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Abstract A globally convergent algorithm based on the stabilized sequential
quadratic programming (sSQP) method is presented in order to solve optimization
problems with equality constraints and bounds. This formulation has attractive fea-
tures in the sense that constraint qualifications are not needed at all. In contrast with
classic globalization strategies for Newton-like methods, we do not make use of
merit functions. Our scheme is based on performing corrections on the solutions of
the subproblems by using an inexact restoration procedure. The presented method is
well defined and any accumulation point of the generated primal sequence is either a
Karush-Kuhn-Tucker point or a stationary (maybe feasible) point of the problem of
minimizing the infeasibility. Also, under suitable hypotheses, the sequence generated
by the algorithm converges Q-linearly. Numerical experiments are given to confirm
theoretical results.
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1 Introduction

Given f : R
n → R and h : R

n → R
m twice continuously differentiable, we want to

solve the following constrained nonlinear program,

minimize f (x)

subject to h(x) = 0, x ∈ Ω,
(1)

where Ω = {x ∈ R
n | a ≤ x ≤ b} with a, b ∈ R

n. The natural residual σ : R
n ×

R
m → R associated to problem (1) is given by

σ(x,λ) =
∥
∥
∥
∥

[

ΠΩ(x − ∂L
∂x

(x,λ)) − x

h(x)

]∥
∥
∥
∥

, (2)

where ΠΩ denotes the orthogonal projection onto Ω and L : R
n × R

m → R denotes
the Lagrangian function of problem (1), i.e., L(x,λ) = f (x) + 〈λ,h(x)〉. Thus, x is
a stationary point of problem (1) with associated Lagrange multipliers λ if and only
if σ(x,λ) = 0.

In order to solve (1), we propose to use the stabilized sequential quadratic pro-
gramming (sSQP) method with a suitable strategy to force its global convergence.
Recall that at a given primal-dual iterate (xk, λk) ∈ R

n × R
m, a quasi-Newton sSQP

subproblem has the form

minimize
(x,λ)

〈∇f (xk), x − xk
〉 + 1

2

〈

Qk(x − xk), x − xk
〉 + 1

2ρk

‖λ‖2

subject to h(xk) + ∇h(xk)	(x − xk) − 1

ρk

(λ − λk) = 0, x ∈ Ω,

(3)

where ρk > 0 is a penalty parameter and Qk ∈ R
n×n is an approximation to the Hes-

sian of the Lagrangian of the problem (1).
The sSQP method was studied by Wright [33–35] to deal with optimization prob-

lems with degenerate constraints. This method is known to be locally convergent with
quadratic/superlinear rate near any solution with associated Lagrange multipliers sat-
isfying the second-order sufficient condition (SOSC), even in those cases where no
constraint qualifications are satisfied at this solution (see [16, 17, 20]). For equality
constrained problems, local convergence has recently been studied in [22] for so-
lutions with noncritical Lagrange multipliers (weaker than SOSC) and without any
constraint qualification assumptions. A quasi-Newton strategy was studied in [15],
showing that the classical BFGS update can be used to generate a locally superlinear
convergent primal-dual sequence.

Before introducing the globally convergent method, we shall explain the mathe-
matical concepts that it involves. To this end, for λk ∈ R

m and ρk > 0 fixed, we define
the following auxiliary functions

Fk(x,λ) = f (x) + 1

2ρk

‖λ‖2, (4)

Hk(x,λ) = h(x) − 1

ρk

(

λ − λk
)

, (5)
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An inexact restoration strategy for the globalization 597

and for each x ∈ R
n we consider the point

Y k(x) = (

x,λk + ρkh(x)
)

. (6)

Note that with this choice we have Hk(Y
k(x)) = 0 for all x ∈ R

n. Also, after some
algebraics it can be shown that for Y k = Y k(xk) and Y = (x,λ) the problem

minimize
Y

〈∇Fk

(

Y k
)

, Y − Y k
〉 + 1

2

〈[
Qk 0
0 1

ρk
I

]
(

Y − Y k
)

, Y − Y k

〉

subject to ∇Hk

(

Y k
)	(

Y − Y k
) = 0, Y ∈ Ω × R

m.

(7)

is equivalent to the problem (3). Therefore, the k-th quasi-Newton sSQP subprob-
lem (3) associated to the problem (1) is the same as a quasi-Newton SQP subproblem
(7) associated to the problem

minimize
Y

Fk(Y )

subject to Hk(Y ) = 0, Y ∈ Ω × R
m.

(8)

Thus, local convergence of the sSQP method is obtained by solving the approximate
problem (7) instead of the subproblem (8). It is a well known fact [16, 20] that near
to a primal-dual pair satisfying SOSC the local quadratic convergence is obtained
solving just the quadratic problem (3) (or problem (7)). When the current iterate
(xk, λk) is far from a primal-dual pair satisfying SOSC, it is not clear why a single
quadratic problem is enough. Therefore, we propose to solve problem (8) by using
inexact restoration ideas.

Inexact restoration (IR) methods were introduced in [26] and modified in
[6, 18, 25]. A survey on this subject can be found in [27]. The advantage of using
these methods to solve problem (8) is the fact that a feasible point is always known
since Hk(Y

k(x)) = 0 for all x (avoiding one of the phases of each iteration) and that
subproblem (7) provides a suitable tangent direction that satisfies sufficient condi-
tions for convergence, according to [18].

In this paper we develop a hybrid method that combines two well known strate-
gies taking advantage of their individual features. On one hand, we have feasibility
and good local behavior of the sSQP method. On the other hand, we obtain global
convergence by updating the penalty parameter in the same way as the penalty pa-
rameter is updated in augmented Lagrangian methods. Moreover, the IR scheme is
computationally attractive, in the sense that the restoration phase is straightforward,
and therefore we need to solve only linearly constrained quadratic problems to obtain
the inexact solution of the subproblem.

The paper is structured as follows. In Sect. 2 the last results on IR methods are
summarized. The proposed algorithm and its well-definition is described in Sect. 3.
The main result, global convergence of the sequence generated by the algorithm, is
presented in Sect. 4. Local convergence and penalty boundedness results are treated
in Sect. 5. Section 6 is devoted to numerical experiments and conclusions are given
in Sect. 7.

In what follows we describe our notation. We use 〈·, ·〉 to denote the Euclidean
inner product and ‖ · ‖ its associated norm. When in matrix notation, vectors are
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598 D. Fernández et al.

considered columns. We denote by I the identity matrix and by e the vector of ones
(the dimension is always clear from the context). For a function g : R

n → R, ∇g is
a column vector where the i-th component is ∂g

∂xi
. For a function G : R

n → R
m, ∇G

is a n × m matrix where the i, j component is
∂Gj

∂xi
. The normal cone to a set Ω at

x is defined by NΩ(x) = {v ∈ R
m | 〈v, y − x〉 ≤ 0 ∀y ∈ Ω} if x ∈ Ω , or NΩ(x) = ∅

otherwise.

2 IR methods

Each iteration of IR methods is divided in two phases: restoration and minimization.
In the restoration phase, given an iterate Xk , an intermediate point Y k is computed
(called restored point) in order to improve feasibility without deteriorating the objec-
tive function value. A merit function is defined combining feasibility and optimality,
including a penalty parameter that changes between different iterations. In the mini-
mization phase a line search is performed to the merit function along a direction Dk

belonging to the first order feasible direction set at Y k .
In order to solve the problem

minimize F(x)

subject to H(x) = 0, x ∈ W ,
(9)

where W is a convex and compact set, we describe the Fischer-Friedlander IR model
algorithm:

Algorithm 1 (Fischer-Friedlander model algorithm) Let r ∈ (0,1), β , η, η̄, τ be
fixed.

Step 0: Initialization
Choose X0 ∈ W and θ0 ∈ (0,1). Set j = 0.

Step 1: Inexact restoration
Compute Y j ∈ W such that:

∥
∥H

(

Y j
)∥
∥ ≤ r

∥
∥H

(

Xj
)∥
∥, (10)

F
(

Y j
) ≤ F

(

Xj
) + β

∥
∥H

(

Xj
)∥
∥. (11)

Step 2: Search direction
Compute Dj ∈ R

n such that Y j + Dj ∈ W and

F
(

Y j + tDj
) ≤ F

(

Y j
) − ηt

∥
∥Dj

∥
∥

2
, (12)

∥
∥H

(

Y j + tDj
)∥
∥ ≤ ∥

∥H
(

Y j
)∥
∥ + η̄t2

∥
∥Dj

∥
∥

2
, (13)

holds for all t ∈ [0, τ ].
Step 3: Penalty parameter

Determine θj+1 ∈ {2−iθj : i ∈ N ∪ {0}} as large as possible such that:

φ
(

Y j , θj+1
) − φ

(

Xj , θj+1
) ≤ (r − 1)

2

(∥
∥H

(

Xj
)∥
∥ − ∥

∥H
(

Y j
)∥
∥
)

, (14)
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An inexact restoration strategy for the globalization 599

where φ(X, θ) = θF (X) + (1 − θ)‖H(X)‖ is a merit function.
Step 4: Line search

Determine tj ∈ {2−i : i ∈ N ∪ {0}} as large as possible such that:

φ
(

Y j + tjD
j , θj+1

) − φ
(

Xj , θj+1
) ≤ (r − 1)

2

(∥
∥H

(

Xj
)∥
∥ − ∥

∥H
(

Y j
)∥
∥
)

. (15)

Step 5: Update
Set Xj+1 = Y j + tjD

j and j = j + 1. Go to Step 1.

The main result in [18] is that any sequence of search directions generated by
Algorithm 1 tends to zero.

Theorem 1 [18, Theorem 2] Suppose that Step 1 of Algorithm 1 is well defined.
Then,

lim
j→∞Dj = 0. (16)

3 Description of the algorithm

We begin this section by introducing the proposed algorithm.

Algorithm 2 Let γ ∈ (0,1), r ∈ (0,1), ε > 0, {εk} with εk ↘ 0 and αL, αU > 0. For
a current parameter ρk we call

Πk(x,λ) = (

x,max
{−αL

√
ρke,min{λ,αU

√
ρke}

})

. (17)

Step 0: Initialization
Choose X0 = (x0, λ0) ∈ Ω ×R

m an arbitrary initial approximation, ρ0 > 0 an initial
parameter, ψ−1 = σ(X0) and k = 0.

Step 1: Stopping criterion
If the condition

σ
(

Xk
) ≤ ε (18)

is satisfied, terminate the execution of the algorithm, declaring that the residual is
less than the tolerance ε.

Step 2: Solve subproblem

Step 2.0: Set Xk,0 = (xk,0, λk,0) = (xk, λk), θ0 ∈ (0,1), Qk,0 ∈ R
n×n a symmetric

positive definite and j = 0.
Step 2.1: Set Y k,j = (xk,j , λk + ρkh(xk,j )).
Step 2.2: Find Dk,j ∈ R

n × R
m solution of

minimize
D

〈∇Fk

(

Y k,j
)

,D
〉 + 1

2

〈[
Qk,j 0

0 1
ρk

I

]

D,D

〉

subject to ∇Hk

(

Y k,j
)	

D = 0, Y k,j + D ∈ Ω × R
m.

(19)
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If ‖Dk,j‖ < εk then set Xk+1 = Πk(Y
k,j + Dk,j ) and go to Step 3.

Step 2.3: Determine θj+1 ∈ {2−iθj : i ∈ N ∪ {0}} as large as possible such that:

φk

(

Y k,j , θj+1
) − φk

(

Xk,j , θj+1
) ≤ (r − 1)

2

∥
∥Hk

(

Xk,j
)∥
∥, (20)

where φk(X, θ) = θFk(X) + (1 − θ)‖Hk(X)‖ is a merit function.
Step 2.4: Determine tj ∈ {2−i : i ∈ N ∪ {0}} as large as possible such that:

φk

(

Y k,j + tjD
k,j , θj+1

) − φk

(

Xk,j , θj+1
) ≤ (r − 1)

2

∥
∥Hk

(

Xk,j
)∥
∥. (21)

Step 2.5: Set Xk,j+1 = Y k,j + tjD
k,j , and choose Qk,j+1 ∈ R

n×n symmetric pos-
itive definite, and j = j + 1. Go to Step 2.1.

Step 3: Update the penalty parameter
Set ψk = min{ψk−1, σ (Xk)}. If ‖h(xk+1)‖ > γ ‖h(xk)‖ and σ(Xk+1) > γψk , then
set ρk+1 = 10ρk . Otherwise, set ρk+1 = ρk .

Besides that, set k = k + 1 and go to Step 1.

Remark 1 Subproblem (19) is similar to (7) but centered at Y k,j = Y k(xk,j ) instead
of Y k = Y k(xk) (see (6)). Also, it can be seen that if Dk,j is a solution of (19), then
(x,λ) = Y k,j + Dk,j is a solution of

minimize
(x,λ)

〈∇f
(

xk,j
)

, x − xk,j
〉 + 1

2

〈

Qk,j

(

x − xk,j
)

, x − xk,j
〉 + 1

2ρk

‖λ‖2

subject to h
(

xk,j
) + ∇h

(

xk,j
)	(

x − xk,j
) − 1

ρk

(

λ − λk
) = 0, x ∈ Ω,

(22)

which is similar to (3) but centered at xk,j instead of xk . When Xk+1 = Y k,0 + Dk,0

then the sequence generated by Algorithm 2 is the same as the sequence generated by
the sSQP method. This update can be generated if (a) ρk is large enough, implying
that Πk (17) shall be avoided; and (b) the current iterate is near to a primal-dual pair
satisfying the SOSC, which guarantees that Dk,0 shall be small.

The remaining part of this section is devoted to show that Algorithm 2 is well
defined, which depends on the consistency of Step 2.

Let us define the function

μk(x, y) = λk + ρkh(x) + ρk∇h(x)	(y − x), x, y ∈ Ω. (23)

Since h and ∇h are continuous and Ω is a compact set, we deduce that there exists
λk

L and λk
U depending on (λk, ρk) such that λk and μk(x, y) belong to the interior of

[λk
L,λk

U ] for all x, y ∈ Ω . Thus, there exists a compact set Wk = Ω × [λk
L,λk

U ] ⊂
R

n × R
m such that problem (8) is equivalent to

minimize
(x,λ)

Fk(x,λ)

subject to Hk(x,λ) = 0, (x,λ) ∈ Wk.
(24)
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An inexact restoration strategy for the globalization 601

It can be seen that Step 2 of Algorithm 2 is a direct application of Algorithm 1 ap-
plied to the problem (24). Therefore, we have to show that hypotheses of Theorem 1
hold.

Notice that if f and h are twice continuously differentiable in Ω , then Fk and Hk

are twice continuously differentiable in Wk .
In the following two lemmas we prove that conditions (10), (11), (12) and (13) of

Algorithm 1 are satisfied.

Lemma 1 Let, for a fixed k, {Xk,j }, {Y k,j } and {Dk,j } be the sequences generated
by Algorithm 2. Then

(a) Y k,j + Dk,j and Xk,j belong to Wk for all j if xk ∈ Ω .
(b) There exists βk > 0 such that

∥
∥Hk

(

Y k,j
)∥
∥ ≤ r

∥
∥Hk

(

Xk,j
)∥
∥, (25)

Fk

(

Y k,j
) ≤ Fk

(

Xk,j
) + βk

∥
∥Hk

(

Xk,j
)∥
∥, (26)

for all r > 0.

Proof We will prove (a) by induction in j . From the Step 2.0 and the definition of λk
L

and λk
U , and the fact that xk ∈ Ω , we have that Xk,0 = (xk,0, λk,0) = (xk, λk) ∈ Wk .

Let j ≥ 0 and suppose that Xk,j ∈ Wk . Let us define (x,λ) = Y k,j + Dk,j . From
the definition of Y k,j we have Dk,j = (x − xk,j , λ − (λk + ρkh(xk,j ))). From the
equality constraint in (19) we obtain

0 = ∇Hk

(

Y k,j
)	

Dk,j

= ∇h
(

xk,j
)	(

x − xk,j
) − 1

ρk

(

λ − λk
) + h

(

xk,j
)

Solving for λ and using (23) we get λ = μk(xk,j , x). Now, on one hand we have that
x ∈ Ω since Y k,j +Dk,j ∈ Ω ×R

m. On the other hand we have that xk,j ∈ Ω because
Xk,j ∈ Wk . Combining these facts we obtain that λ = μk(xk,j , x) ∈ [λk

L,λk
U ] and

therefore Y k,j + Dk,j ∈ Wk . Since Y k,j = (xk,j ,μk(xk,j , xk,j )) ∈ Wk , tj ∈ [0,1]
and the convexity of Wk , we have that Xk,j+1 = Y k,j + tjD

k,j = (1 − tj )Y
k,j +

tj (Y
k,j + Dk,j ) ∈ Wk .

Next, we will prove (b). By the definition of Y k,j in Step 2.1, we can see that
condition (25) holds since Hk(Y

k,j ) = 0.
Using that Xk,j = (xk,j , λk,j ) and λk + ρkh(xk,j ) = λk,j + ρkHk(X

k,j ), we can
see that

Fk

(

Y k,j
) − Fk

(

Xk,j
) = 1

2ρk

(∥
∥λk,j + ρkHk

(

Xk,j
)∥
∥

2 − ∥
∥λk,j

∥
∥

2)

= 1

2ρk

(∥
∥ρkHk

(

Xk,j
)∥
∥

2 + 2ρk

〈

Hk

(

Xk,j
)

, λk,j
〉)
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602 D. Fernández et al.

≤ ∥
∥Hk

(

Xk,j
)∥
∥

(
ρk

2

∥
∥Hk

(

Xk,j
)∥
∥ + ∥

∥λk,j
∥
∥

)

≤ βk

∥
∥Hk

(

Xk,j
)∥
∥,

where βk > 0 is a constant that exists because of the continuity of Hk , the compact-
ness of Wk and the fact that Xk,j ∈ Wk . Therefore, condition (26) holds. �

It remains to prove that the direction Dk,j generated by the subproblem (19) sat-
isfies conditions (12) and (13).

Lemma 2 Suppose that, for a fixed k, matrices {Qk,j } are uniformly positive definite.
Then there exist positive constants ηk , η̄k and τk such that

Fk

(

Y k,j + tDk,j
) ≤ Fk

(

Y k,j
) − ηkt

∥
∥Dk,j

∥
∥

2
, (27)

∥
∥Hk

(

Y k,j + tDk,j
)∥
∥ ≤ ∥

∥Hk

(

Y k,j
)∥
∥ + η̄kt

2
∥
∥Dk,j

∥
∥2

, (28)

hold for all t ∈ [0, τk].

Proof Since Y k,j ∈ Ω × R
m then D = 0 is feasible for the problem (19). Hence, the

solution Dk,j satisfies

〈∇Fk

(

Y k,j
)

,Dk,j
〉 + 1

2

〈[
Qk,j 0

0 1
ρk

I

]

Dk,j ,Dk,j

〉

≤ 0.

Assuming that matrices Qk,j are uniformly positive definite, the there exists a
constant ck > 0 such that

〈∇Fk

(

Y k,j
)

,Dk,j
〉 ≤ −ck

2

∥
∥Dk,j

∥
∥

2
. (29)

Let Lk > 0 be the Lipschitzian modulus of ∇Fk and ∇Hk (because of smoothness
of f and h).

By the Taylor’s formula we obtain

Fk(Y + tD) = Fk(Y ) + t
〈∇Fk(Y ),D

〉 + t

∫ 1

0

〈∇Fk(Y + stD) − ∇Fk(Y ),D
〉

ds,

then by using (29) and Lipschitzianity of ∇Fk we get

Fk

(

Y k,j + tDk,j
) ≤ Fk

(

Y k,j
) − ckt

2

∥
∥Dk,j

∥
∥

2 + Lkt
2

2

∥
∥Dk,j

∥
∥

2

= Fk

(

Y k,j
) −

(
ck

2
− Lkt

2

)

t
∥
∥Dk,j

∥
∥

2
,

for all t ∈ [0,1]. Therefore, (27) is valid for all t ∈ [0, τk] with τk = min{1,
ck

2Lk
} and

ηk = ck/4.
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An inexact restoration strategy for the globalization 603

Similarly, using that ∇Hk(Y
k,j )	Dk,j = 0 and Lipschitzianity of ∇Hk we have

∥
∥Hk

(

Y k,j + tDk,j
)∥
∥ ≤ ∥

∥Hk

(

Y k,j
)∥
∥ + Lkt

2

2

∥
∥Dk,j

∥
∥

2
,

for all t ∈ [0,1]. Thus, (28) holds for all t ∈ [0,1] with η̄k = Lk/2. Therefore, (27)
and (28) are valid for all t ∈ [0, τk] with ηk , η̄k and τk as defined in this proof. �

The next lemma assures us that a sequence {Xk} can be generated by Algorithm 2.

Lemma 3 Algorithm 2 is well defined and generates sequences {(xk, λk)}, where
xk ∈ Ω and λk+1 ∈ [−αL

√
ρke,αU

√
ρke] for all k.

Proof Observe that x0 ∈ Ω (from Step 0). Let us assume that xk ∈ Ω for k ≥ 0.
Because of Lemmas 1 and 2, the compactness of Wk and Theorem 1, we have that
the directions Dk,j converge to zero when j tends to infinity. Thus, the condition
‖Dk,j‖ ≤ εk is satisfied for j sufficiently large, so Step 2 of Algorithm 2 is executed
only a finite number of iterations. Therefore, the next iterate Xk+1 can be generated.
Since Y k,j + Dk,j ∈ Ω × R

m, Xk+1 = Πk(Y
k,j + Dk,j ) and Πk leaves invariant the

primal part, we obtain that Xk+1 = (xk+1, λk+1) ∈ Ω × [−αL
√

ρke,αU
√

ρke]. �

We should stress that no constraint qualification assumptions were needed to guar-
antee neither the feasibility of the subproblem (19) nor the success of execution of
Step 2.1 of Algorithm 2. In [18, Lemma 2] the Mangasarian–Fromovitz constraint
qualification was required.

4 Convergence analysis

In this section we will prove that any accumulation point of the sequence generated
by Algorithm 2 is either a stationary point of problem (1), or a stationary (maybe
feasible) point of the squared norm of infeasibility. We will show that no constraint
qualification is needed in order to prove global convergence results.

The proposed method is related with an inexact augmented Lagrangian method.
The augmented Lagrangian method, also known as the method of multipliers, is based
on the minimization of the augmented Lagrangian function [21, 31], L̄(x,λ,ρ) :
R

n × R
m × (0,+∞) → R, defined by

L̄(x,λ,ρ) = f (x) + 1

2ρ

∥
∥λ + ρh(x)

∥
∥

2
.

Recall that, at a given multiplier estimate λk ∈ R
m and a penalty parameter ρk > 0,

the (exact) augmented Lagrangian method generates the next iterate (xk+1, λk+1)

such that

xk+1 is a solution of minimize
x∈Ω

L̄
(

x,λk, ρk

)

, (30)

λk+1 = λk + ρkh
(

xk+1). (31)
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The augmented Lagrangian method had been studied by many authors [2–4, 7–10,
12, 13, 24, 29, 30], among other literature (see also [5, 28]).

Numerical implementations attempt to solve (30) inexactly, by using a suitable
criterion. For example, some codes based on the augmented Lagrangian method, such
as LANCELOT [11] and ALGENCAN [1], define xk+1 = x if the residual of the
minimization problem in (30) at x is less than some tolerance εk , i.e.,

∥
∥
∥
∥
ΠΩ

(

x − ∂L̄

∂x

(

x,λk, ρk

)
)

− x

∥
∥
∥
∥

≤ εk.

We can see that problem (30)–(31) is equivalent to problem (8). Such equivalence
comes from (8) by solving Hk(x,λ) = 0 for λ and replacing it in the objective func-
tion Fk . Due to this connection, the global convergence theory of Algorithm 2 is an
adaptation of the standard augmented Lagrangian theory. The connection between the
sequence generated by Algorithm 2 and the sequence generated by the sSQP method
is given by the next statement.

Proposition 1 Algorithm 2 generates sequences {xk}, {yk}, {λk}, {νk}, {ρk} and {Mk}
satisfying

〈∇f
(

yk
) + Mk

(

xk+1 − yk
) + ∇h

(

yk
)

νk+1, y − xk+1〉 ≥ 0, ∀y ∈ Ω, (32)

h
(

yk
) + ∇h

(

yk
)	(

xk+1 − yk
) − 1

ρk

(

νk+1 − λk
) = 0, (33)

∥
∥xk+1 − yk

∥
∥2 + ∥

∥νk+1 − (

λk + ρkh
(

yk
))∥

∥2
< ε2

k . (34)

Proof Note that the optimality conditions of problem (19) are
〈

∇Fk(Y
k,j ) +

[
Qk,j 0

0 1
ρk

I

]

Dk,j + ∇Hk

(

Y k,j
)

ξk,j , Y − Y k,j − Dk,j

〉

≥ 0,

∇Hk

(

Y k,j
)	

Dk,j = 0,

for all Y ∈ Ω × R
m, where Y k,j + Dk,j ∈ Ω × R

m and ξk,j ∈ R
m is an associated

Lagrange multiplier.
Let j (k) be the index where ‖Dk,j (k)‖ < εk . Let us call yk = xk,j (k), the primal

component of Y k,j (k), νk+1 the dual component of Y k,j (k) +Dk,j (k), ξk = ξk,j (k) and
Mk = Qk,j (k).

Since Xk+1 = (xk+1, λk+1) = Πk(Y
k,j (k) + Dk,j (k)) and the projection Πk (17)

leaves invariant the primal part, we have that Y k,j (k) + Dk,j (k) = (xk+1, νk+1).
Hence, the optimality conditions can be rewritten in the following form

〈∇f
(

yk
) + Mk

(

xk+1 − yk
) + ∇h

(

yk
)

ξk, y − xk+1〉 ≥ 0, ∀y ∈ Ω,

1

ρk

(

λk + ρkh
(

yk
)) + 1

ρk

(

νk+1 − (

λk + ρkh
(

yk
))) − 1

ρk

ξk = 0,

∇h
(

yk
)	(

xk+1 − yk
) − 1

ρk

(

νk+1 − (

λk + ρkh
(

yk
))) = 0.
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Notice that from the second relation we obtain νk+1 = ξk . Therefore, Dk,j (k) is a
solution of (19) if and only if

〈∇f
(

yk
) + Mk

(

xk+1 − yk
) + ∇h

(

yk
)

νk+1, y − xk+1〉 ≥ 0, ∀y ∈ Ω, (35)

h
(

yk
) + ∇h

(

yk
)	(

xk+1 − yk
) − 1

ρk

(

νk+1 − λk
) = 0. (36)

With this notation, ‖Dk,j (k)‖ < εk is equivalent to

∥
∥xk+1 − yk

∥
∥

2 + ∥
∥νk+1 − (

λk + ρkh
(

yk
))∥

∥
2
< ε2

k . (37)

�

Remark 2 According to the augmented Lagrangian method, the Lagrange multipliers
are updated as in (31). In practical implementations, a projection onto a fixed box B

is usually performed, that is,

λk+1 = ΠB

(

λk + ρkh
(

xk+1)).

However, in the proposed method the Lagrange multipliers are updated by projecting
νk+1 given in (33) onto the variable box Λk = [−αL

√
ρke,αU

√
ρke], that is,

λk+1 = ΠΛk

(

λk + ρkh
(

yk
) + ρk∇h

(

yk
)	(

xk+1 − yk
))

.

Therefore, even when these two methods are connected, the Lagrange multipliers are
updated in a different way.

The next auxiliary proposition gives a relation between the Lagrange multiplier
approximation and the penalty parameter.

Proposition 2 The sequence {λk/ρk} is convergent to zero if ρk tends to infinity.

Proof From the definition of Πk (17), we have that λk+1 belongs to the closed set
[−αL

√
ρke,αU

√
ρke]. If ρk+1 > ρk , from the update of the penalty parameter, we

get

λk+1

ρk+1
∈

[

− αL√
10ρk+1

,
αU√

10ρk+1

]

.

On the other hand, if ρk+1 = ρk , then

λk+1

ρk+1
∈

[

− αL√
ρk+1

,
αU√
ρk+1

]

.

In both cases, if ρk+1 tends to infinity, the proposition holds. �

Proposition 2 helps us to prove the following global convergence theorem.
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Theorem 2 Let x̄ be a limit point of the sequence {xk} generated by Algorithm 2 and
assume that matrices {Mk} are uniformly bounded.

1. If {ρk} remains bounded, then x̄ is a stationary point of problem (1).
2. If {ρk} tends to infinity, then x̄ is a stationary point of the problem

minimize
x∈Ω

1

2

∥
∥h(x)

∥
∥

2
. (38)

Proof Let x̄ be a limit point of {xk+1}, i.e., there exists an index subset K such that

lim
k∈K

xk+1 = x̄. (39)

Since εk tends to zero, and using (39) and (34) we get

lim
k∈K

yk = x̄. (40)

Proof of 1. Let us consider first the case when {ρk} remains bounded. By the updat-
ing formula, we have that there exists k0 ∈ N such that ρk = ρ̄ for all k ≥ k0. Then,
λk+1 belongs to the closed set [−αL

√
ρ̄e, αU

√
ρ̄e] for all k ≥ k0, that is, {λk+1} is

bounded.
From Step 3 of Algorithm 2 we have that σ(Xk+1) ≤ γψk or ‖h(xk+1)‖ ≤
γ ‖h(xk)‖ for all k ≥ k0. Let K1 be the index set defined by

K1 = {

k ∈ K | σ (

Xk+1) ≤ γψk

}

.

In what follows we will consider two subcases: when K1 is finite or is infinite.

(a) Suppose that K1 has infinite many elements. Since the sequence {ψk} is non-
increasing and nonnegative, it converges to some ψ̄ ≥ 0. From the defini-
tion of K1 and observing that ψk+1 ≤ σ(Xk+1), we deduce that ψ̄ ≤ γ ψ̄ by
taking limits for k ∈ K1. Hence, ψ̄ = 0 because γ ∈ (0,1). Since {λk+1} is
bounded, taking subsequences if necessary, we can guarantee the existence of
λ̄ such that limk∈K1 λk+1 = λ̄. Thus, taking limits for k ∈ K1 we have that
σ(x̄, λ̄) ≤ γ ψ̄ = 0. Hence, we conclude that x̄ is a stationary point of prob-
lem (1).

(b) Suppose that K1 has finite many elements. Then there exists k1 ≥ k0 such that
‖h(xk+1)‖ ≤ γ ‖h(xk)‖ for all k ≥ k1. Taking limits for k ∈ K and using (39)
we have that h(x̄) = 0. Passing onto a subsequence if necessary, assume that
limk∈K λk = λ̄ (because of the boundedness of {λk}). Taking limits in (34) for
k ∈ K, using (40) and the facts that h(x̄) = 0 and ρk = ρ̄ for k large enough, we
deduce that

lim
k∈K

νk+1 = λ̄. (41)

From (39), (40), (41) and the fact that {Mk} are uniformly bounded, taking limits
in (32) for k ∈ K, we conclude that

〈∇f (x̄) + ∇h(x̄)λ̄, y − x̄
〉 ≥ 0, ∀y ∈ Ω.
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This condition is equivalent to ΠΩ(x̄ − ∂L
∂x

(x̄, λ̄)) − x̄ = 0. Since h(x̄) = 0 we
deduce that σ(x̄, λ̄) = 0. Hence, x̄ is a stationary point of problem (1).

Proof of 2. Let us consider the case when {ρk} tends to infinity. Taking limits in (33)
we obtain

lim
k∈K

νk+1

ρk

= h(x̄). (42)

where we have used (39), (40) and the fact that {λk/ρk} converges to zero by Propo-
sition 2.
Dividing (32) by ρk , and using (39), (40), (42) and the fact that {Mk} are uniformly
bounded, taking limits for k ∈ K, we obtain that

〈∇h(x̄)h(x̄), y − x̄
〉 ≥ 0, ∀y ∈ Ω.

Hence, we conclude that x̄ is a stationary point of problem (38). �

Remark 3 For item 2 of the previous Theorem, we can not assure that the limit point
x̄ is a stationary point of problem (1) without assuming any constraint qualifications
at all. However, following the lines in [2, Theorem 4.2], it can be seen that x̄ is
a stationary point of problem (1) if we suppose that x̄ is feasible and satisfies the
CPLD constraint qualification.

5 Penalty boundedness results

From now on we will prove that, under suitable conditions, the sequence of penalty
parameters {ρk} generated by Algorithm 2 remains bounded. Let us consider the fol-
lowing assumptions:

Assumption A1 {xk} converges to a feasible point x̄.

Assumption A2 There is no vector λ �= 0 such that −∇h(x̄)λ ∈ NΩ(x̄) and there is
only one vector λ̄ of associated multipliers (this condition is equivalent to the Strict
Mangasarian–Fromovitz constraint qualification).

Assumption A3 There exists k0 ∈ N such that λ̄ ∈ (−αL
√

ρk0e,αU
√

ρk0e).

Assumption A4 The second order sufficient optimality conditions are satisfied at
(x̄, λ̄), where λ̄ is a Lagrange multiplier associated to x̄. That is,

〈
∂2L

∂x2
(x̄, λ̄)d, d

〉

> 0 ∀d ∈ C \ {0}, (43)

where

C =
{

d ∈ R
n

∣
∣
∣
∣

〈∇f (x̄), d〉 = 0, ∇h(x̄)	d = 0,

di ≤ 0 if x̄i = bi, di ≥ 0 if x̄i = ai, i = 1, . . . , n

}

. (44)
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Assumption A5 The sequence {εk} is chosen according to

εk ≤ χ
(

σ
(

xk,λk
))

, (45)

where χ : (0,+∞) → (0,+∞) is such that limt→0 χ(t)/t = 0.

We will prove a lemma that establishes the convergence of the dual sequence {λk}.

Lemma 4 Let Assumptions A1, A2 and A3 hold. Then limk→∞ λk = λ̄.

Proof By A1, xk converges to x̄. By (34), yk converges to x̄.
Suppose that the sequence {νk+1} is unbounded. Taking subsequences if neces-

sary, assume that νk+1/‖νk+1‖ converges to a unitary vector ν̄. Dividing (32) by
‖νk+1‖ and taking limits, we obtain that

〈∇h(x̄)ν̄, y − x̄
〉 ≥ 0, ∀y ∈ Ω,

that is equivalent to −∇h(x̄)ν̄ ∈ NΩ(x̄). From A2 we have that ν̄ = 0 and this leads
us to a contradiction.

Since {νk+1} is bounded, there exists at least a limit point ν̄. Passing onto subse-
quences if necessary and taking limits in (32) we get

〈∇f (x̄) + ∇h(x̄)ν̄, y − x̄
〉 ≥ 0, ∀y ∈ Ω.

This means that ν̄ is a Lagrange multiplier associated to x̄. From A2 we conclude
that ν̄ = λ̄, and therefore {νk+1} converges to λ̄.

By A3, νk+1 ∈ [−αL
√

ρke,αU
√

ρke] for k large enough. Thus λk+1 = νk+1 since
no projection is needed. �

The next lemma gives a relation between the natural residual (2) and the distance
to the solution.

Lemma 5 If A1–A4 hold, then there exist k0 ∈ N, β1, β2 > 0 such that for all k ≥ k0,

β1
∥
∥
(

xk,λk
) − (x̄, λ̄)

∥
∥ ≤ σ

(

xk,λk
) ≤ β2

∥
∥
(

xk,λk
) − (x̄, λ̄)

∥
∥. (46)

Proof By Lipschitz continuity of σ and the fact that σ(x̄, λ̄) = 0 we guarantee the
existence of β2 satisfying the right–hand side inequality. By Assumption A4 and [17,
Lemma 5, Theorem 2] there exists β1 > 0 such that σ(x,λ) ≥ β1‖(x,λ) − (x̄, λ̄)‖
for all (x,λ) close enough to (x̄, λ̄). From A1 and Lemma 4 we have that (xk, λk)

converges to (x̄, λ̄) and this concludes the proof. �

The following lemma is a technical result that will be used in the next theorem.

Lemma 6 Let us assume that A1–A5 hold. Then there exist k1 ∈ N, c1, c2 > 0 such
that

(

1 − c2

ρk

)

σ
(

xk+1, λk+1) ≤
(

c1ηk + c2

ρk

)

σ
(

xk,λk
)

, (47)
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where

ηk = χ(σ(xk, λk))

σ (xk, λk)
.

Proof By Taylor expansion centered at yk we get

∂L

∂x

(

xk+1, λk+1) = ∂L

∂x

(

yk,λk+1) + ∂2L

∂x2

(

yk,λk+1)(xk+1 − yk
) + o

(∥
∥xk+1 − yk

∥
∥
)

,

and therefore

∂L

∂x

(

xk+1, λk+1) −
[
∂L

∂x

(

yk, νk+1) + Mk

(

xk+1 − yk
)
]

=
(

∂2L

∂x2

(

yk,λk+1) − Mk

)
(

xk+1 − yk
) + o

(∥
∥xk+1 − yk

∥
∥
)

= O
(∥
∥xk+1 − yk

∥
∥
)

, (48)

where we are using that λk+1 = νk+1 for k large enough (see Lemma 4), the continu-
ity of the second derivative of L with respect to x and the fact that {Mk} is uniformly
bounded.

By definition of projection and (32) we have that

xk+1 = ΠΩ

(

xk+1 −
[
∂L

∂x

(

yk, νk+1) + Mk

(

xk+1 − yk
)
])

. (49)

Since ΠΩ is nonexpansive, using (48) and (49) we obtain

∥
∥
∥
∥
ΠΩ

(

xk+1 − ∂L

∂x

(

xk+1, λk+1)
)

− xk+1
∥
∥
∥
∥

≤ O
(∥
∥xk+1 − yk

∥
∥
)

. (50)

On the other hand, by using (33) and the fact that λk+1 = νk+1 for k large enough,
we get

h
(

xk+1) = h
(

yk
) + ∇h

(

yk
)	(

xk+1 − yk
) + o

(∥
∥xk+1 − yk

∥
∥
)

= 1

ρk

(

λk+1 − λk
) + o

(∥
∥xk+1 − yk

∥
∥
)

.

Then, by the previous two equations, there exist k1 ∈ N, c1, c2 > 0 such that for
all k ≥ k1,

σ
(

xk+1, λk+1) ≤ O
(∥
∥xk+1 − yk

∥
∥
) + √

2
∥
∥h

(

xk+1)
∥
∥

≤ O
(∥
∥xk+1 − yk

∥
∥
) +

√
2

ρk

∥
∥λk+1 − λk

∥
∥
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≤ c1εk +
√

2

ρk

∥
∥λk+1 − λ̄

∥
∥ +

√
2

ρk

∥
∥λk − λ̄

∥
∥

≤ c1εk + c2

ρk

σ
(

xk+1, λk+1) + c2

ρk

σ
(

xk,λk
)

,

where in the third inequality we use (34) and for the last inequality we use (46).
Thus, by using A5, we conclude that

(

1 − c2

ρk

)

σ
(

xk+1, λk+1) ≤
(

c1ηk + c2

ρk

)

σ
(

xk,λk
)

. �

Now, under the set of assumptions of this section, we prove the following result
about the boundedness of the penalty parameter.

Theorem 3 Suppose that Assumptions A1–A5 hold. Then, the sequence of penalty
parameters {ρk} is bounded.

Proof By contradiction, suppose that limk→∞ ρk = ∞. Since limk→∞ ηk = 0, then
for k sufficiently large we have

1 − c2

ρk

>
1

2
and c1ηk + c2

ρk

<
γ

2
,

where γ is a parameter defined in Algorithm 2. Hence, by (47),

σ
(

xk+1, λk+1) ≤ γ σ
(

xk,λk
)

,

for k large enough.
Since γ < 1, {σ(Xk)} is a strictly decreasing sequence, which implies that ψk =

min{ψk−1, σ (Xk)} = σ(Xk) for k sufficiently large. Thus, σ(Xk+1) ≤ γψk . There-
fore, by Step 3 of the Algorithm 2 we conclude that ρk+1 = ρk for k large enough, in
contradiction with the initial assumption. �

Theorem 4 Let us assume that A1–A5 hold. Then, given q ∈ (0,1) there exists
ρ̄ such that if ρk̄ ≥ ρ̄ for some k̄, it holds that the sequence {(xk, λk)} converges
Q-linearly to (x̄, λ̄) with rate equal to q .

Proof Let us define ρ̄ ≥ (qβ1 + β2)c2/(qβ1), where β1 and β2 are the constants
defined as in (46), and c2 is given by Lemma 6. Due to the fact that {ρk} is nonde-
creasing, for all k ≥ k̄ we have that

c2

ρk

≤ qβ1

qβ1 + β2
and

(

1 − c2

ρk

)−1

≤ qβ1 + β2

β2
. (51)
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Hence,

∥
∥
(

xk+1, λk+1) − (x̄, λ̄)
∥
∥ ≤ 1

β1
σ
(

xk+1, λk+1)

≤ 1

β1

(

1 − c2

ρk

)−1(

c1ηk + c2

ρk

)

σ
(

xk,λk
)

≤
(

qβ1 + β2

β1β2
c1ηk + q

β2

)

σ
(

xk,λk
)

≤
(

qβ1 + β2

β1
c1ηk + q

)
∥
∥
(

xk,λk
) − (x̄, λ̄)

∥
∥,

where for the first inequality we use the left-hand side of (46), the second inequality
comes from (47), for the third inequality we use (51) and the last inequality follows
from the right-hand side relation in (46).

Since {(xk, λk)} converges to (x̄, λ̄) and limk→∞ ηk = 0, we conclude that the
primal-dual sequence converges with Q-linear rate equal to q . �

6 Numerical experiments

In this section we show preliminary numerical results obtained by using Algorithm 2.
We have considered the whole set of nonlinear equality constrained problems from
the CUTEr collection [14]. A total of 71 nonlinear equality constrained problems
were identified. Algorithm 2 was written in Fortran 2003 and compiled with the Intel
Compiler 12.0 on a PC running Linux.

The following choices were made and used on all test problems:

– Algorithmic parameters: γ = 0.99, ε = 0.5 × 10−6, εk = 1/(k + 1)2 for all k ≥ 0,
r = 0.99 and αL = αU = 100.

– Initialization parameters: ρ0 = 0.01, θ0 = 0.9, Qk,0 is the identity matrix for all
k ≥ 0.

– Starting points: λ0 the origin, and x0 is taken from the corresponding problem from
the CUTEr collection.

– For solving the quadratic programming problem (19) we used an implementation
of the Goldfarb-Idnani algorithm [19] written by B. Turlach [32].

We remark that we only want to show viability of the proposed approach. An
optimal choice of the parameters and an appropriate quadratic programming solver
is out of the scope of this paper. Since the Goldfarb-Idnani algorithm performs fac-
torizations, it is not convenient to deal with large-scale problems, thus we exclude
the following problems: LUKVLE1-LUKVLE18, EIGENA2, EIGENB2, EIGENC2,
ELEC, GRIDNETE, GRIDNETH, ORTHRDS2, ORTHREGA, ORTHREGC, OR-
THREGD, ORTHRGDM, ORTHRGDS. The remaining 41 problems were tested
with the proposed method. In the following problems: BT7, BT8, COOLHANS,
HS26, HS40, HS46, HS47, HS56, HS78, MSS1, MWRIGHT the quadratic solver
failed.
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Table 1 Numerical
experiments from the CUTEr
collection

Name n m ρ̄ σ(x̄, λ̄) qp calls

BT1 2 1 1.0E+02 0.3492216E–07 5,2,1

BT2 3 1 1.0E+09 0.1455329E–07 1,1,5

BT3 5 3 ∗ ∗ ∗
BT4 3 2 1.0E+07 0.4203023E–11 1,1,3

BT5 2 2 1.0E–01 0.4927916E–06 1,1,1

BT6 5 2 1.0E+06 0.1040323E–06 1,1,4

BT9 4 2 1.0E+00 0.4629197E–06 1,1,1

BT10 2 2 1.0E+00 0.4827694E–06 1,1,1

BT11 5 3 1.0E+03 0.2520146E–06 2,1,3

BT12 5 3 1.0E+00 0.4814203E–06 1,1,1

BYRDSPHR 3 2 1.0E–02 0.4981593E–06 1,1,1

DIXCHLNG 10 5 1.0E+04 0.1259454E–06 12,2,11

HS6 2 1 1.0E+01 0.4110476E–06 1,1,1

HS7 2 1 1.0E+02 0.1332312E–07 1,3,1

HS8 2 2 1.0E+00 0.4417480E–06 1,1,1

HS9 2 1 1.0E+00 0.4878523E–06 1,1,1

HS27 3 1 1.0E+06 0.1687748E–09 1,1,6

HS28 3 1 1.0E+04 0.3856428E–06 1,2,1

HS39 4 2 1.0E+02 0.4629197E–06 1,1,1

HS42 4 2 1.0E+03 0.7307294E–08 1,1,2

HS48 5 2 1.0E+12 0.2884765E–13 1,2,5

HS49 5 2 ∗ ∗ ∗
HS50 5 3 1.0E+06 0.7299110E–07 1,1,2

HS51 5 3 1.0E+13 0.1055938E–13 1,3,4

HS52 5 3 1.0E+02 0.2636263E–07 3,2,4

HS61 3 2 1.0E+02 0.3309869E–07 1,2,1

HS77 5 2 1.0E+06 0.1130220E–07 1,1,3

HS79 5 3 1.0E+05 0.2686601E–08 1,1,2

MARATOS 2 1 1.0E–01 0.3845145E–06 1,1,1

ORTHREGB 27 6 1.0E–01 0.3513701E–06 1,1,1

S316-322 2 1 1.0E+03 0.3563555E–07 2,1,4

In Table 1 we report, for each problem, the problem name in the CUTEr collection,
the number of variables n, the number of constraints m, the last penalty parameter ρ̄,
the natural residual σ(x̄, λ̄) and number of calls to the quadratic solver in the last three
iterations. We remark that in problems BT3 and HS49 the algorithm stopped because
the inexact restoration penalty parameter θj was less than a prescribed tolerance.

In most of the problems we perform a few calls to the quadratic solver in the
last iterations. Notice that if we perform one call to the quadratic solver, it means
that ‖Dk,0‖ < εk (see Algorithm 2). According to Remark 1 the last iterations of
Algorithm 2 are the same as the iterations of the sSQP method.
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In Table 2 we report, for the same set of problems, a comparison by using Algo-
rithm 2, ALGENCAN [1] and LANCELOT [23] with the default algorithmic parame-
ters. First of all we indicate the problem name, the number of variables n, the number
of constraints m, the number of outer iterations, the number of inner iterations and
the functional value f (x̄). For LANCELOT, we consider as outer iterations those re-
ported as “iterations and function evaluations” (see [11, pp. 148]) without pointing
out inner iterations. The first row of each problem corresponds to Algorithm 2, the
second one to ALGENCAN and the last one to LANCELOT.

From Table 2 we can see that the functional values f (x̄) given by the three solvers
are the same in almost all problems. However, in problem DIXCHLNG, ALGEN-
CAN found a different local solution with functional value greater than the obtained
by our implementation and LANCELOT. As before, our implementation failed to
solve problems BT3 and HS49 at the backtracking Step 2.3. In all cases the CPU
time was negligible for the three solvers, therefore no comparison can be made.

Although the number of outer and inner iterations in our implementation are
greater than those given by ALGENCAN and LANCELOT, we must stress that Al-
gorithm 2 perform a standard backtracking procedure at Steps 2.3 and 2.4, while an
ad hoc strategy is used by the other solvers. Also, concerning the update of the penalty
parameter (Step 3), we generate a monotone increasing sequence ρk while the other
two solvers allow a possible decrease of the penalty parameter.

7 Conclusions

In this paper we present a new hybrid method for solving optimization problems with
equality constraints and bounds. The proposed method is based on the sSQP method
and a combination between an IR method and an augmented Lagrangian-like penalty
parameter update strategy. Global convergence is obtained by using a suitable penalty
parameter update joint with an IR method to solve inexactly the subproblems without
modifying the structure of the sSQP subproblems. So, the good local behavior of the
sSQP method is inherited.

Since our method does not change the sSQP subproblems it preserves some known
properties as solvability and well-conditioned subproblems without any constraint
qualification assumptions. These features make this formulation very attractive. Be-
sides that, this method presents an interesting connection between augmented La-
grangian methods and inexact restoration methods.

It has been proved that the algorithm is well defined and that any limit point of
the sequence generated by the algorithm converges to a KKT point or to a stationary
(maybe feasible) point of the problem that minimizes the infeasibility, depending on
the boundedness of the sequence of the penalty parameters.

Moreover, if the sequence generated by the algorithm converges to a feasible point
and the strict Mangasarian-Fromovitz constraint qualification and the second order
sufficient optimality conditions hold, then the penalty parameter remains bounded
and the primal-dual sequence converges Q-linearly.

Regarding numerical experiments, the algorithm was implemented in Fortran 2003
and tested on a set of problems from the CUTEr collection validating the theoretical
results.
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Table 2 Numerical
experiments from the CUTEr
collection

Name n m Outer iter. Inner iter. f (x̄)

BT1 2 1 11 24 −1.0000E+00

5 28 −1.0000E+00

53 −1.0000E+00

BT2 3 1 35 79 3.2568E−02

13 30 3.2568E−02

27 3.2568E−02

BT3 5 3 ∗ ∗ ∗
7 9 4.0930E+00

9 4.0930E+00

BT4 3 2 33 1062 −3.7048E+00

6 14 −4.5511E+01

23 −4.5511E+01

BT5 2 2 24 32 9.6172E+02

4 14 9.6172E+02

18 9.6172E+02

BT6 5 2 26 42 2.7704E−01

9 21 2.7704E−01

28 2.7705E−01

BT9 4 2 353 1763 −1.0000E+00

17 47 −1.0000E+00

20 −1.0000E+00

BT10 2 2 99 153 −1.0000E+00

17 41 −1.0000E+00

17 −1.0000E+00

BT11 5 3 700 5309 8.2489E−01

13 34 8.2489E−01

19 8.2489E−01

BT12 5 3 42 75 6.1881E+00

4 7 6.1881E+00

18 6.1881E+00

BYRDSPHR 3 2 370 489 −4.6833E+00

15 31 −4.6833E+00

45 −4.6833E+00

DIXCHLNG 10 5 310 4802 2.9210E−12

5 26 2.4719E+03

36 7.1292E−10

HS6 2 1 26 32 5.1491E−14

3 10 1.7280E−23

56 2.7850E−14
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Table 2 (Continued)
Name n m Outer iter. Inner iter. f (x̄)

HS7 2 1 41 75 −1.7321E+00

14 27 −1.7321E+00

18 −1.7321E+00

HS8 2 2 16 20 −1.0000E+00

4 10 −1.0000E+00

11 −1.0000E+00

HS9 2 1 150 154 −5.0000E−01

4 5 −5.0000E−01

4 −5.0000E−01

HS27 3 1 27 116 4.0000E−02

7 17 4.0000E−02

16 4.0000E−02

HS28 3 1 24 42 3.5435E−14

1 1 6.4812E−27

3 4.8934E−30

HS39 4 2 353 1763 −1.0000E+00

17 47 −1.0000E+00

20 −1.0000E+00

HS42 4 2 115 520 1.3858E+01

5 12 1.3858E+01

4 1.3858E+01

HS48 5 2 50 80 2.9336E−30

1 2 1.2586E−17

3 6.9025E−31

HS49 5 2 ∗ ∗ ∗
5 16 1.3806E−09

15 2.2188E−08

HS50 5 3 43 78 6.8830E−16

3 9 3.5338E−13

12 5.3045E−13

HS51 5 3 47 63 5.0536E−31

1 2 5.5467E−31

2 2.5884E−31

HS52 5 3 750 4888 5.3266E+00

6 8 5.3266E+00

6 5.3266E+00

HS61 3 2 32 68 −1.4365E+02

5 14 −1.4365E+02

19 −1.4365E+02
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Table 2 (Continued)
Name n m Outer iter. Inner iter. f (x̄)

HS77 5 2 47 90 2.4151E−01

8 22 2.4151E−01

24 2.4151E−01

HS79 5 3 36 61 7.8777E−02

13 25 7.8777E−02

9 7.8777E−02

MARATOS 2 1 45 45 −1.0000E+00

9 14 −1.0000E+00

7 −1.0000E+00

ORTHREGB 27 6 11 12 3.0043E−14

5 7 4.7394E−20

98 1.8487E−12

S316-322 2 1 241 798 3.3431E+02

6 11 3.3431E+02

23 3.3431E+02
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