the output-unreachability under input constraint problem. The origin of the problem lies
in the cost function employed by the coordinated decentralized MPC, which does not include
the effect of the local decision variables on the other agents. This fact leads to different
steady–state values in the manipulated variables to those ones obtained by the distributed MPC
along the simulation.
Figure 6 shows the steady–state value of the recovered energy and utility services used by the
system for the distributed MPC schemes. As mentioned earlier, the centralized and distributed
MPC algorithms have similar steady–state conditions. These solutions are Pareto optimal,
hence they achieve the best plant wide performance for the combined performance index.
On the other hand, the coordinated decentralized MPC exhibited a good performance in energy
terms, since it employs less service energy, however it is not able of achieving the control
objectives, because it is not able of properly coordinate the use of utility flows u5 and u6. As
it was pointed out in previous Sections, the fact that the agents achieve the Nash equilibrium
does not implies the optimality of the solution.
Figure 7 shows the CPU time employed for each MPC algorithm during the simulations. As
it was expected, the centralized MPC is the algorithm that used more intensively the CPU.
Its CPU time is always larger than the others along the simulation. This fact is originated
on the size of the optimization problem and the dynamic of the system, which forces the
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Fig. 6. Steady-state conditions achieved by the HEN system for different MPC schemes.

Fig. 7. CPU times for different MPC schemes.
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centralized MPC to permanently correct the manipulated variable along the simulation due to
the system interactions. On the other hand, the coordinated decentralized MPC used the CPU
less intensively than the others algorithms, because of the size of the optimization problem.
However, its CPU time remains almost constant during the entire simulation since it needs to
compensate the interactions that had not been taken into account during the computation.
In general, all algorithms show larger CPU times after the load changes because of the
recalculation of the control law. However, we have to point out that the value of these peak
are smaller than sampling time.

6. Conclusions

In this work a distributed model predictive control framework based on dynamic games is
presented. The MPC is implemented in distributed way with the inexpensive agents within
the network environment. These agents can cooperate and communicate each other to achieve
the objective of the whole system. Coupling effects among the agents are taken into account
in this scheme, which is superior to other traditional decentralized control methods. The
main advantage of this scheme is that the on-line optimization can be converted to that
of several small-scale systems, thus can significantly reduce the computational complexity
while keeping satisfactory performance. Furthermore, the design parameters for each agent
such as prediction horizon, control horizon, weighting matrix and sample time, etc. can
all be designed and tuned separately, which provides more flexibility for the analysis and
applications. The second part of this study is to investigate the convergence, stability,
feasibility and performance of the distributed control scheme. These will provide users better
understanding to the developed algorithm and sensible guidance in applications.
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8. Appendices

A. Proof of Lemma 1

Proof. From definition of the J(·) we have

J (x(k),Uq(k), A) = J
(

x(k),
[
Uq

j∈N1
(k) · · ·Uq

j∈Nm
(k)

]
, A

)
(29)

From definition of Uq
j∈Nl

.we have

J (x(k),Uq(k), A) =J
(

x(k),
[
αj∈N1Ũ

q
1(k) +

(
1− αj∈N1

)
Uq−1

j∈N1
(k) · · ·

αj∈Nm
Ũq

j∈Nm
(k) +

(
1− αj∈Nm

)
Uq−1

j∈Nm
(k)

]
, A

)
=J

(
x(k),

[
αj∈N1

[
Ũq

j∈N1
(k) · · ·Uq−1

j∈Nm
(k)

]
· · ·

αj∈Nm

[
Uq−1

j∈N1
(k) · · · Ũq

j∈Nm
(k)

]]
, A

)
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By convexity of J(·) we have

J (x(k),Uq(k), A) ≤
m

∑
l=1

αl J
(

x(k), Ũq
j∈Nl

(k),Uq−1
j∈I−Nl

(k), A
)

(30)

and from Algorithm 1 we know that

J
(

x(k), Ũq
j∈Nl

(k),Uq−1
j∈I−Nl

(k), A
)
≤ J

(
x(k),Uq−1(k), A

)
,

then

J (x(k),Uq(k), A) ≤ J
(

x(k), Ũq
j∈Nl

(k),Uq−1
j∈I−Nl

(k), A
)
≤ J

(
x(k),Uq−1(k), A

)
. (31)

Subtracting the cost functions at q− 1 and q we obtain

ΔJ
(

x(k),Uq−1(k), A
)
≤ −ΔUq−1

j∈Nl
(k)T R ΔUq−1

j∈Nl
(k).

This shows that the sequence of cost
{

Jq
l (k)

}
is non-increasing and the cost is bounded below

by zero and thus has a non-negative limit. Therefore as q → ∞ the difference of cost ΔJq(k) →
0 such that the Jq(k) → J∗(k). Because R > 0, as ΔJq(k) → 0 the updates of the inputs
ΔUq−1(k) → 0 as q → ∞, and the solution of the optimisation problem Uq(k) converges to a
solution Ū(k). Depending on the cost function employed by the distributed controllers, Ū(k)
can converge to U∗(k) (see Section 3.1).

B. Proof of Theorem 1

Proof. First it is shown that the input and the true plant state converge to the origin, and then
it will be shown that the origin is an stable equilibrium point for the closed-loop system. The
combination of convergence and stability gives asymptotic stability.
Convergence. Convergence of the state and input to the origin can be established by showing
that the sequence of cost values is non-increasing.
Showing stability of the closed-loop system follows standard arguments for the most part
Mayne et al. (2000), Primbs & Nevistic (2000). In the following, we describe only the most
important part for brevity, which considers the nonincreasing property of the value function.
The proof in this section is closely related to the stability proof of the FC-MPC method in
Venkat et al. (2008).
Let q(k) and q(k+ 1) stand for iteration number ofAlgorithm 1 at time k and k+ 1 respectively.
Let J(k) = J (x(k),U(k), A) and J(k + 1) = J (x(k + 1),U(k + 1), A) denote the cost value
associated with the final combined solution at time k and k + 1. At time k + 1, let Jl(k +

1) = J
(

x(k + 1),Uq
j∈Nl

(k),Uq−1
j∈I−Nl

(k), A
)
denote the global cost associated with solution of

subsystem l at iterate q.
The global cost function J (x(k),U(k)) can be used as a Lyapunov function of the system, and
its non-increasing property can be shown following the chain

J (x(k + 1),U(k + 1), A) ≤ · · · ≤ J (x(k + 1),Uq(k + 1), A) ≤ · · ·
· · · ≤ J

(
x(k + 1),U1(k + 1), A

)
≤ J (x(k),U(k), A)− x(k)T Qx(k)− u(k)TRu(k)
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The inequality J (x(k + 1),Uq(k + 1), A) ≤ J
(

x(k + 1),Uq−1+(k + 1), A
)
is consequence of

Lemma 1. Using this inequality we can trace back to q = 1

J (x(k + 1),U(k + 1), A) ≤ · · · ≤ J (x(k + 1),Uq(k + 1), A) ≤ · · ·
· · · ≤ J

(
x(k + 1),U1(k + 1), A

)
.

At time step q = 1, we can recall the initial feasible solution U0(k + 1). At this iteration,
the distributed MPC optimizes the cost function with respect the local variables starting from
U0(k + 1), therefore ∀l = 1, . . . ,m

J
(

x(k + 1),U1
j∈Nl

(k),U0
j∈I−Nl

(k), A
)
≤ J

(
x(k + 1),U0(k), A

)

≤
∞

∑
i=1

x(k + i, kT Qx(k + i, k) + u(k + i, k)TRu(k + i, k)

≤ J (x(k),U(k), A)− x(k)T Qx(k)− u(k)TRu(k)

Due to the convexity of J and the convex combination up date (Step 2.c of Algorithm 1), we
obtain

J
(

x(k),U1(k), A
)
≤

m

∑
l=1

αl J
(

x(k + 1),U1
j∈Nl

(k),U0
j∈I−Nl

(k), A
)

(32)

then,

J
(

x(k),U1(k), A
)
≤

m

∑
l=1

αl

[
J (x(k),U(k), A)− x(k)T Qx(k)− u(k)TRu(k)

]
,

≤ J (x(k),U(k), A)− x(k)T Qx(k)− u(k)T Ru(k).

Subtracting J∗(k) from J∗(k + 1)

J∗(k + 1)− J∗(k) ≤ −x(k)T Qx(k)− u(k)TRu(k) ∀k. (33)

This shows that the sequence of optimal cost values {J∗(k)} decreases along closed-loop
trajectories of the system. The cost is bounded below by zero and thus has a non–negative
limit. Therefore as k → ∞ the difference of optimal cost ΔJ∗(k + 1) → 0. Because Q and R
are positive definite, as ΔJ∗(k + 1) → 0 the states and the inputs must converge to the origin
x(k) → 0 and u(k)→ 0 as k → ∞.
Stability. Using the QP form of (6), the feasible cost at time k = 0 can be written as follows
J(0) = x(0)T Q̄x(0), where Q̄ is the solution of the Lyapunov function for dynamic matrix
Q̄ = ATQA + Q.
From equation (33) it is clear that the sequence of optimal costs {J∗(k)} is non-increasing,
which implies J∗(k) ≤ J∗(0) ∀k > 0. From the definition of the cost function it follows that
xT(k)Qx(k) ≤ J∗(k) ∀k, which implies

xT(k)Qx(k) ≤ x(0)T Q̄x(0) ∀k.

Since Q and Q̄ are positive definite it follows that

‖x(k)‖ ≤ γ ‖x(0)‖ ∀k > 0
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where

γ =

√
λmax(Q̄)

λmin(Q)
.

Thus, the closed-loop is stable. The combination of convergence and stability implies that the
origin is asymptotically stable equilibrium point of the closed-loop system.

C. Proof of Theorem 2

Proof. The optimal solution of the distributed control system with communications faults is
given by

Ũ(k) = (I −K0RCT )−1K1RCT Γx(k). (34)

Using the matrix decomposition technique, it gives

(I −K0RCT )−1 = (I −K0)
−1

(
2I −

[
I + (I −K0)

−1

(I +K0 − 2K0RCT )]−1
)
+ (I −K0)

−1

In general (I −K0)
−1 and (I +K0 − 2K0RCT )−1 all exist, therefore the above equation

holds. Now, from (34) we have K1Γx(k) = (I −K0)U(k), then Ũ(k) can be written as a
function of the optimal solution U(k) as follows

Ũ(k) = (S + I)U(k)

where S = 2I −
[

I + (I −K0)
−1 (I +K0 − 2K0RCT )

]−1
.

The cost function of the system free of communication faults J∗ can be written as function of
U(k) as follows

J∗ =
∥∥∥K−11 (I −K0)U(k)−HU(k)

∥∥∥2
Q
+ ‖U(k)‖2R = ‖U(k)‖2F (35)

where

F =
(
K−11 (I −K0)−H

)T
Q
(
K−11 (I −K0)−H

)
+ R.

In the case of the system with communication failures we have

J̃ ≤ J∗ + ‖U(k)‖2W (36)

where W = ST (
HTQH+ R

)
S . Finally, the effect of communication can be related with J∗

through

‖U(k)‖2W ≤ ‖W‖
λmin(F )

J∗ , (37)

where λmin denotes the minimal eigenvalue ofF . From the above derivations, the relationship
between J̃ and J∗ is given by

J̃ ≤
(
1+

‖W‖
λmin(F )

)
J∗ . (38)

and the degradation is
J̃ − J∗

J∗
≤ ‖W‖

λmin(F )
. (39)
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Inspection of (36) shows that ‖W‖ depends on R and T . So in case of all communication
failures existed, ‖W‖ can arrive at the maximal value

Wmax =

(
2I −

[
I + (I −K0)

−1 (I +K0)
]−1)T (

HTQH+ R
)

(
2I −

[
I + (I −K0)

−1 (I +K0)
]−1)

,

and the upper bound of performance deviation is

J̃ − J∗

J∗
≤ ‖Wmax‖

λmin(F )
. (40)
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