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Abstract

The facilitation mechanism maintains ecosystem richness by increasing seedling recruit-

ment. Overgrazed grasslands of northwestern Patagonia are invaded by shrubs that could

promote the seedling recruitment of forage species. We investigated the role of Acaena

splendens shrubs on the maintenance of diversity and its usefulness as a nurse shrub in the

recruitment of Festuca pallescens, a grass of high forage value present with a low cover in

degraded grasslands. To test the performance of A.splendens as a nurse plant in non-

degraded grassland, we recorded the species richness four years inside of A. splendens

senescent shrubs and in gaps among dominant tussock grasses. Species were grouped in

four functional groups: annual and biannual herbs and grasses, perennial herbs, perennial

grasses and shrubs. To test the usefulness of A. splendens in the restoration of degraded

grassland, we monitored the seedling emergence and survival of F. pallescens inside A.

splendens and in gaps. We related seedling survival to meteorological and microenviron-

mental conditions. Species richness was higher in Acaena nurse plants than in gaps. The

frequency of functional groups, with exception of annual and biannual herbs and grasses,

were higher in Acaena than in gaps. Seedling emergence and survival of F. pallescens were

higher in Acaena, but the seedlings died in summer in both microsites. Mean maximum tem-

perature was higher and mean minimum humidity lower in gaps than in Acaena during

spring. However, the spring-summer season in which we monitored F. pallescens survival,

was exceptionally dry and hot, affecting the survival of F. pallescens seedlings. Our results

show that A. splendens act as a nurse species increasing the richness in the non-degraded

grassland and facilitating the seedling recruitment of an important forage species in the

degraded grassland. Nevertheless, the facilitation mechanism will fail in drought conditions,

indicating that this restoration tool is limited by climate.

Introduction

Seedlings represent a critical stage of plant life cycles [1, 2], driving plant population dynamics

[3]. Seedling recruitment depends on seed presence and the availability of microsites (safe

sites, sensu [4]) that provide suitable conditions for seed germination and seedling establish-

ment. These conditions include adequate temperature, light, soil moisture, and protection
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from herbivory [3]. Adult plants can provide safe sites where more vulnerable species can

become established and grow [5]. This positive plant-plant interaction, called “nurse plant syn-

drome” sensu [6], is particularly common in harsh environments [7, 8].

The canopy of a nurse plant moderates high temperatures by decreasing the amount of

radiation that reaches protected plants. As a consequence, air and soil temperature are lower,

and soil water content may be is higher than in nearby bare areas [5]. Nurse plants also

improve soil resources through litter accumulation [9, 5]. The resulting reduction in environ-

mental stress accelerates the natural recovery of disturbed areas [10], and for this reason, the

interest in using nurse plants as a tool in the passive restoration of degraded habitats has

increased over the past two decades [11, 12].

The relationship between facilitation and competition is modulated by environmental con-

ditions [13]. In arid and semiarid environments the facilitative effects of nurse plants on the

establishment of other species can diminish or even collapse under an infrequent stress, such

as an extreme drought occurring during growing season [14, 15]. In these circumstances water

deficit promotes competition between plants, weakening the facilitation effects [16]. Under-

standing the relationships between water availability and plant-plant interactions in arid and

semiarid regions will provide useful information for the implementation of restoration

programs.

Biodiversity is essential to the functioning of natural ecosystems, as it has a strong influence

on ecosystems in terms of nutrient cycling, productivity and resistance to invasion [17]. Identi-

fying the processes that maintain biodiversity is a big challenge in community ecology [18].

Classical studies on this issue focused on negative interactions, such as competition, as regula-

tors of biological diversity [19], but more recent studies have considered the importance of

positive plant-plant interactions, such as the nurse effect [20, 21]. Nurse plants can increase

species richness, improving local environmental conditions and enhancing species coexistence

[22, 23]. However, some authors have not recorded any increase in species richness in associa-

tion with nurse plants [24, 25].

Semiarid extra-Andean grasslands are dominated by Festuca pallescens (St. Ives) Parodi and

Pappostipa speciosa (Trin & Rupr.) Romasch and are the most productive of northern Patago-

nia (Argentina). Since the early 1900s these species have been used for livestock breeding with-

out taking sustainability into account [26]. When confined to fenced areas, livestock impose

greater harvesting pressure on vegetation than native herbivores, promoting desertification

[27]. Overgrazing causes a decrease in nutrients and an increase in erosion and soil compac-

tion, affecting the availability of safe sites [28]. In Patagonia, overgrazing works in negative

synergy with water stress [27]. Livestock management, such as cattle exclusion or restriction, is

usually ineffective in severely grazed areas since the degraded grasslands have reached an

undesirable steady state [29, 30]. When the threshold between healthy and degraded grassland

is crossed, vegetation cover declines rapidly, affecting ecosystem multi-functionality [29].

Degraded ranches become economically unsustainable, and in many cases are even

abandoned.

Festuca pallescens is a Patagonian cool-season grass with high forage value, and its recruit-

ment is dependent on autumn and spring rains [31, 32]. Livestock grazing reduces F. pallescens
cover, diminishing the forage quality of grassland [26] and promoting the advance of shrubs

[33].

Acaena splendens Hook et. Arn (Rosaceae) is a native, unpalatable dwarf shrub present in

Argentina and Chile [34], where it frequently colonizes sandy soils and degraded areas [35]; its

abundance is generally related to overgrazing [33]. Acaena splendens reproduces only by

thorny achenes, principally dispersed by animals [36]. Plants are 40–60 cm high and short-

lived (approximately 20 years) [34]. The compact canopy of A. splendens dies centrifugally
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(from the center to the edge), producing an internal area that is colonized by seedlings of the

same and other species [37]. The seedlings of the same species begin a self-replacement cycle

also documented in Calluna vulgaris [38] and Richea acerosa [39], whereas the seedling

recruitment of other species could maintain or increase grassland diversity.

The aim of this work was to study the facilitation performance of A. splendens with respect

to the promotion of grassland diversity, and its usefulness in the restoration of degraded areas.

We monitored species richness, seedling recruitment and seedling survival for seven years in

two microsites: senescent plants of A. splendens and gaps among the dominant tussock grasses.

To explain the facilitation mechanism, the soil and microclimatic variables were analyzed in

both microsites and the effect of seasonal precipitation on seedling recruitment was inter-

preted. To test the performance of A. splendens as a nurse plant for F. pallescens, seeds of this

species were sown in senescent plants of A. splendens and in adjacent bare soil, and F. palles-
cens seedling survival was monitored. We hypothesized that A. splendens: increases grassland

diversity, propitiates self-replacement, and improves F. pallescens recruitment.

Materials and methods

Study site

The grasslands where we carried out the study are located in northwestern Patagonia (San

Ramón Ranch, 41˚03´19´´S and 18˚01´50´´W, Argentina). The climate regime is of Mediter-

ranean type, with 60% of the precipitation accumulating in autumn-winter [40]. Mean annual

precipitation is 582 mm and mean annual temperature is 9˚C (San Ramón Ranch Meteorolog-

ical Station 1929–2017, unpublished data). Strong west-northwestern winds blow throughout

the year, accentuating water stress [41]. Soils are Haploxerolls characterized by sandy loam tex-

ture and moderate organic matter content [42].

The vegetation is dominated by F. pallescens and Pappostipa speciosa tussock grasses, the

former being preferred by livestock [43]. Acaena splendens (Rosaceae) shrubs are present in

different proportions depending on the grassland degradation. The study area includes grass-

land in healthy condition (henceforth “non-degraded grassland”) with a total vegetation cover

of 73%, of which 5% is A. splendens, and overgrazed grassland (henceforth “degraded grass-

land”) with a total vegetation cover of 47%, of which 30% is A. splendens cover.

Sampling design

The species richness of the non-degraded grassland has been recorded in the context of a long-

term monitoring project (1999–2018, unpublished data). In this grassland, in November 1999

we selected 10 senescent plants (henceforth “Acaena-ND”), and 18 areas of gaps with herba-

ceous species and seedlings of shrubs and tussock grasses, each measuring 1 ± 0.3 m2 (hence-

forth “Gap-ND”). Both microsites were used to test the facilitation performance of A.

splendens shrubs on species richness. Acaena splendens senescent plants maintain a live ring

that defines an inner area of 1± 0.4 m2. Fortunately, the dead A. splendens areas and the areas

of gaps are similar in size, allowing comparison of species richness. We recorded the seedlings

of all species in both microsites in November (spring) of 1999, 2000, 2001 and 2005. Acaena
splendens establishment was monitored in November of 1999, 2000, 2001, 2005 and 2006,

whereas A. splendens seedling mortality was recorded in February-April (late summer and fall)

of 2002, 2003, 2004, and 2005.

In the degraded grassland, in January 2015 (summer), we labeled 20 senescent A. splendens
plants, called “Acaena-D”, and 20 gaps microsites called “Gap-D”. We harvested F. pallescens
seeds from populations near the degraded areas to conserve the gene pool. Seeds with a healthy

appearance were selected using the pressure method [44]. In April 2015 (fall) we gathered 20

Facilitation in semiarid grasslands

PLOS ONE | https://doi.org/10.1371/journal.pone.0212058 February 7, 2019 3 / 17

https://doi.org/10.1371/journal.pone.0212058


soil samples from each microsite (20 cm in diameter and 5 cm in depth). The soil samples

were sieved to remove any F. pallescens seeds and were carried again to the microsites where

samples had been collected. We sowed 40 F. pallescens seeds at 1 cm depth in each microsite,

and excluded herbivory by exotic hares and native rodents by means of wire enclosures. We

recorded seed germination and monitored and counted the leaves on tagged seedlings in May,

September and December 2015, and April 2016.

To determine and compare microclimate conditions we recorded temperature (˚C) and rel-

ative humidity (%) every hour, from September to December 2015 (spring) with dataloggers

(Cavadevices) in both microsites. Each datalogger had two sensors: one to record temperature

and one to record relative humidity.

To characterize and compare the soil nutrients we collected 10 soil samples of 5 cm depth

(500 mg each) in each microsite in April 2016. Soil samples were stove dried at 105˚C until

constant weight and stored in a desiccator. Total soil C and N content was determined with a

CN analyzer, with combustion at 900˚C (Flash EA 1112 Series Thermo Electron Corporation).

Data analysis

We analyzed the data with non-parametric tests since the data violated normality and homo-

scedasticity assumptions, even after logarithmic (x+1), square root, or arcsine transformations.

Species richness for the non-degraded grassland was calculated from the data collected dur-

ing the long-term monitoring project (1999–2018, unpublished data). In the same grassland

we calculated the number of species present in Acaena-ND and Gap-ND microsites for each

year (microsite species richness). We compared richness between Acaena-ND and Gap-ND

microsites using the non-parametric Mann-Whitney test. Richness and A. splendens seedling

recruitment at each microsite were compared between years using non-parametric Friedman

Anova analysis, and a posteriori pairwise comparisons were made with the Wilcoxon test.

Species in Acaena-ND and Gap-ND microsites were grouped into four functional groups:

annual grasses and annual and biannual herbs, perennial herbs, perennial grasses, and shrubs.

We calculated the mean frequency of species of each functional group for each microsite and

year. Mean frequency of functional groups was compared for the same microsite using the

non-parametric Kruskal-Wallis test, and between microsites using the Mann-Whitney test. A

posteriori p-value adjustment was applied with the Bonferroni test.

We compared the F. pallescens seedling number between Acaena-D and Gap-D microsites

for each sampling date with the non-parametric Wilcoxon test.

We compared the mean daily temperature and humidity (calculated from the daily records)

among September, October, November, and December. The replications of each variable were

30 or 31 depending on the number of days of the month. The daily temperature and air

humidity data for both microsites in the degraded grassland were used to calculate mean maxi-

mum monthly temperature, and mean minimum monthly humidity percentage. We used t-

tests to compare these data after they were transformed (log 10) to achieve normality and

homocedasticity. To calculate the frequency of maximum temperature and minimum humid-

ity we used five class intervals for temperature (0-10C˚; 10-20C˚; 20–30˚C; 30–40˚C; and 40–

50˚C) and seven class intervals for humidity (0–10%; 10–20%; 20–30%; 30–40%; 40–50%; 50–

70%; 70–100%). We used chi-squared analysis to assess whether the frequencies of maximum

temperature and minimum relative humidity values were similar for Acaena-D and Gap-D

microsites in each month.

We used a t-test for one sample to compare values of accumulated precipitation and mean

temperature with mean historical values of precipitation (1928–2016) and temperature (1970–

2016) (San Ramón ranch meteorological station 1929–2016, L. Ghermandi unpublished data)
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in order to relate weather conditions to: 1- the richness of Acaena-ND and Gap-ND microsites

(1999, 2000, 2001 and 2005) in the non-degraded grassland, 2- seedling recruitment of A.

splendens in the non-degraded grassland (1999, 2000, 2001, 2005 and 2006), and 3- seedling

recruitment of F. pallescens in the degraded grassland (2015 and 2016).

Results

Meteorological conditions

The springs of 1999 and 2001 were dry (1999: t87 = 6.99, P< 0.001; 2001: t87 = 10.52, P<
0.001) and hot (1999: t47 = -14.97, P< 0.001; 2001: t47 = -6.01, P< 0.001), whereas the springs

of 2000 and 2005 were wet (2000: t87 = -10.18, P< 0.001; 2005: t87 = -3.4, P = 0.001) (Table 1).

Precipitation in August 1999 was over twice the historical value (t87 = -21.13, P = 0.001) and

the temperature was also higher than the historical value (t47 = 7.2, P< 0.001) (Table 1). In

August 2005, precipitation was significantly higher than the historical value (t87 = 8.6, P<
0.001) but the temperature was lower (t47 = -3.9, P< 0.001). August 2000 and 2001 were hotter

than the historical value (t47 = -7.8, P< 0.001) and were dry (2000: t87 = -5.17, P< 0.001; 2001:

t87 = 9.13, P< 0.001) (Table 1).

The spring-summer 2015–2016 seasons were dry (Fig 1). Accumulated precipitation during

this period was 77% lower than the historical value (47 mm. vs. 171.6 mm, t87 = 17.86, P<
0.001) making this the driest period for the last 66 years (Fig 1). The spring-summer 2015–

2016 mean temperature was higher than the historical value (11.7 ± 4.6˚C vs. 11.2 ± 3.3˚C,

t47 = 5.06, P< 0.001). Mean temperatures for January, February and March (summer) were

significantly higher than historical values (Fig 1).

Table 1. Precipitation and temperature in spring (1998–2001, and 2005) and August (1999–2001, 2005 and 2006).

Comparisons between the accumulated precipitations (Pp) of spring (sep-oct-nov) and August, the mean temperature

(T) of the same periods, and the mean historical values ± SD (San Ramón ranch meterorological station, L. Ghermandi

unpublished data).

Year Pp (mm) T (˚C)

Spring

1998 <50.8��� >8.8���

1999 <54.9��� >9.9���

2000 >145.8��� <8�

2001 <36.1��� >8.9���

2005 >110.4��� <7.8���

Historical 91.9±11.6 8.2±0.5

August

1999 >181.3��� >5���

2000 <49.8��� >5.1���

2001 <30��� >5.1���

2005 >95.6��� <2.2���

2006 69.2 n.s. 3.4 n.s.

Historical 75.4±47.6 3.7±1.2

“<“indicates that the value of Pp or T is lower than the historical value whereas “>” indicates that these values are

higher than the historical value.

�P<0.05

��P<0.01

���P<0.001, ns = non significant

https://doi.org/10.1371/journal.pone.0212058.t001
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Fig 1. Precipitation and temperature in the 2015–2016 growing season. (A) Accumulated precipitation (September

2015-March 2016) and mean historical precipitation ± SD (1928–2016). (B) Mean temperature for the same period and

historical mean temperature ± SD (1970–2016) (San Ramón ranch meteorological station, L. Ghermandi unpublished data).
���P< 0.001.

https://doi.org/10.1371/journal.pone.0212058.g001
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Species richness in the non-degraded grassland

We found 34 species in the monitored non-degraded grassland, 36 in Acaena-ND and 28 in

Gap-ND microsites. Eleven of these species, including seven perennial native herbs, were

exclusive to Acaena-ND microsite (eg. Arjona tuberosa, Sysirinchium arenarium, Tristagma
patagonicum). When we compared species richness between Acaena-ND and Gap-ND micro-

sites we found nine species (six native) growing exclusively in Acaena-ND (eg. Hordeum como-
sum, Table 2).

Species richness was higher in Acaena-ND than in Gap-ND (2000: U = 12, P< 0.001; 2001:

U = 17.5, P< 0.001; 2005: U = 5, P< 0.001), with the exception of November 1999 (U = 69.5,

P = 0.32) (Fig 2). Comparing years, richness was higher in 2005 in both microsites (Acaena-

ND: χ2 = 18.8, df = 3, P<0.001, n = 10; Gap-ND: χ2 = 27, df = 3, P< 0.001, n = 18) (Fig 2).

The number of exclusive species was always higher in Acaena-ND than in Gap-ND (S1 Table).

Functional groups in the non-degraded grassland

In Acaena-ND and Gap-ND microsites the annual and biannual herbs and annual grasses

functional group (AHG) dominated in all years. The frequency of the AHG functional group

was higher in Acaena-ND than in Gap-ND in 2000 (U = 38.5, P = 0.01), and was higher than

the other functional groups in 2000 and 2005 in both microsites (Acaena-ND: χ2 = 19.21,

df = 3, P< 0.001, n = 8; Gap-ND: χ2 = 30.33, df = 3, P< 0.001, n = 18) (Fig 3). The frequency

of the PG functional group was always higher in Acaena-ND than in Gap-ND (1999: U = 30,

P< 0.001; 2000: U = 50.5, P< 0.04; 2001: U = 0.5, P< 0.001; 2005: U = 21, P = 0.001) (Fig 3).

The frequency of the PH functional group increased significantly over the years in Acaena-ND

(χ2 = 11.33, df = 3, P = 0.01, n = 10) and it was higher than Gap-ND in 2000, 2001 and 2005

(2000: U = 19, P< 0.001; 2001: U = 28.5, P = 0.002; 2005: U = 8, P< 0.001). The frequency of

the SHR functional group was higher in Acaena-ND than in Gap-ND (2000: U = 15, P<
0.001; 2001: U = 12, P< 0.001; 2005: U = 4.5, P< 0.001), and was the highest in 2005 in both

microsites (Acaena-ND: χ2 = 12; df = 3; P = 0.007, n = 10; Gap-ND: χ2 = 15.3; df = 2;

P< 0.001, n = 18). The shrub functional group was absent in Gap-ND in 1999 (Fig 3).

Acaena splendens seedling emergence in the non-degraded grassland

In the non-degraded grassland, A. splendens seedling emergence differed between years

(χ2 = 16.9; df = 4; P = 0.002, n = 10) (Fig 4). The highest number was recorded in 1999

(56.9 ± 14.8 seedling.m-2) (P<0.05) and the lowest in 2006 (0.7 ± 0.6 seedling.m-2) (P<0.05).

Emergence was similar in 2000, 2001 and 2005 (2000 vs. 2001: P< 0.06, Z = -1.83; 2000 vs.

2005: P<0.72, Z = -0.35; 2001 vs. 2005: P< 0.23, Z = -1.19). A. splendens seedling mortality

was 80% in 2000, 8% in 2001, 4% in 2002 and 2% in 2003. At the last monitoring (2006), 2.6.m-

2 seedlings survived (Fig 4).

Festuca pallescens seedling emergence in the degraded grassland

In degraded grassland in May 2015 (fall, one month after sowing), 0.75% F. pallescens seeds

germinated in Acaena-D and Gap-D microsites. In September 2015 (spring, five months after

sowing) 38.5% germinated in Acaena-D and 8% in Gap-D. Mean seedling density was signifi-

cantly higher in Acaena-D (15.7± 1.7 seedling.m-2) than in Gap-D (3.4 ± 0.9 seedling.m-2) (Z =

-3.86; P< 0.001). In both microsites, most of the seedlings had two leaves, but we found a

higher number of seedlings with two leaves in Acaena-D (82%) than in Gap-D (78%) (Z =

-3.8; P< 0.001). We found a higher percentage of seedlings with exposed radicles in Gap-D

(33%) than in Acaena-D (15%), although we did not find significant differences (Z = -0.6;
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Table 2. List of species present in the microsites and the non-degraded grassland. Species present in non-degraded grassland, in A. splendens senescent plants, and in

gaps in years 1999, 2000, 2001, and 2005.

Species Acaena Gap Grassland

Acaena pinnatifida (Rosaceae) � � �

Acaena poeppigiana (Rosaceae) � �

Acaena splendens (Rosaceae) � � �

Apera interrupta (Poaceaea) � � �

Arjona tuberosa (Schoepfiaceae) �

Boopis gracilis (Calyceraceae) � � �

Bromus tectorum (Poaceae) � � �

Camissonia dentata (Onagraceae) �

Carduus thoermeri (Asteraceae) � � �

Cerastium arvense (Caryophyllaceae) �

Collomia linearis (Polemonicaceae) � � �

Conium maculatum (Apiaceae) �

Coniza lechleri (Asteraceae) � � �

Draba verna (Brassicaceae) � � �

Ephedra chilensis (Ephedraceae) �

Epilobium paniculatum (Onagraceae) � � �

Erodium cicutarium (Geraniaceae) � � �

Euphorbia collina (Euphorbiaceae) � � �

Festuca argentina (Poacaeae) �

Festuca pallescens (Poacaeae) � � �

Galium richardianum (Rubiaceae) �

Heliotropium paronychioides (Boraginaceae) � �

Holcus lanatus (Poaceae) �

Holosteum umbellatum (Caryophyllaceae) � � �

Hordeum comosum (Poaceae) � �

Hypochaeris incana (Asteraceae) �

Lactuca serriola (Asteraceae) � �

Madia sativa (Asteraceae) �

Microsteris gracilis (Polemoniaceae) � � �

Myosotis discolor (Boraginaceae) � �

Nicotiana linearis (Solanaceae) �

Pappostipa humilis (Poaceae) �

Pappostipa speciosa (Poaceae) � � �

Plagiobothrys verrucosus (Boraginaceae) � � �

Poa lanuginosa (Poacaeae) � � �

Rhodophiala mendocina (Amaryllidaceae) � � �

Rumex acetosella (Polygonaceae) � � �

Senecio bracteolatus (Asteraceae) � � �

Sisymbrium altissimum (Brassicaceae) � � �

Sisyrinchium arenarium (Iridaceae) �

Taraxacum officinale (Asteraceae) �

Tragopogon dubius (Asteraceae) �

Tristagma patagonicum (Iridaceae) �

Triptilion achilleae (Asteraceae) � � �

Vulpia australis (Poaceae) � � �

Richness 36 28 34

�Indicates presence of the species. Species highlighted in bold are exclusive to A. splendens senescent plants.

https://doi.org/10.1371/journal.pone.0212058.t002
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P = 0.55). Seedling mortality was higher in Gap-D than in Acaena-D (97% vs. 88%, Z = -2.6;

P = 0.007) in late spring (December 2015), mean seedling density being very low in both

microsites (Acaena-D: 1.9 ± 0.6; Gap-D: 0.1 ± 0.1). In March 2016 (early fall), seedling mortal-

ity was 100% in both microsites.

Environmental variables in the degraded grassland

In the degraded grassland, the mean maximum temperature was always higher in Gap-D than

in Acaena-D (P< 0.05) (Fig 5). The highest mean maximum temperature was recorded in

December in Gap-D (39.1±5˚C). In September, in Gap-D 38.5% of the temperature records

were between 20 and 30˚C. In November 75% of the temperature records were above 30˚C in

Gap-D (30% of which were between 40 and 50˚C), and 36% in Acaena-D (3% between 40 and

50˚C) (χ2 = 74; df = 10; P< 0.001) (Fig 5, S1 Fig). In December, the temperature in Gap-D

was always above 30˚C (37% between 40 and 50˚C), whereas only 50% were above 30˚C in

Acaena-D (S1 Fig). The mean minimum humidity was always lower in Gap-D than in Acaena-

D (P< 0.05), except for September (P> 0.05). Humidity abruptly decreased in October in

both microsites and the lowest mean minimum humidity was found in December in Gap-D

(13.8 ± 3.4) (Fig 5). Humidity values for November and December were always below 50%. In

Gap-D, this decrease was remarkable, with extreme values of< 10% recorded since October.

In contrast, values< 10% were never recorded in Acaena-D (S1 Fig).

With respect to soil variables, total C, N and the C:N ratio were higher in Acaena-D than in

Gap-D (C: 1.6 ± 0.1% vs.1 ± 0.1%; t4 = -4.25, P = 0.013; N: 0.1 ± 0.01% vs. 0.07 ± 0.01%; t4 =

Fig 2. Species richness in Acaena-ND and Gap-ND microsites. Mean species richness ± SD in Acaena-ND and Gap-

ND microsites (non-degraded grassland) in November 1999–2001, and 2005. Lower-case letters indicate significant

differences between years in the same microsite. Capital letters indicate significant differences between microsites in the

same year.

https://doi.org/10.1371/journal.pone.0212058.g002
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-3.30, P = 0.030; and C:N 16.3 ± 0.6 vs. 14.6 ± 0.07; t4 = -2.50; P = 0.001, respectively). The

organic matter value was also higher in Acaena-D (2.75%) than in Gap-D (1%).

Discussion

In arid and semiarid environments plant recruitment is water limited [45], and facilitation by

nurse shrubs creates safe sites for seedling establishment. Nevertheless, facilitation fails under

extremely stressful conditions [46, 47]. We found that senescent plants of the dwarf shrub A.

splendens maintained grassland richness and facilitated the seedling recruitment of a palatable

grass in semiarid Northwestern Patagonia. We also found the threshold at which the facilita-

tion process ceases to be effective.

The presence of nurse plants in a community results in different compositions of species

growing beneath and outside nurses, and can increase species richness [21]. A. splendens
shrubs promoted the seedling recruitment of exclusive native species in the non-degraded

grassland. Some of these species (eg. Arjona tuberosa, Tristagma patagonicum) established

exclusively in Acaena microsite increasing the community richness. Also, we highlight that

species richness was always higher in Acaena, including in the 1999 dry spring that was

Fig 3. Functional groups in Acaena-ND and Gap-ND microsites. Mean frequency of species ± SD grouped in functional groups in Acaena-ND and Gap-ND

in non-degraded grassland (November 1999, 2000, 2001 and 2005). Lower-case letters indicate significant differences of each functional group between years in

the same microsite. Capital letters represent significant differences between microsites in the same year.

https://doi.org/10.1371/journal.pone.0212058.g003
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preceded by a strong La Niña event [48] suggesting that even in unfavorable conditions A.

splendens contributes to the maintenance of grassland diversity.

The A. splendens shrubs facilitated the establishment of seedlings of three functional groups

in the non-degraded grassland; perennial grasses, perennial herbs, and shrubs, all of which are

also present in gaps, but in lower proportions. In contrast, annual and biannual grass and

herbs are more stress-tolerant than the seedlings of perennial grasses and shrubs [32, 48], and

thus were found in the same proportions in both microsites. Annual and biannual grasses and

Fig 4. Acaena splendens seedling emergence and mortality. Mean seedling.m-2 of A. splendens (A) emerged from

1999 to 2006, (B) from the cohort that emerged in 1999 and was monitored until 2006. We indicated percentage

mortality on each sampling date.

https://doi.org/10.1371/journal.pone.0212058.g004
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herbs are typical gap species that complete their life cycle from autumn to spring [48]. Seed-

lings of perennial grasses and shrubs also recruit in gaps, but severe water deficit strongly affect

their survival [32]. In the case of the dominant perennial grasses recruitment is very important

as it guarantees the matrix turnover; in effect, tussock grasses are long-lived, but not eternal.

Similarly, in other Patagonian degraded grasslands [49] found higher grass seedling density

underneath shrubs than in bare soil. The A. splendens nurse plants were clearly safe sites for

the establishment of native perennial herbs (eg. Arjona tuberosa, Sisyrinchium arenarium)

which were present exclusively in this microsite. Also, A. splendens promoted the establish-

ment of other shrubs in dry years, since this functional group was absent in gaps in spring of

1999. In our study we demonstrated that facilitation not only influences grassland diversity,

but also the proportion of functional groups. Also the nurse shrub Potentilla fruticosa (grass-

land of NW China) changed the proportion of functional groups [50]. This study showed that

legumes and graminoids were more strongly facilitated than forbs, highlighting the impor-

tance of these results at community level.

Senescent A. splendens plants facilitate self-replacement. Although the species produces

seeds that are principally dispersed by zoochory because of their spiny surface, many seeds fall

and germinate inside the mother plants. Seedlings mainly recruit in the rainy season, and the

high recruitment recorded in A. splendens nurse plants was probably related to the exception-

ally late 1999 winter conditions. The August rainfall and temperature were higher than the his-

torical value plus the standard deviation (181.3 vs 75.4± 47.6 mm; 5˚C vs 3.7˚± 1.2˚C). It is

known that small variations in temperature play an important role in plant recruitment. In the

same study area and year, we recorded abundant recruitment of another two native shrubs,

Senecio bracteolatus [51] and Fabiana imbricata [52]. The drought of summer 2000 limited

Fig 5. Temperature and relative humidity in the microsites of degraded grassland. Mean maximum temperature (T) and minimum

relative humidity (H) recorded by dataloggers in Acaena-D and Gap-D microsites from September to December 2015.

https://doi.org/10.1371/journal.pone.0212058.g005
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soil water, causing high mortality of A. splendens seedlings, although it is likely that self-thin-

ning was other important factor, due to the high seedling density. Although seedling mortality

was high, 2.6 plants.m-2 survived after seven years and this density guarantees self-replacement

and rejuvenation of the A. splendens population.

Shrubs are widely used as nurse plants in restoration programs [10, 46]. We evaluated

whether an unpalatable shrub can facilitate a grass with high forage value in the degraded

grassland. The abundant presence of the palatable F. pallescens is required since ranch manag-

ers in Northwestern Patagonia use the grassland for stockbreeding, without the addition of

extra forage. In our study the A. splendens nurse plants facilitated F. pallescens seedling recruit-

ment by reducing physical stress and increasing nutrients in the degraded grassland. For

instance, the temperature in Acaena-D was 10˚C lower than Gap-D (with a maximum differ-

ence of 24˚C) during the critical spring-summer months. Plant canopies can buffer daily tem-

perature fluctuations and can intercept and condense water from the air [53]. This effect

favors seed imbibition and germination, and increases seedling survival [54].

Air humidity decreased rapidly from October to December in both microsites following the

rainfall pattern, but the driest days were more frequent in gaps. Although we did not measure

soil moisture, we observed moister soil in A. splendens shrubs during monitoring. Experiments

using isotope analysis have shown that woody plants can transport water from deep soil layers

to the surface at night (hydraulic lift) [55]. Artemisia tridentata improves the soil moisture of

neighboring plants through this process [56] and it is possible that the soil near A. splendens
plants was moister due to the same mechanism. Another factor that contributes to increasing

soil moisture near the nurse plants is the amount of organic matter, which retains more water

than sandy soil [25].

Organic matter influences soil-water relations by increasing soil aggregation and water-

holding capacity [25]. The soils in our study area are Haploxerolls with a surface layer (mollic

epipedon) containing 2% organic matter [42]. In A. splendens nurse plants we found more

organic matter (2.7%) than in the Gaps, confirming that this shrub improves soil fertility [57].

In semiarid environments, C availability is important, as a low percentage of C limits microbial

activity. The estimated C:N ratios (14 in Acaena-D and 16 in Gap-D) are considered values

that allow N mineralization and availability [57, 58].

The expansion and contraction of soil caused by freezing exposes and breaks seedling roots,

causing seedling death [59]. Depth of frost penetration is usually greater in sandy soils like Pat-

agonian steppe soil [25]. In Patagonian grasslands, the emergence of F. pallescens seedlings in

months of highest frequency of frost heaving negatively influenced recruitment in gaps [32].

In our study, A. splendens nurse plants organic matter moderates soil temperature, which

decreases the severity of frost heaving protecting F. pallescens seedlings.

Festuca pallescens recruited easily but suffered high mortality in late summer. The high

seedling mortality was probably due to the unusually dry and hot spring, which was the driest

for 66 years, with precipitations of 20 mm, 93 mm lower than the historic value. In the non-

degraded grassland, where the vegetation cover has been monitored in fixed plots since 1999,

the 2015 cover was significantly lower than in the previous 16 years (L. Ghermandi unpub-

lished data). Other study showed that summer drought caused seedling mortality of F. palles-
cens [34]. In Patagonian grassland located in the Chubut Province, F. pallescens became

successfully established exclusively in wet summers [32, 60]. Our findings showed that the A.

splendens facilitation of F. pallescens recruitment collapsed under extreme water stress condi-

tions. Similarly, in other study tussocks facilitated seedling establishment of herbaceous spe-

cies, but the effect declined in extreme drought [14]. In this circumstance, water availability

becomes more important than nurse protection, and there is a switch from facilitation to com-

petition [61]. These results reinforce the idea that plant-plant interactions are primarily
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mediated by plant effects on micro-environmental stress and resource availability, but are ulti-

mately controlled by external factors [62]. However, we consider important to remark that A.

splendens microsites provided better conditions for the establishment and survival of F. pallesc-
cens seedlings until December (late spring) than gaps despite the adverse climatic conditions.

The abundance of A. splendens is high in overgrazed sites. However our results provide evi-

dences of the facilitation of F. pallescens by senescent plants of Acaena splendens. The A. splen-
dens plants are advantaged compared to others nurse plants due to the progressive loss of

competitivity [63]. When they are dying contribute with organic matter to soil. At the commu-

nity level this implies a beneficial replacement of species, from an undesirable shrub to eco-

nomically important species. However, the employment of A. splendens as nurse plants in

restoration programs probably must be accompanied by the exclusion of livestock the first

years until the forage grasses reach sexual maturity. Further, given that in arid and semiarid

environments precipitations are very variable in time [64], probably during the first years after

sowing the rainfalls must be observed and, eventually, they must be complemented with irriga-

tion pulses to facilitate the grasses recruitment. In this respect, mores studies are needed.

Further research should investigate ways to overcome water limitation in the restoration

programs. Ecophysiology studies should identify water-stress tolerant species to facilitate their

re-introduction, thus improving grassland productivity. Restoration researchers should test

other techniques, such as seedling and adult planting, or the utilization of hydrogel in planting

to improve the water status of seedlings. These techniques have given good results in the arid

Monte, a shrubby environment of Patagonia [65].

Woody plants are often seen as indicators of land degradation, whereas they provide a

benign microclimate that facilitates the regeneration and growth of their own offspring as well

as other plants [66]. Future research could continue to explore the importance of shrubs as

nurse plants in the regulation of diversity in grassland communities, an aspect especially

important in the conservation and functioning of these vulnerable ecosystems.
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