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H I G H L I G H T S
c We study a quasi-one-dimensional population that expands and contracts.
c We build a mathematical model of the dynamics and show that the observed features require an Allee effect in the description.
c We find good qualitative agreement between the model and the field studies.
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Wave propagation can be clearly discerned in data collected on mouse populations in the Cibola

National Forest (New Mexico, USA) related to seasonal changes. During an exploration of the

construction of a methodology for investigations of the spread of the Hantavirus epidemic in mice

we have built a system of interacting reaction diffusion equations of the Fisher–Kolmogorov–

Petrovskii–Piskunov type. Although that approach has met with clear success recently in explaining

Hantavirus refugia and other spatiotemporal correlations, we have discovered that certain observed

features of the wave propagation observed in the data we mention are impossible to explain unless

modifications are made. However, we have found that it is possible to provide a tentative explanation/

description of the observations on the basis of an assumed Allee effect proposed to exist in the

dynamics. Such incorporation of the Allee effect has been found useful in several of our recent

investigations both of population dynamics and pattern formation and appears to be natural to the

observed system. We report on our investigation of the observations with our extended theory.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction and summary of field observations

The abundance and distribution of animal populations on the
landscape is determined by the availability of suitable habitat,
including shelter and food resources. In heterogeneous environ-
ments (e.g., steep elevational gradients with changes in climate
and vegetation), the distribution of animal populations may be
more tightly constrained by concomitant gradients in limiting
resources. However, biotic resources also fluctuate in space and
ll rights reserved.

oche, Instituto Balseiro and

445173.

bramson),

re@unm.edu (V.M. Kenkre).
time, allowing normally unsuitable (suboptimal) adjacent habitat
to periodically become more hospitable for short time periods
(i.e., resource pulses). During favorable conditions in optimal
habitat, a species’ population will often rise in number with
favorable reproduction and survival, and the resulting increase
in population density may ultimately lead to dispersal of some
individuals from the optimal habitat to nearby suboptimal habi-
tats. When environmental conditions return to normal, the sub-
optimal habitat becomes inhospitable, and the dispersing
individuals must either return to their habitat of origin, continue
dispersing further in hopes of finding suitable habitat, or perish in
the inhospitable habitat. Viewed from a landscape level over
many years, these dynamics appear as a series of waves of a
species’ population emanating from and retreating to regions of
optimal habitat. Given this conceptual dynamic pattern, the
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purpose of this report is to develop the mathematical basis of this
phenomenon, and parameterize the model with data from a small
mammal landscape study in New Mexico.

In a field study Tinnin (2003) assessed the abundance and
distribution of rodent populations along a habitat gradient, as
part of an effort to characterize and understand the dynamics of
the temporal and spatial dynamics of Hantavirus (Mills et al.,
1999; Yates et al., 2002). The study was carried out in one of the
major (unnamed) canyons on the west slope of the Sandı́a
Mountains, Cibola National Forest (New Mexico, USA). The canyon
extends from an elevation of 1820 m to 2165 m. The upper end is
closed by a sheer cliff face of the Sandı́a Mountains, while the
lower one lies on the alluvial fan southwest of Placitas. Along this
canyon, 14 lines of Sherman traps were set every 200 m, perpen-
dicular to the main direction of the canyon. Fig. 1 shows a
schematic representation of the geometry of the system.

A variety of habitats are found at different elevations. Approxi-
mately the upper half of the canyon is covered by a forest of
conifers (piñón and ponderosa pines, and Douglas fir) and oak.
This habitat is the optimal and preferred one for the deer mouse
(Peromyscus maniculatus) and the brush mouse (P. boylii), as a
result of production of major food items, acorns and pine nuts.
The lower elevations are suboptimal, being covered mainly by
juniper, shrubs and grasses. As observed during the study (Tinnin,
2003), certain environmental and demographic conditions may
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Fig. 1. Schematic representation of the site of the study by Tinnin (2003). Heights

are measured above sea level (a.s.l).

Fig. 2. Temporal evolution of the observed population of P. boylii. The top panel

shows the number of captured animals (minimum number known alive). The

bottom panel shows the evolution of the range (maximum and minimum

positions of captured animals). xmin is the position closer to the high altitude rock

wall boundary of the canyon. xmax is the one at lower altitude.
force the rodents to invade and retract from the suboptimal
habitat.

Fig. 2 (top) shows the temporal evolution of the observed
population (usually called minimum number known alive, which is
a proxy for total population) of P. boylii (brush mouse), one of the
common species present and a host for Hantavirus. Three regimes
of population growth are observed, around the summer months
(which carry the most precipitation during the monsoon season,
July–September), followed by a decline in winter. The two
declines observed are very different from each other: the first is
very visible and drives the population to very low levels during
the first months of 2001. The second one is very mild, with only
one observation of population drop just before the summer
increase in 2002.

A similar pattern is observed in the range of the population.
Let us choose a single coordinate along the canyon as the distance
from its top. In Fig. 2 (bottom) we show the upper and lower
bounds of the population of P. boylii as a function of time. The
position of the high elevation border of the population, xmin,
remains almost constant in time (and close to the rock wall
closing the canyon from above), except during months of very
high population. The only movement of the border to higher
altitude corresponds to the very large population peak following
the summer of 2000. Very different is the behavior of the lower
border, xmax, which also oscillates similarly to the measured
population number shown in the top panel. Observe that, during
the periods of high population, the range of P. boylii extends over
almost the whole canyon, while during the periods of low
population it reduced to about the upper half.

The correspondence between the temporal features of popula-
tion number and range suggests that the population may be
expanding and contracting with almost constant density. Even
though the field measurements do not allow an absolute assess-
ment of animal density along the canyon, let us assume for
simplicity in the formulation of the model that this is the case.
A plot of the population number as a function of the population
range xmax2xmin is shown in Fig. 3. Most of the observations (with
the exceptions of those three with smallest range) appear forming
a cloud of almost linear behavior. This corresponds to an average
(along the canyon) linear density of 1873 animals/km, which we
assume represents the population density of the system.
Fig. 3. Relation between population number and population range of P. boylii.

Discarding the three measurements that lie far from the almost linear cloud (those

with ranges close to 500 m) the linear density is 1873 animals/km.



Fig. 4. Simplified habitats along the one-dimensional canyon.
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Why do the measurements that correspond to the smallest
observed populations, and smallest range, lie far from the linear
density regime? While we cannot discard the possibility that the
observations at such low density are plagued by an artifact of
measurement, we take the point of view in the present analysis
that this behavior reflects an important feature about the demo-
graphics of the system. We suggest that the behavior arises from
variations in social structure when resources are scarce. Observa-
tions of P. boylii in New Mexico (Kalcounis-Rüppel and Ribble,
2007; Ribble and Stanley, 1998) has indicated that at low density
P. boylii becomes territorial. In such a scenario, it is not clear how
waves of population invasion would proceed given that indivi-
duals would strongly interact and exclude one another (Giuggioli
et al., 2011). We explore the possibility that an Allee effect, to be
explained below, is the source of the interesting observations for
the linear regime of Fig. 3.
2. Formulation of the model

Summarizing the main observations of the discussion above,
we see that we have here a quasi-one-dimensional system with a
population subject to a habitat gradient and temporal variations.
The population is seen to oscillate seasonally in number and in
range, maintaining a fairly constant linear density along the
relevant dimension. Moreover, the population has a well defined
footprint, or range, with one border almost fixed at high altitude,
and a lower border (a front) that moves downwards and upwards.

We notice that the system is functionally almost one-dimen-
sional, restricted to the canyon, and with the population expand-
ing and contracting along it. Certainly, the sides of the canyon do
not constitute an insurmountable barrier to the mice, and in
principle the population can also spread perpendicularly to the
main direction of the canyon. But lacking observations in this
regard, and given that the habitat gradient is in the direction of
the canyon, we construct our model to be one-dimensional .
Furthermore, since the cliff wall of the Sandı́a Mountains indeed
may constitute a barrier for mice propagation, our model will
have a reflecting boundary at x¼0.

Secondly, as a first step in the analysis, we will consider a
single population, without distinctions of gender, age or infec-
tious state, representing an idealized population of P. boylii. We
will consider that this population is subject to purely diffusive
transport (Abramson et al., 2006; Giuggioli et al., 2006), and will
attempt to reproduce the qualitative behavior of the front along
the canyon. A general model for this population is (Abramson and
Kenkre, 2002; Abramson et al., 2003; Kenkre et al., 2007) the
following reaction–diffusion equation:

@u

@t
¼ f ½uðx,tÞ�þD

@2u

@x2
, ð1Þ

where uðx,tÞ represents the mice density, f is a function of it (and
of the parameters that characterize the habitat) and D is the
diffusion coefficient. Perhaps the simplest model for f(u) is a
logistic one, in which case Eq. (1) becomes a one-dimensional
heterogeneous Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP)
equation:

@u

@t
¼ ru 1�

u

Kðx,tÞ

� �
þD

@2u

@t2
, ð2Þ

with a space and time dependent environmental parameter Kðx,tÞ
modeling the diversity of habitats, which can be taken into
account as follows. Since the habitats can be roughly classified
as optimal (the conifers/oak) and suboptimal (the juniper/shrubs/
grass), we can model them using piecewise spatially uniform
environmental parameters (see Fig. 4). A possible time
dependence of Kðx,tÞ could be an oscillating xc(t), which would
produce a corresponding oscillation in the ranges of the high and
low density populations. This choice, however, does not seem to
be the best. This is so because xc represents the transition from
the forest to the grassland, and this does not oscillate seasonally.
What might be expected to vary sensibly in the course of the year
is the value of K itself. A plausible choice would be

Kðx,tÞ ¼
Kop if xrxc ,

KsoðtÞ if x4xc:

(
ð3Þ

An equation such as (2), together with (3) and with initial
condition in the optimal habitat, is expected to have solutions in
the form of a propagating front, connecting a region of high
population on the left to a region of low population on the right,
such as the simpler situations where K is uniform and constant.
However, the traveling wave solutions of FKPP’s equation propa-
gate in either one direction or the other, depending on the slope
of the front connecting the asymptotic equilibria to the left and to
the right. In our present scenario, with the optimal habitat on the
left, this means that the waves will propagate always toward the
right (with a speed that may be affected by the oscillating Kso(t)
on the right). Such a model would be unable to reproduce, even
qualitatively, the observed pattern of expansion and retraction of
the population. It is interesting that, even if the oscillating Kso(t)
approaches zero during its minima, this situation persists: the
negligible population in the suboptimal habitat recovers imme-
diately when Kso(t) increases again, and the front continues
towards the right. This is a drawback of all the models involving
a logistic term: the zero population state is always unstable, a
situation that may be far from reality, especially for rather small
populations such as the rodent ones observed in the region.

In a number of recent investigations (Kenkre, 2003; Kenkre and
Kuperman, 2003; Clerc et al., 2005, 2010; Kumar et al., 2009) we
have explored consequences on epidemics spread and general
pattern formation when equations of the FKPP type are generalized
to include the so-called Allee effect (Allee, 1931, 1938; Perthame,
2008). This effect, or feature, is present in many population
systems and means that the nature of the reaction in the reaction
diffusion scenario is such that the population suffers extinction if it
starts out at sufficiently low levels of population density, that its
growth overwhelms this tendency to extinction if the density
exceeds a critical level, and that at sufficiently high levels a
saturation effect sets in counteracting the Malthusian explosion.
The nonlinearity term that corresponds to this situation is cubic in
the population density (unlike quadratic as in the FKPP equation).
The representative generalization of the FKPP equation, termed
sometimes (Murray, 1993) the ‘‘reduced Nagumo equation’’, has
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been used by us in our previous work (Kenkre, 2003; Kenkre and
Kuperman, 2003; Clerc et al., 2005, 2010; Kumar et al., 2009) to
address ecological and pattern formation phenomena. We will use
that generalization in the analysis below.

The function f(u) we use here has the state u¼0 as stable, with
a threshold a below which the population is attracted to this
state. The equations are, in their simplest form,

@u

@t
¼ ruðu�aðx,tÞÞ 1�

u

Kðx,tÞ

� �
þD

@2u

@x2
: ð4Þ

As explained in detail elsewhere (Kenkre, 2003; Kenkre and
Kuperman, 2003; Clerc et al., 2005, 2010; Kumar et al., 2009) the
reaction part of Eq. (4) has three equilibria: u¼0 (stable), u¼a

(unstable) and u¼K (stable). The reduction of the growth rate at
low densities constitutes a usual mathematical model for the
Allee effect (Stephens et al., 1999; Courchamp et al., 1999). The
dynamics of small populations and their increased risk of extinc-
tion is a problem of considerable importance for invading popula-
tions and other systems with heterogeneous or changing habitats,
and it has been studied both theoretically and in the field
(Courchamp et al., 1999; Taylor and Hastings, 2005; Kokko and
Sutherland, 2001; Tobin et al., 2011). In the present case of P.

boylii, Tinnin observed (Tinnin, 2003) some evidence supporting
the increased instability of small populations. On the one hand,
the mass of the captured mice was smaller in the lower range, an
indicator of younger animals. Besides, the invaders do not find an
empty landscape but a resident population of P. leucopus, their
competitors for food and shelter resources. These observations,
together with the need to add stability to the equilibrium u¼0 to
support backward propagating fronts, contribute to the evidence
of an Allee effect at play in the system.

Eq. (4) has many interesting solutions in the form of traveling
waves, and for a wide region of parameters they represent
expanding and contracting populations. In the next section we
explore a variety of examples of these.
Fig. 5. Contour plot showing the average velocity (color coded as shown in the

legend) of the front propagating in the suboptimal habitat. The thick line shows

the level /cS¼ 0. Both parameters oscillate with a1 ¼ k1 ¼ 0:1. (For interpretation

of the references to color in this figure caption, the reader is referred to the web

version of this article.)
3. Traveling waves, expansion and contraction

We have undertaken an exploration of different behaviors
displayed by Eq. (4), both in scenarios that mimic the spatio-
temporal one found in the Sandı́a study and in other possibly
interesting cases.

Let us assume that the external driving of the system, through
K(t) and a(t), is sufficiently slow to ensure an adiabatic regime in
which the traveling front tracks them with a time dependent
velocity and a time dependent steepness, which has been shown
to occur for certain reaction–diffusion systems (Giuggioli et al.,
2008) when a traveling front possesses the same qualitative
shape although quantitatively different to the one in the asymp-
totic regime. Under such a condition, the usual transformation of
variables to a moving system of reference in which the front is
stationary can be made: x-x�cðtÞt, where t represents the slow
time scale of the adiabatic approximation. Furthermore, with the
boundaries uðz-�1Þ¼ 1 and uðz-1Þ¼ 0, and with K(t) and a(t)
kept piecewise uniform below and above xc, Eq. (4) has traveling
wave solutions with velocity (Murray, 1993):

cðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
rD

2KðtÞ

s
ðKðtÞ�2aðtÞÞ: ð5Þ

It is clear that the sign of the velocity depends on the sign of K�2a

in Eq. (5), so there is a possibility of fronts propagating in both
directions. Let us now specify the temporal variation of the
suboptimal environment and threshold parameters. We expect
that during the favorable season (the one with best food and
water resources, for example) the environmental parameter
would be highest and the Allee effect would be weakest, with
the smallest Nagumo threshold. In this context we can model
these parameters as opposite-phase harmonic oscillations:

KsoðtÞ ¼ k0þk1 sinð2pt=TÞ, ð6Þ

asoðtÞ ¼ a0þa1 sinð2pt=TþpÞ, ð7Þ

where T is the period of the oscillation. The average velocity of the
front can be found integrating Eq. (5) along a period:

/cS¼
1

T

Z T

0
cðtÞ dt

¼

ffiffiffiffiffiffiffiffiffi
2rD
p

p
kð2a1þk1ÞE 2k1

k

� �
�2ða0k1þa1k0ÞK 2k1

k

� �
k1

ffiffiffiffi
k
p , ð8Þ

where k¼ k0þk1, and EðxÞ and KðxÞ are complete elliptic integrals
of the second and first kinds, respectively (note that we use
calligraphic symbols for these, to avoid confusion with our
environmental parameter K). Fig. 5 shows this average speed as
a function of the mean values of the oscillating parameters, a0 and
k0. One of the contours in this plot is thicker than the others, and
it corresponds to stationary fronts with /cS¼ 0. The region above
this line corresponds to fronts propagating away towards the
right in the canyon. The region below it corresponds to fronts
propagating towards the interface at xc, where they get stabilized
by the density diffusing from the optimal habitat.

3.1. Representation of seasonal changes by oscillating parameters

For the sake of simplicity let us fix some of the parameters to
arbitrary values, and present examples of the behavior of the
solutions when only some of them change. In the following, we
shall keep constant the growth rate, r¼0.2, the diffusion coeffi-
cient, D¼1, the value of the optimal environmental parameter
Ko¼1, and the optimal value of the threshold ao¼0.1 which, in
relation to Ko, represents a weak Allee effect in the optimal
habitat.

Figs. 6 and 7 show the behavior of the total population,
UðtÞ ¼

R
uðx,tÞ dx, integrated over the whole system. Both figures

show a case with Kso and aso oscillating with opposite phases. I
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corresponds to a case with strong Allee effect in the suboptimal
habitat, which is necessary to have a front moving towards the
left (see Eq. (5)). When it comes close to the transition at xc it
stabilizes into an oscillating stationary state that moves forward
and backward with a period equal to that of the driving force.
Otherwise—if the Allee effect is not strong enough—the front
moves away unboundly towards the right, just as in the FKPP
equation case.

Fig. 6 shows that the amplitude of the oscillation depends on
the period T without any critical feature (compare to a case where
the adiabatic approximation breaks down, see below). Fig. 7
shows the correlation between the population and the range,
and it is the model equivalent to the field observation of Fig. 3.
Time is a parameter in this representation. The case correspond-
ing to the parameters used in Fig. 6 is the narrow loop shown
with a thick line. The population moves along this loop in the
Fig. 6. Population as a function of time, subject to periodic environment and

threshold parameters, characterized by their period T, indicated for each curve.

U(t) denotes the total population in the system.

Fig. 7. Population versus range in the model defined by Eq. (4). Thick line: the case

displayed in Fig. 6, with driving period T¼2000. Compare to Fig. 3. The stationary

oscillation moves along the loop. Red line: a stationary front with constant

population, corresponding to the same parameters but a1 ¼ 0 (no oscillation in

the threshold). Dashed blue line: a case showing the breakdown of the adiabatic

approximation, with k0¼0.6, k1¼0.15, a0¼0.29 and a1¼0.15, and driven with a

‘‘fast’’ T¼200. This same set of parameters, but with a slower driving (a larger T)

shows a stationary oscillating front with a behavior similar to the one shown by

the thick line. (For interpretation of the references to color in this figure caption,

the reader is referred to the web version of this article.)
stationary state. The correlation is linear enough to agree well
with the available observations. The width of the loop originates
in the different rates of growth, r, and spread, D, of the population.
So this width can be controlled by these parameters. Also, setting
k1 ¼ 0 (no environmental parameter oscillation) makes the loop
very narrow, almost one-dimensional . In the same Fig. 7 (thin full
line) we see that suppressing the oscillation of the threshold also
eliminates the population oscillation.

3.2. Breakdown of the adiabatic approximation

Eq. (8) (see also Fig. 5) allows fronts propagating with negative
velocity even if the Allee effect is not so strong, a0ok0=2,
provided that the amplitudes of the oscillation are the right ones.
However, for non-oscillating Kso and aso, this situation is unstable,
with a front propagating unboundly towards the right. Fig. 7
shows one such case with a spiralling dashed line. So, a transition
is expected as the period of the parameters grows from 0,
illustrating the validity of the adiabatic approximation performed
to calculate the average speed in Eq. (8). Fig. 8 shows this: even
though Eq. (8) predicts a stationary situation for this set of
parameters, a fast oscillation of the driving force gives a front
moving away with a positive average velocity. That is, if the
parameters Kso(t) and aso(t) oscillate much faster than the typical
timescale of the population dynamics, the population feels their
varying effect averaged over multiple oscillations. In this case, a
sudden approximation performs better, by setting Kso(t) and aso(t)
at their mean values, and these predict a positive velocity. The
relevance of these regimes in natural systems, in particular in the
field study carried out at the Sandı́a Mountain, cannot be assessed
at the present stage.
4. Remarks

Although reaction diffusion systems have been used exten-
sively to understand invasion dynamics in animal populations
(for a highly readable partial review of this wide topic see, e.g.,
Volpert and Petrovskii, 2009), applications of this kind of studies
in heterogeneous environment are not straightforward. Although
there is ample evidence that the invasion dynamics of an animal
population are crucially dependent on the characteristics of the
environment (Tilman and Kareiva, 1997), it is not always obvious
how to quantify its spatio-temporal features. To test the
Fig. 8. Breakdown of the adiabatic approximation. Even though Eq. (8) predicts a

stationary situation for this set of parameters, a fast oscillation of the driving force

gives a front moving away with a positive average velocity.
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applicability of reaction diffusion predictions in an environment
with varying spatio-temporal characteristics, we have analyzed
an experimental data set of an expanding and contracting P. boylii

mouse population along a steep canyon of the Sandı́a Mountain in
New Mexico, which has allowed to simplify the analysis reducing
the system to an effective one-dimensional model. By using a
reduced Nagumo equation (Murray, 1993), as done in our recent
studies of pattern formation and population dynamics (Kenkre,
2003; Kenkre and Kuperman, 2003; Clerc et al., 2005, 2010;
Kumar et al., 2009), it has been possible to link the spatio-
temporal oscillations observed in the mouse population along
the canyon to the spatio-temporal seasonal forcing in the
environment.

The model analyzed in detail in Section 3 has two parameters
that oscillate in time, representing seasonal changes in the
environment and their effect in the biological system. These are
Kso and aso, the environmental parameter and the threshold of
extinction, respectively, that characterize the Nagumo equation.
The functional dependence we postulated for them in Eqs. (6) and
(7), with a phase difference of half a period, is rooted in the
meaning of the parameters and the interpretation of their
seasonal dependence. Our choice of an out-of-phase oscillation
is a realistic one, but it is certainly possible that in some
circumstances the maximum threshold lags behind the minimum
of Kso(t). However, a small departure from the phase difference of
half a period that we have used in the present analysis does not
affect the dynamics observed or its interpretation that we have
presented.

The role of the cubic term in Eq. (4) is twofold in the
population dynamics. On the one hand, the stability of the u¼0
equilibrium and the existence of a threshold effectively provides a
negative growth rate in the vicinity of the null population. This
corresponds to the observed sub-optimal nature of part of the
habitat, with increased rates of winter kill, predation, scarceness
of resources, etc. On the other hand, the convex shape of the cubic
beyond the threshold provides global stability to the
population—this is just as in the case of a regular logistic term.
The temporal variation of Kso and aso, as explained above, ensures
a smooth transition between the seasons, providing growing and
shrinking basins of attraction.

As we said in the Introduction, the present knowledge of the
system does not allow a quantitative characterization of the
population density. Nevertheless, we suggest that the present
analysis provides a good qualitative account of the population
dynamics and the effects observed in the field, as well as an
indirect support for the existence of a relatively strong Allee effect
with a seasonal dependence.
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