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Abstract. We show that the Hochschild homology of a differential operator k-
algebra E = A#f U(g), is the homology of a deformation of the Chevalley-Eilenberg

complex of g with coefficients in (M⊗A
∗
, b∗). Moreover, when A is smooth and k is a

characteristic zero field, we obtain a type of Hochschild-Kostant-Rosenberg theorem
for these algebras. When A = k our complex reduce to the one obtained in [K] for
the homology of filtrated algebras whose associated graded algebras are symmetric
algebras. In the last section we give similar results for the cohomology.

Introduction

Let k be a field and A an associative k-algebra with 1. An extension E ⊇ A of
A is a differential operator ring on A if there exists a k-Lie algebra g and a vector
space embedding x 7→ x, of g into E, such that for all x, y ∈ g, a ∈ A:

1) xa− ax = ax, where a 7→ ax is a derivation,

2) xy− yx = [x, y]g + f(x, y), where [−,−]g is the bracket of g and f : g×g → A
is a bilinear map,

3) for a given basis (xi)i∈I of g, E is a free left A-module with the standard
monomials in the xi’s as a basis.

This general construction was introduced in [Ch] and [Mc-R]. Several particular
cases of this type of extensions have been considered previously in the literature.
For instance:

- when g is one dimensional, f is trivial and E is the Ore extension A[x, δ], where
δ(a) = ax,

- when A = k, one obtain the algebras studied by Sridharan in [S], which are the
quasi-commutative algebras E, whose associated graded algebras is a symmetric
algebra,

- in [Mc,§2] this type of extensions was studied under the hypothesis that A is
commutative and (x, a) 7→ ax is an action and in [B-G-R, Theorem 4.2] the case
in which the cocycle is trivial was considered.

In [B-C-M] and [D-T] the study of the crossed products A#fH of an algebra A
by a Hopf algebra H was begun and in [M] was proved that the differential operator
rings on A are the crossed products of A by enveloping algebras of Lie algebras.
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In [G-G] we obtained a complex, simpler than the canonical one, giving the
Hochschild homology of a general crossed product E = A#fH with coefficients in
an arbitrary E-bimodule M . In the present paper we show that, for differential
operators rings, a complex simpler than the one obtained in [G-G] also works, and
we give some applications of this result.

This paper is organized as follows: In Section 1 we recall the definition of differ-
ential operator rings following the Hopf algebra point of view of [B-C-M] and [D-T].
In Section 2 we recall a technical result, established in [G-G], that we need in order
to carry out our computations. In Section 3 we get a resolution of a differential
operator ring E = A#fU(g) as an E-bimodule. This resolution is a mixture of the
canonical Hochschild normalized resolution of A and the Chevalley-Eilenberg reso-
lution of g. In Section 4 we study the Hochschild homology of E with coefficients in
an arbitrary E-bimodule M . The main result is Theorem 4.1, where the promised
complex, which is a deformation of the Chevalley-Eilenberg complex of g with co-
efficients in (M ⊗A

∗
, b∗), is obtained. Then, we consider a natural filtration of this

complex, and we derive from it the spectral sequence of [St] in a more explicit way
than the original one. Then, we consider the case when A is a commutative smooth
algebra. The result obtained by us under this condition is a common generaliza-
tion of the Hochschild-Kostant-Rosenberg theorem and the computation given in
[K] for the Hochschild homology of algebras whose associated graded algebras are
symmetric algebras. Finally, in Section 5, we study the cohomology.

We thank the referee for a substantial simplification in the proof of Theo-
rem 3.1.1.

1. Preliminaries

Let A be a k-algebra and H a Hopf algebra. A weak action of H on A is a
bilinear map (h, a) 7→ ah from H ×A to A such that, for h ∈ H, a, b ∈ A

1) (ab)h =
∑

(h) ah(1)
bh(2)

,

2) 1h = ε(h)1,

3) a1 = a.

By an action of H on A we mean a weak action such that

4) (al)h = ahl for all h, l ∈ H, a ∈ A.

Let A be a k-algebra and H a Hopf algebra with a weak action on A. Given
a k-linear map f : H ⊗ H → A we let A#fH denote the k-algebra (in general
non associative and without 1) whose underlying vector space is A⊗H and whose
multiplication is given by

(a⊗ h)(b⊗ l) =
∑

(h)(l)

abh(1)
f(h(2), l(1))⊗ h(3)l(2),

for all a, b ∈ A, h, l ∈ H. The element a⊗h of A#fH will usually be written a#h to
remind us H is weakly acting on A. The algebra A#fH is called a crossed product
if it is associative with 1#1 as identity element. In [B-C-M] was proved that this
happen if and only if f and the weak action satisfy the following conditions

1) (Normality of f) for all h ∈ H we have f(h, 1) = f(1, h) = ε(h)1A,
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2) (Cocycle condition) for all h, l, m ∈ H we have
∑

(h)(l)(m)

f
(
l(1),m(1)

)h(1)

f
(
h(2), l(2)m(2)

)
=

∑

(h)(l)

f
(
h(1), l(1)

)
f
(
h(2)l(2),m

)
,

3) (Twisted module condition) for all h, l ∈ H, a ∈ A we have
∑

(h)(l)

(
al(1)

)h(1)

f
(
h(2), l(2)

)
=

∑

(h)(l)

f
(
h(1), l(1)

)
ah(2)l(2) .

From now on, we assume that H is the enveloping algebra U(g) of a Lie algebra
g. In this case, item 1) of the definition of weak action implies that (ab)x =
axb + abx for x ∈ g. So, a weak action determines a linear map δ : g −→ Derk(A)
by δ(x)(a) = ax. Moreover if (h, a) 7→ ah is an action, then δ is a homomorphism
of Lie algebras. Reciprocally given a linear map δ : g −→ Derk(A), there exists a
(generality non-unique) weak action of U(g) on A such that δ(x)(a) = ax. When
δ is a homomorphism of Lie algebras, there is a unique action of U(g) on A such
that δ(x)(a) = ax. For a proof of these facts see [B-C-M].

Next we show that each normal cocycle f : U(g) ⊗ U(g) −→ A is convolution
invertible, giving a formula for f−1.

Remark 1.1. Each normal cocycle f : U(g) ⊗ U(g) −→ A is convolution invertible.
Moreover, for each h ∈ U(g) and each family x1, . . . , xr of elements of g, we have
f−1(1, h) = f−1(h, 1) = ε(h)1A and

f−1(x1 · · ·xr, h) =
r∑

l=1

(−1)l
∑

1≤p1,...,pl
p1+···+pl=r

∑

τ∈Shp1,...,pl

∑

(h)

f
(
xτ(1) · · ·xτ(p1), h

(1)
)×

× f
(
xτ(p1+1) · · ·xτ(p1+p2), h

(2)
) · · · f(

xτ(p1+···+pl−1+1) · · ·xτ(r), h
(l)

)
,

where Shp1,...,pl
denotes the multishuffles associated to p1, . . . , pl. That is,

Shp1,...,pl
=

{
τ ∈ Sr : τ

(
1 +

i∑

j=1

pj

)
< · · · < τ

(i+1∑

j=1

pj

)
for 0 ≤ i < l

}
.

This fact can be proved by a direct computation.

2. A Method for Constructing Resolutions

Let k be a commutative ring with 1 and E a k-algebra. In this section we recall
a result that we will use in section 3. For the proof we remit to [G-G].

Let
...

∂3

²²
Y2

∂2

²²

X02
µ2oo X12

d0
12oo . . .

d0
22oo

Y1

∂1

²²

X01
µ1oo X11

d0
11oo . . .

d0
21oo

Y0 X00
µ0oo X10

d0
10oo . . .

d0
20oo
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be a diagram of E-bimodules and morphisms of E-bimodules verifying:

1) The column and the rows are chain complexes,

2) Each Xrs is isomorphic to a free E-bimodule E ⊗Xrs ⊗ E,

3) Each row is contractible as a complex of left E-modules, with a chain con-
tracting homotopy σ0

0s : Ys → X0s and σ0
r+1,s : Xrs → Xr+1,s (r ≥ 0).

We define E-bimodule morphisms dl
rs : Xrs → Xr+l−1,s−l (r ≥ 0 and 1 ≤ l ≤ s),

recursively by

dl
rs(x) =





−σ0
0,s−1 ◦ ∂s ◦ µs(x) if r = 0 and l = 1,

−∑l−1
j=1 σ0

l−1,s−l ◦ dl−j
j−1,s−j ◦ dj

0s(x) if r = 0 and 1 < l ≤ s,

−∑l−1
j=0 σ0

r+l−1,s−l ◦ dl−j
r+j−1,s−j ◦ dj

rs(x) if r > 0,

for x = 1⊗ x⊗ 1 with x ∈ Xrs.

Theorem 2.1. Let µ̃ : Y0 → E be a morphism of E-bimodules such that

E
eµ←− Y0

∂1←− Y1
∂2←− Y2

∂3←− Y3
∂4←− Y4

∂5←− Y5
∂6←− Y6

∂7←− . . . ,

is a complex that is contractible as a complex of left E-modules. Then

E
µ←− X0

d1←− X1
d2←− X2

d3←− X3
d4←− X4

d5←− X5
d6←− X6

d7←− . . . ,

where

µ = µ̃ ◦ µ0, Xn =
⊕

r+s=n

Xrs and dn =
∑

r+s=n
r+l>0

s∑

l=0

dl
rs,

is a relative projective resolution of E as an E-bimodule.

3. A resolution for a differential operator ring

Let E = A#fU(g) be a crossed product. In this section we obtain an E-bimodule
resolution (X∗, d∗) of E, that is simpler than the canonical of Hochschild. Then an
explicit expression of the boundary maps of this resolution is given. To begin, we
fix some notations:

1) For each k-algebra B and each r ∈ N, we write B = B/k, Br = B ⊗ · · · ⊗ B

(r times) and B
r

= B ⊗ · · · ⊗B (r times). Moreover, for b ∈ B, we also let b
denote the class of b in B.

2) Given a0 ⊗ · · · ⊗ ar ∈ Ar+1 and 0 ≤ i < j ≤ r, we write aij = ai ⊗ · · · ⊗ aj .

3) For each Lie k-algebra g and each s ∈ N, we write g∧s = g∧ · · · ∧ g (s times).

4) Given x = x1∧· · ·∧xs ∈ g∧s and 1 ≤ i ≤ s, we write xbı = x1∧· · ·∧x̂i∧· · ·∧xs.

5) Given x = x1 ∧ · · · ∧ xs ∈ g∧s and 1 ≤ i < j ≤ s, we write xbıb = x1 ∧ · · · ∧
x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xs.
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3.1. The complex (Y ′
∗ , ∂

′
X). Let g̃ be the direct sum of two copies {yx : x ∈ g}

and {zx : x ∈ g} of g, endowed with the bracket given by [yx, yx′ ]eg = y[x,x′]g and
[yx, zx′ ]eg = [zx, zx′ ]eg = z[x,x′]g . Note that g̃ is the semi-direct sum arising from the
adjoint action of g on itself. Let π : U(g̃) → U(g) be the algebra map defined by
π(yx) = π(zx) = x. Let Λ(g) be the exterior algebra generated by g. That is, the
algebra generated by the elements ex (x ∈ g) and the relations eλx+x′ = λex + ex′

and e2
x = 0 (λ ∈ k, x, x′ ∈ g). Let us consider the action of U(g̃) on Λ(g) determined

by eyx

x′ = e[x,x′]g and ezx

x′ = 0. The enveloping algebra U(g̃) of g̃ acts weakly on
A⊗Λ(g) via (a⊗e)u = aπ(u)⊗e+a⊗eu (a ∈ A, e ∈ Λ(g) and u ∈ U(g̃)). Moreover,
the map f̃ : U(g̃) × U(g̃) → A ⊗ Λ(g), defined by f̃(u, v) = f(π(u), π(v)) ⊗ 1, is a
normal 2-cocycle which satisfies the twisted module condition.

Theorem 3.1.1. Let Y ′
∗ be the graded algebra generated by A, the degree zero

elements yx, zx (x ∈ g), the degree one elements ex (x ∈ g) and the relations

yλx+x′ = λyx + yx′ ,

zλx+x′ = λzx + zx′ ,

eλx+x′ = λex + ex′ ,

yxa = ax + ayx,

zxa = ax + azx,

exa = aex,

ex′yx = yxex′ + e[x′,x]g ,

ex′zx = zxex′ ,

e2
x = 0,

yx′yx = yxyx′ + y[x′,x]g + f(x′, x)− f(x, x′),

zx′yx = yxzx′ + z[x′,x]g + f(x′, x)− f(x, x′),

zx′zx = zxzx′ + z[x′,x]g + f(x′, x)− f(x, x′).

Let (xi)i∈I be a basis of g with indexes running on an ordered set I. For each i ∈ I
let us write yi = yxi , zi = zxi and ei = exi . Then each Y ′

s is a free A-module with
basis

ym1
i1

eδ1
i1

zn1
i1
· · · yml

il
eδl
il

znl
il

(
l ≥ 0, i1 < · · · < il ∈ I, mj , nj ≥ 0, δj ∈ {0, 1}

mj + δj + nj > 0, δ1 + · · ·+ δl = s

)
.

Proof. Let ϑ : Y ′
∗ → (A ⊗ Λ(g))# efU(g̃) be the homomorphism of algebras defined

by ϑ(a) = (a⊗ 1)#1 for all a ∈ A and ϑ(yx) = (1⊗ 1)#yx, ϑ(zx) = (1⊗ 1)#zx and
ϑ(ex) = (1⊗ ex)#1 for all x ∈ g. Because of the Poincaré-Birkhoff-Witt theorem,

ϑ(ym1
i1

eδ1
i1

zn1
i1
· · · yml

il
eδl
il

znl
il

) (l ≥ 0, i1 < · · · < il ∈ I, mj , nj ≥ 0 and δj ∈ {0, 1}),

is a basis of (A⊗Λ(g))# efU(g̃) as an A-module. The theorem follows immediately
from this fact. ¤
Remark 3.1.2. Note that E is a subalgebra of Y ′

∗ by embedding a ∈ A to a and
x ∈ g to yx. This gives rise to an structure of left E-module on Y ′

s . Similarly we
consider Y ′

∗ as a right E-module via the embedding of E in Y ′
∗ that sends a ∈ A to

a and x ∈ g to zx.

Theorem 3.1.3. Let µ̃′ : Y ′
0 → E be the algebra map defined by µ̃′(a) = a for a ∈ A

and µ̃′(yi) = µ̃′(zi) = xi for i ∈ I. There is a unique derivation ∂′∗ : Y ′
∗ → Y ′

∗−1

such that ∂′1(ei) = zi − yi for i ∈ I. Moreover, the chain complex of E-bimodules

E
eµ′←− Y ′

0

∂′1←− Y ′
1

∂′2←− Y ′
2

∂′3←− Y ′
3

∂′4←− Y ′
4

∂′5←− Y ′
5

∂′6←− Y ′
6

∂′7←− . . .
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is contractible as a complex of k-modules. A chain contracting homotopy is given
by σ0(a#xm1

i1
· · ·xml

il
) = azm1

i1
· · · zml

il
and

σs+1(aym1
i1

eδ1
i1

zn1
i1
· · · yml

il
eδl
il

znl
il

)

= −
∑
j<α

0≤h<mj

azm1+n1
i1

· · · zmj−1+nj−1
ij−1

yh
ij

eij
z

mj+nj−h−1
ij

y
mj+1
ij+1

e
δj+1
ij+1

z
nj+1
ij+1

· · · yml
il

eδl
il

znl
il

,

where α = min{k : δk = 1} (in particular δ1 = · · · = δα−1 = 0).

Proof. We must check that µ̃′◦σ0 = id, σ0◦µ̃′+∂′1◦σ1 = id and ∂′s+1◦σs+1+σs◦∂′s =
id for all s > 0. It is immediate that

µ̃′ ◦ σ0(a#xm1
i1
· · ·xml

il
) = µ̃′(azm1

i1
· · · zml

il
) = a#xm1

i1
· · ·xml

il
and

σ0 ◦ µ̃′(aym1
i1

zn1
i1
· · · yml

il
znl
il

) = σ0(a#xm1+n1
i1

· · ·xml+nl
il

) = azm1+n1
i1

· · · zml+nl
il

.

Let us compute ∂′s+1 ◦ σs+1 for s ≥ 0 and σs ◦ ∂′s for s > 0. To abbreviate we write

Mmδn
iuv

= ymu
iu

eδu
iu

znu
iu
· · · ymv

iv
eδv
iv

znv
iv

for 1 ≤ u < v ≤ l,

Zm+n
iuv

= zmu+nu
iu

· · · zmv+nv
iv

for 1 ≤ u < v ≤ l,

|δ|h = δ1 + · · ·+ δh for 1 ≤ h ≤ l.

We have

∂′s+1 ◦ σs+1(aMmδn
i1l

) = ∂′s

(
−

∑
u<α

0≤h<mu

aZm+n
i1,u−1

yh
iu

eiuzmu+nu−h−1
iu

Mmδn
iu+1,l

)

= −
∑
u<α

0≤h<mu

aZm+n
i1,u−1

(yh
iu

zmu+nu−h
iu

− yh+1
iu

zmu+nu−h−1
iu

)Mmδn
iu+1,l

−
∑
u<α

0≤h<mu

∑

v≥α

(−1)|δ|vδvaZm+n
i1,u−1

yh
iu

eiuzmu+nu−h−1
iu

Mmδn
iu+1,v−1

ymv
iv

znv+1
iv

Mmδn
iv+1,l

+
∑
u<α

0≤h<mu

∑

v≥α

(−1)|δ|vδvaZm+n
i1,u−1

yh
iu

eiuzmu+nu−h−1
iu

Mmδn
iu+1,v−1

ymv+1
iv

znv
iv

Mmδn
iv+1,l

,

where α = min{k : δk = 1}. Since
∑
u<α

0≤h<mu

aZm+n
i1,u−1

(yh
iu

zmu+nu−h
iu

− yh+1
iu

zmu+nu−h−1
iu

)Mmδn
iu+1,l

=
∑
u<α

aZm+n
i1,u−1

(zmu+nu
iu

− ymu
iu

znu
iu

)Mmδn
iu+1,l

= aZm+n
i1,α−1

Mmδn
iαl

− aMmδn
i1l

,

we obtain

∂′s+1 ◦ σs+1(aMmδn
i1l

) = −aZm+n
i1,α−1

Mmδn
iαl

+ aMmδn
i1l

−
∑
u<α

0≤h<mu

∑

v≥α

(−1)|δ|vδvaZm+n
i1,u−1

yh
iu

eiuzmu+nu−h−1
iu

Mmδn
iu+1,v−1

ymv
iv

znv+1
iv

Mmδn
iv+1,l

+
∑
u<α

0≤h<mu

∑

v≥α

(−1)|δ|vδvaZm+n
i1,u−1

yh
iu

eiuzmu+nu−h−1
iu

Mmδn
iu+1,v−1

ymv+1
iv

znv
iv

Mmδn
iv+1,l

.
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On the other hand

σs ◦ ∂′s(aM
mδn
i1l

) = σs

(∑

v≥α

(−1)|δ|v−1δvaMmδn
i1,v−1

(ymv
iv

znv+1
iv

− ymv+1
iv

znv
iv

)Mmδn
iv+1,l

)
.

Since

σs

(
aMmδn

i1,α−1
(ymα

iα
znα+1
iα

− ymα+1
iα

znα
iα

)Mmδn
iα+1,l

)
= aZm+n

i1,α−1
ymα

iα
eiα

znα
iα

Mmδn
iα+1,l

−
∑
u<α

0≤h<mu

aZm+n
i1,u−1

yh
iu

eiu
zmu+nu−h−1
iu

Mmδn
iu+1,α−1

(ymα
iα

znα+1
iα

− ymα+1
iα

znα
iα

)Mmδn
iα+1,l

and, for v > α,

σs

(
aMmδn

i1,v−1
(ymv

iv
znv+1
iv

− ymv+1
iv

znv
iv

)Mmδn
iv+1,l

)

= −
∑
u<α

0≤h<mu

aZm+n
i1,u−1

yh
iu

eiuzmu+nu−h−1
iu

Mmδn
iu+1,v−1

(ymv
iv

znv+1
iv

− ymv+1
iv

znv
iv

)Mmδn
iv+1,l

,

we obtain

σs ◦ ∂′s(aM
mδn
i1l

) = aZm+n
i1,α−1

Mmδn
iαl

+
∑
u<α

0≤h<mu

∑

v≥α

(−1)|δ|vδvaZm+n
i1,u−1

yh
iu

eiuzmu+nu−h−1
iu

Mmδn
iu+1,v−1

ymv
iv

znv+1
iv

Mmδn
iv+1,l

−
∑
u<α

0≤h<mu

∑

v≥α

(−1)|δ|vδvaZm+n
i1,u−1

yh
iu

eiuzmu+nu−h−1
iu

Mmδn
iu+1,v−1

ymv+1
iv

znv
iv

Mmδn
iv+1,l

.

The result follows immediately from these facts. ¤
3.2. The resolution (X∗, d∗). Let Ys = E ⊗ g∧s ⊗ U(g) (s ≥ 0) and Xrs =
E ⊗ g∧s ⊗ A

r ⊗ E (r, s ≥ 0). The groups Xrs are E-bimodules in an obvious way
and the groups Ys are E-bimodules via the left canonical action and the right action

(
a0⊗(v⊗x⊗w)

)
(a#u) =

∑

(u)(v)(w)

a0(aw(1)
)v(1)

f(w(2), u(1))v(2)⊗(
v(3)⊗x⊗w(3)u(2)

)
,

where x = x1 ∧ · · · ∧ xs. Let us consider the diagram

...

∂3

²²
Y2

∂2

²²

X02
µ2oo X12

d0
12oo . . .

d0
22oo

Y1

∂1

²²

X01
µ1oo X11

d0
11oo . . .

d0
21oo

Y0 X00
µ0oo X10

d0
10oo . . .

d0
20oo

,
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where ∂∗ : Y∗ −→ Y∗−1, µ∗ : X0∗ → Y∗ and d0
∗∗ : X∗∗ → X∗−1,∗, are defined by:

∂s

(
a#v ⊗ x⊗ w

)
=

s∑

i=1

(−1)i
∑

(v)(xi)

af(v(1), x
(1)
i )#v(2)x

(2)
i ⊗ xbı ⊗ w

−
s∑

i=1

(−1)i
∑

(w)(xi)

af(x(1)
i , w(1))v(1)

#v(2) ⊗ xbı ⊗ x
(2)
i w(2)

−
∑

1≤i<j≤s

(−1)i+ja#v ⊗ [xi, xj ] ∧ xbıb ⊗ w,

µs

(
a0#v ⊗ x⊗ a1#w

)
=

∑

(v)

a0a
v(1)

1 #v(2) ⊗ x⊗ w,

d0
rs

(
a0#v ⊗ x⊗ a1,r+1#w

)
=

∑

(v)

a0a
v(1)

1 #v(2) ⊗ x⊗ a2,r+1#w

+
r∑

i=1

(−1)ia0#v ⊗ x⊗ a1,i−1⊗ aiai+1⊗ ai+1,r+1#w,

where a1,r+1 = a1 ⊗ · · · ⊗ ar+1 and x = x1 ∧ · · · ∧ xs. It is immediate that
the µs’s and the d0

rs’s are E-bimodule maps. In the proof of Theorem 3.2.1 we
will see that the ∂s’s also are. Each horizontal complex X∗s is the tensor product
(E⊗U(g))⊗A(A⊗A

∗
, b′∗)⊗AE, where E⊗U(g) is a right A-module via the canonical

inclusion of A in E. Hence, the family σ0
0s : Ys → X0s, σ0

r+1,s : Xrs → Xr+1,s

(r ≥ 0), of left E-module maps, defined by

σ0
r+1,s

(
a0#v ⊗ x⊗ a1,r+1#w

)
= (−1)r+1a0#v ⊗ x⊗ a1,r+1 ⊗ 1#w (r ≥ −1),

is a contracting homotopy of

Ys
µs←− X0s

d0
1s←−− X1s

d0
2s←−− X2s

d0
2s←−− X3s

d0
3s←−− X4s

d0
4s←−− . . . .

Moreover each Xrs is a projective relative E-bimodule. We define E-bimodule maps

dl
rs : Xrs → Xr+l−1,s−l (r ≥ 0 and 1 ≤ l ≤ s),

recursively by:

dl
rs(y) =





−σ0
0,s−1 ◦ ∂s ◦ µs(y) if r = 0 and l = 1,

−∑l−1
j=1 σ0

l−1,s−l ◦ dl−j
j−1,s−j ◦ dj

0s(y) if r = 0 and 1 < l ≤ s,

−∑l−1
j=0 σ0

r+l−1,s−l ◦ dl−j
r+j−1,s−j ◦ dj

rs(y) if r > 0,

where y = 1#1⊗ x1 ∧ · · · ∧ xs ⊗ a1r ⊗ 1#1 ∈ Xrs.

Theorem 3.2.1. The complex

E
µ←− X0

d1←− X1
d2←− X2

d3←− X3
d4←− X4

d5←− X5
d6←− X6

d7←− . . . ,
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where µ(a0#v ⊗ a1#w) =
∑

(v)(w) a0a
v(1)

1 f(v(2), w(1))#v(3)w(2),

Xn =
⊕

r+s=n

Xrs and dn =
∑

r+s=n
r+l>0

s∑

l=0

dl
rs

is a relative projective resolution of the E-bimodule E.

Proof. Let µ̃′ : Y ′
0 → E and (Y ′

∗ , ∂
′
∗) be as in Theorem 3.1.1 and let µ̃ : Y0 → E be

the E-bimodule map defined by

µ̃(a⊗ (v ⊗ w)) =
∑

(v)(w)

af(v(1), w(1))#v(2)w(2).

Let ϑ∗ : (Y∗, ∂∗) → (Y ′
∗ , ∂

′
∗) be the isomorphism of E-bimodule complexes, deter-

mined by ϑs(x1 ∧ · · · ∧ xs) = ex1 ∧ · · · ∧ exs . Since µ̃ = µ̃′ ◦ ϑ0, we obtain from
Theorem 3.1.1, that the complex of E-bimodules

E
eµ←− Y0

∂1←− Y1
∂2←− Y2

∂3←− Y3
∂4←− Y4

∂5←− Y5
∂6←− Y6

∂7←− . . . ,

is contractible as a complex of k-modules. Hence, the result follows immediately
from Theorem 2.1. ¤

The boundary maps of the relative projective resolution of E that we just found
are defined recursively. Next we compute these morphisms.

Theorem 3.3. For xi, xj ∈ g, we put f̂ij = f(xi, xj)− f(xj , xi). We have:

d1
rs

(
a0#1⊗ x⊗ a1,r+1#1

)
=

s∑

i=1

(−1)i+r+1a0#xi ⊗ xbı ⊗ a1,r+1#1

+
s∑

i=1

(−1)i+ra0#1⊗ xbı ⊗ a1,r+1#xi

+
s∑

i=1
1≤h≤r+1

(−1)i+ra0#1⊗ xbı ⊗ a1,h−1⊗ axi

h ⊗ ah+1,r+1#1

+
∑

1≤i<j≤s

(−1)i+j+ra0#1⊗ [xi, xj ] ∧ xbıb ⊗ a1,r+1#1,

d2
rs

(
a0#1⊗ x⊗ a1,r+1#1

)
=

∑
1≤i<j≤s
0≤h≤r

(−1)i+j+ha0#1⊗ xbıb ⊗ a1h ⊗ f̂ij ⊗ ah,r+1#1

and dl
rs = 0 for all l ≥ 3, where a1,r+1 = a1 ⊗ · · · ⊗ ar+1 and x = x1 ∧ · · · ∧ xs.

Proof. To unify the expressions in the proof, we put d0
0s := µs, d1

−1,s = ∂s and
d2
−1,s = 0. First, we compute the maps d1

rs. For r = −1 the assertion is trivial.
Suppose r ≥ 0 and the result is valid for d1

r′s with −1 ≤ r′ < r. Since, for all
r, s ≥ 0,

(1) σrs

(
b0#v ⊗ x⊗ b1,r−1 ⊗ 1#w)

)
= 0,
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then

d1
rs

(
a0#1⊗ x⊗ a1r ⊗ 1#1

)
= −σ0

r,s−1 ◦ d1
r−1,s ◦ d0

rs

(
a0#1⊗ x⊗ a1r ⊗ 1#1

)

= (−1)r+1σ0
r,s−1 ◦ d1

r−1,s

(
a0#1⊗ x⊗ a1r#1

)
.

Hence, the formula for d1
rs

(
a0#1⊗x⊗a1r⊗1#1

)
follows immediately by induction

on r. Now, let us compute d2
rs. Suppose r ≥ 0 and the result is valid for d2

r′s with
0 ≤ r′ < r. Using (1) twice, we get

d2
rs

(
a0#1⊗ x⊗ a1r ⊗ 1#1

)

= −σ0
r+1,s−2 ◦

(
d2

r−1,s ◦ d0
rs + d1

r,s−1 ◦ d1
rs

)(
a0#1⊗ x⊗ a1r ⊗ 1#1

)

= σ0
r+1,s−2

( ∑

1≤i<j≤s

r−1∑

h=0

(−1)i+j+h+r+1a0#1⊗ xbıb ⊗ a1h ⊗ f̂ij ⊗ ah+1,r#1

)

− σ0
r+1,s−2

(
d1

r,s−1

(
s∑

j=1

(−1)j+ra0#1⊗ xb ⊗ a1r ⊗ 1#1

)
(1#xj)

)

=
∑

1≤i<j≤s

r−1∑

h=0

(−1)i+j+ha0#1⊗ xbıb ⊗ a1h ⊗ f̂ij ⊗ ah+1,r ⊗ 1#1

− σ0
r+1,s−2

( ∑

1≤i<j≤s

(−1)i+ja0#1⊗ xbıb ⊗ a1r ⊗ f̂ij#1

)

=
∑

1≤i<j≤s

r∑

l=0

(−1)i+j+ha0#1⊗ xbıb ⊗ a1h ⊗ f̂ij ⊗ ah+1,r ⊗ 1#1.

To prove that dl
rs = 0 for all l > 2, it is sufficient to check that

σ0
r+2,s−4 ◦ d2

r+1,s−2 ◦ d2
rs

(
a0#1⊗ x⊗ a1r ⊗ 1#1

)
= 0,

σ0
r+1,s−3 ◦ d1

r+1,s−2 ◦ d2
rs

(
a0#1⊗ x⊗ a1r ⊗ 1#1

)
= 0,

σ0
r+1,s−3 ◦ d2

r,s−1 ◦ d1
rs

(
a0#1⊗ x⊗ a1r ⊗ 1#1

)
= 0. ¤

Next, we give an explicit formula for the comparison map between (X∗, d∗) and
the canonical normalized Hochschild resolution (E ⊗ E

∗ ⊗ E, b′∗). Using this map
it is easy to obtain explicit quasi-isomorphisms from the complex obtained in the
following section for the Hochschild homology into the canonical one, and similarly
for the cohomology.

Remark 3.4. There is a map of complexes θ∗ : (X∗, d∗) → (E ⊗ E
∗ ⊗ E, b′∗), given

by

θr+s

(
1E ⊗ x1 ∧ · · · ∧ xs ⊗ a1 ⊗ · · · ⊗ ar ⊗ 1E

)

=
∑

τ∈Ss

sg(τ)1E ⊗
(
(1#xτ(1))⊗ · · · ⊗ (1#xτ(s))

) ∗ (
(a1#1)⊗ · · · ⊗ (ar#1)

)⊗ 1E ,

where ∗ denotes the shuffle product defined by

(e1 ⊗ · · · ⊗ es) ∗ (es+1 ⊗ · · · ⊗ en) =
∑

σ∈{(s,n−s)−shuffles}
sg(σ)eσ(1) ⊗ · · · ⊗ eσ(n).
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4. The Hochschild homology

Let E = A#fU(g) and M an E-bimodule. We use Theorem 3.2.1 in order to con-
struct a complex X∗(E, M), simpler than the canonical one, giving the Hochschild
homology of E with coefficients in M .

The complex X∗(E, M). Let r, s, l ≥ 0 with l ≤ min(2, s) and r + l > 0. We
define the morphism d

l

rs : M ⊗A
r ⊗ g∧s → M ⊗A

r+l−1 ⊗ g∧s−l, by:

d
0

rs(m⊗ a1r ⊗ x) = ma1 ⊗ a2r ⊗ x +
r−1∑

i=1

(−1)im⊗ a1,i−1 ⊗ aiai+1 ⊗ ai+2,r ⊗ x

+ (−1)rarm⊗ a1,r−1 ⊗ x,

d
1

rs(m⊗ a1r ⊗ x) =
s∑

i=1

(−1)i+r
(
(1#xi)m−m(1#xi)

)⊗ a1r ⊗ xbı

+
s∑

i=1
1≤h≤r

(−1)i+rm⊗ a1,h−1 ⊗ axi

h ⊗ ah+1,r ⊗ xbı

+
∑

1≤i<j≤s

(−1)i+j+rm⊗ a1r ⊗ [xi, xj ] ∧ xbıb,

d
2

rs(m⊗ a1r ⊗ x) =
∑

1≤i<j≤s
0≤h≤r

(−1)i+j+hm⊗ a1h ⊗ f̂ij ⊗ ah+1,r ⊗ xbıb,

where a1r = a1 ⊗ · · · ⊗ ar, x = x1 ∧ · · · ∧ xs and f̂ij = f(xi, xj)− f(xj , xi).

Theorem 4.1. The Hochschild homology H∗(A,M), of E with coefficients in M ,
is the homology of

X∗(E, M) = X0
d1←− X1

d2←− X2
d3←− X3

d4←− X4
d5←− X5

d6←− X6
d7←− . . . ,

where

Xn =
⊕

r+s=n

M ⊗A
r ⊗ g∧s and dn =

∑
r+s=n
r+l>0

min(s,2)∑

l=0

d
l

rs.

Proof. It follows from the fact that X∗(E,M) is the complex obtained by taking
the tensor product M⊗Ee (X∗, d∗), where (X∗, d∗) is the complex of Theorem 3.2.1,
and using the identifications ϑrs : M ⊗A

r ⊗ g∧s −→ M ⊗Ee E⊗ g∧s⊗A
r⊗E, given

by ϑrs(m⊗ a1r ⊗ x) = m⊗ (1#1⊗ x⊗ a1r ⊗ 1#1). ¤
Note that when f takes its values in k, then X∗(E, M) is the total complex of

the double complex
(
M ⊗A

∗ ⊗ g∧∗, d
0

∗∗, d
1

∗∗
)
.

4.2. Stefan’s Spectral sequence. Next we show that the complex X∗(E, M)
has a natural filtration, which gives a more explicit version of the homology spectral
sequence obtained in [St].

For each x ∈ g, we have the morphism Θx
∗ : (M⊗A

∗
, b∗) −→ (M⊗A

∗
, b∗), defined

by Θx
r (m⊗ a1r) =

(
(1#x)m−m(1#x)

)⊗ a1r +
∑

1≤h≤r m⊗ a1,h−1 ⊗ ax
h ⊗ ah+1,r.
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Proposition 4.2.1. For each x, x′ ∈ g the endomorphisms of H∗(A,M) induced
by Θx′

∗ ◦ Θx
∗ − Θx

∗ ◦ Θx′
∗ and by Θ[x,x′]

∗ coincide. Consequently H∗(A,M) is a right
U(g)-module.

Proof. By a standard argument it is sufficient to prove it for H0(A,M). In this case,
the assertion can be easily checked, using that (1#x′)(1#x) = f(x′, x)#1 + 1#x′x
for all x, x′ ∈ g. ¤

The chain complex X∗(E, M) has the filtration F0 ⊆ F1 ⊆ F2 ⊆ . . . , where

Fi(Xn) =
⊕

r+s=n
r≥0, 0≤s≤i

M ⊗A
r ⊗ g∧s.

Using this fact and Proposition 4.2.1, we obtain the following:

Corollary 4.2.2. There is a converging spectral sequence

E2
rs = Hs(g, Hr(A,M)) ⇒ Hr+s(E, M).

Given an A-bimodule M we let [A,M ] denote the k-submodule of M generated
by the commutators am−ma (a ∈ A and m ∈ M).

Corollary 4.2.3. If A is separable, then H∗(E, M) = H∗
(
g, M

[A,M ]

)
.

4.3. Smooth algebras. Let A be a commutative ring and let M be a symmetric
A-bimodule. In the famous paper [H-K-R] was proved that if A is a commutative
smooth k-algebra, then Hn(A,M) = M⊗AΩn

A/k, where Ωn
A/k denotes the A-module

of differential n-forms of A. Next, we generalize this result by computing the
Hochschild homology of a differential operator ring E = A#fU(g) with coefficients
in an E-bimodule M which is symmetric as an A-bimodule, under the hypothesis
that Q ⊆ k and A is a commutative smooth k-algebra.

Let us assume that Q ⊆ k, A is a commutative ring and M is symmetric as an
A-bimodule. For each r, s, l ≥ 0 with 1 ≤ l ≤ min(2, s), we define the morphism
d̃l

rs : M ⊗A Ωr
A/k ⊗ g∧s → M ⊗A Ωr+l−1

A/k ⊗ g∧s−l, by:

d̃1
rs(m⊗A da1 · · · dar ⊗ x) =

s∑

i=1

(−1)i+r
(
(1#xi)m−m(1#xi)

)⊗A da1 · · · dar ⊗ xbı

+
s∑

i=1
1≤h≤r

(−1)i+rm⊗ da1 · · · dah−1daxi

h dah+1 · · · dar ⊗ xbı

+
∑

1≤i<j≤s

(−1)i+j+rm⊗A da1 · · · dar ⊗ [xi, xj ] ∧ xbıb,

d̃2
rs(m⊗A da1 · · · dar ⊗ x) =

∑

1≤i<j≤s

(−1)i+jm⊗A df̂ijda1 · · · dar ⊗ xbıb,

where x = x1 ∧ · · · ∧ xs and f̂ij = f(xi, xj)− f(xj , xi). Consider the complex

X̃∗(E, M) = X̃0

ed1←− X̃1

ed2←− X̃2

ed3←− X̃3

ed4←− X̃4

ed5←− X̃5

ed6←− X̃6

ed7←− . . . ,
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where

X̃n =
⊕

r+s=n

M ⊗A Ωr
A/k ⊗ g∧s and d̃n =

∑
r+s=n
r+l>0

min(s,2)∑

l=1

d̃l
rs.

Let ϑn : Xn −→ X̃n be the map ϑn(m⊗a1r⊗x) = 1
r!m⊗A da1 · · · dar⊗x. It is easy

to check that ϑ∗ : X∗(E, M) −→ X̃∗(E, M) is a morphism of complexes, which is a
quasi-isomorphism when A is smooth. Hence, in this case, the Hochschild homology
of E with coefficients in M is the homology of X̃∗(E,M).

A filtrated algebra E is called quasi-commutative if its associated graded algebra
is commutative. In [S] was proved that if E a quasi-commutative algebra whose
associated graded algebra is a polynomial ring, then E is isomorphic to a differential
polynomial ring k#fU(g), with g a finite dimensional Lie algebra. The Hochschild
homology of this type of algebras was computed in [K, Theorem 3]. Next, we
generalize this result.

Remark 4.3.1. Now, we assume that g acts trivially on A. Consider the symmetric
algebra S = SA(g), endowed with the Poisson bracket defined by {a, x} = {a, b} = 0
and {x, y} = f(x, y) − f(y, x) + [x, y]g (a ∈ A, x, y ∈ g). It is easy to check that
X̃∗(E, E) is isomorphic to the canonical complex (Ω∗S/k, δ∗) introduced by Brylinski
and Koszul in [B] and [Ko] respectively. In fact an isomorphism Θ∗ : (Ω∗S/k, δ∗) →
X̃∗(E, E) is given by Θr+s(Pda1 · · · dardx1 · · · dxs) = (−1)sη(P )da1 · · · darx1∧· · ·∧
xs, where P ∈ S, a1, . . . , ar ∈ A, x1, . . . , xs ∈ g and η : S → E is the symmetrization
η(ay1 · · · yn) = a

n!

∑
σ∈Sn

yσ(1) · · · yσ(n).

4.4. Compatibility with the canonical decomposition. Let us assume that
k ⊇ Q, A is a commutative ring, M is symmetric as an A-bimodule and the cocycle
f takes its values in k. In [G-S] was obtained a decomposition of the canonical
Hochschild complex (M ⊗ A

∗
, b∗). It is easy to check that the maps d0 and d1

are compatible with this decomposition. Since d2 is the zero map, we obtain a
decomposition of X∗(E, M), and then a decomposition of H∗(E, M).

5. The Hochschild cohomology

Let E = A#fU(g) and M an E-bimodule. Using again Theorem 3.5 we con-
struct a complex X

∗
(E, M), simpler than the canonical one, giving the Hochschild

cohomology of E with coefficients in M .

The complex X
∗
(E, M). Let r, s, l ≥ 0 with l ≤ min(2, s) and r + l > 0. We

define the morphism d
rs

l : Homk(A
r+l−1 ⊗ g∧s−l,M) → Homk(A

r ⊗ g∧s,M), by:

d
rs

0 (ϕ)(a1r ⊗ x) = a1ϕ(a2r ⊗ x) +
r−1∑

i=1

(−1)iϕ(a1,i−1 ⊗ aiai+1 ⊗ ai+2,r ⊗ x)

+ (−1)rϕ(a1,r−1 ⊗ x)ar,

d
rs

1 (ϕ)(a1r ⊗ x) =
s∑

i=1

(−1)i+r
[
ϕ(a1r ⊗ xbı)(1#xi)− (1#xi)ϕ(a1r ⊗ xbı)

]
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+
s∑

i=1
1≤h≤r

(−1)i+rϕ(a1,h−1 ⊗ axi

h ⊗ ah+1,r ⊗ xbı)

+
∑

1≤i<j≤s

(−1)i+j+rϕ(a1r ⊗ [xi, xj ] ∧ xbıb),

d
rs

2 (ϕ)(a1r ⊗ x) =
∑

1≤i<j≤s
0≤h≤r

(−1)i+j+hϕ(a1h ⊗ f̂ij ⊗ ah+1,r ⊗ xbıb),

where a1r = a1⊗· · ·⊗ar, x = x1∧· · ·∧xs and f̂ij = f(xi, xj)−f(xj , xi). Applying
the functor HomEe(−,M) to the complex (X∗, d∗) of Theorem 3.2.1, and using the
identifications

ϑrs : Homk(A
r ⊗ g∧s, M) −→ HomEe

(
E ⊗ g∧s ⊗A

r ⊗ E, M
)
,

given by ϑrs(ϕ)(1#1⊗ x⊗ a1r ⊗ 1#1) = ϕ(a1r ⊗ x), we obtain the complex

X
∗
(E, M) = X

0 d
1

−→ X
1 d

2

−→ X
2 d

3

−→ X
3 d

4

−→ X
4 d5−→ X

5 d
6

−→ X
6 d

7

−→ . . . ,

where

X
n

=
⊕

r+s=n

Homk(A
r ⊗ g∧s, M) and d

n
=

∑
r+s=n
r+l>0

min(s,2)∑

l=0

d
rs

l .

Note that when f takes its values in k, then X
∗
(E,M) is the total complex of the

double complex
(
Homk(A

∗ ⊗ g∧∗,M), d
∗∗
0 , d

∗∗
1

)
.

Theorem 5.1. The Hochschild cohomology H∗(E, M), of E with coefficients in
M , is the homology of X

∗
(E, M).

Proof. It is an immediate consequence of the above discussion. ¤
5.2. Stefan’s Spectral sequence. Next we show that the complex X

∗
(E, M) has

a natural filtration, which gives a more explicit version of the cohomology spectral
sequence obtained in [St].

For each x ∈ g, we have the map Θ∗x :
(
Homk(A

∗
,M), b∗

) −→ (
Homk(A

∗
,M), b∗

)
,

defined by Θr
x(ϕ)(a1r) = (1#x)ϕ(a1r)−ϕ(a1r)(1#x)−∑r

h=1 ϕ(a1,h−1⊗ax
h⊗ah+1,r).

Proposition 5.2.1. For each x, x′ ∈ g the endomorphisms of H∗(A,M) induced
by Θ∗x′ ◦ Θ∗x − Θ∗x ◦ Θ∗x′ and by Θ∗[x′,x] coincide. Consequently H∗(A,M) is a left
U(g)-module.

Proof. It is similar to the proof of Proposition 4.2.1. ¤

The cochain complex X
∗
(E,M) has the filtration F 0 ⊇ F 1 ⊇ . . . , where

F i(X
n
) =

⊕
r+s=n

r≥0, s≥i

Homk

(
A

r ⊗ g∧s, M
)
.

From this fact and Proposition 5.2.1, we obtain the following:
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Corollary 5.2.2. There is a converging spectral sequence

Ers
2 = Hs(g,Hr(A,M)) ⇒ Hr+s(E, M).

Given an A-bimodule M we let MA denote the k-submodule of M consisting of
the elements m verifying am = ma for all a ∈ A.

Corollary 5.2.3. If A is separable, then H∗(E, M) = H∗
(
g,MA

)
.

5.3. Smooth algebras. Let us assume that k ⊇ Q, A is a commutative ring and
M is symmetric as an A-bimodule. For each r, s, l ≥ 0 with 1 ≤ l ≤ min(2, s), we
define the morphism d̃rs

l : HomA(Ωr+l−1
A/k ⊗g∧s−l,M) → HomA(Ωr

A/k⊗g∧s,M), by:

d̃rs
1 (ϕ)(da1 · · · dar ⊗ x) =

s∑

i=1

(−1)i+r
[
ϕ(da1 · · · dar ⊗ xbı), (1#xi)

]

+
s∑

i=1
1≤h≤r

(−1)i+rϕ(da1 · · · dh−1daxi

h dh+1 · · · dr ⊗ xbı)

+
∑

1≤i<j≤s

(−1)i+j+rϕ(da1 · · · dar ⊗ [xi, xj ] ∧ xbıb),

d̃rs
2 (ϕ)(da1 · · · dar ⊗ x) =

∑

1≤i<j≤s

(−1)i+jϕ
(
df̂ijda1 · · · dar ⊗ xbıb

)
,

where x = x1∧· · ·∧xs, f̂ij = f(xi, xj)−f(xj , xi) and
[
ϕ(da1 · · · dar⊗xbı), (1#xi)

]
=

ϕ(da1 · · · dar ⊗ xbı)(1#xi)− (1#xi)ϕ(da1 · · · dar ⊗ xbı). Consider the complex

X̃∗(E, M) = X̃0 ed1

−→ X̃1 ed2

−→ X̃2 ed3

−→ X̃3 ed4

−→ X̃4 ed5−→ X̃5 ed6

−→ X̃6 ed7

−→ . . . ,

where

X̃n =
⊕

r+s=n

Homk(Ωr
A/k ⊗ g∧s,M) and d̃n =

∑
r+s=n
r+l>0

min(s,2)∑

l=1

d̃rs
l .

Let ϑn : X̃n −→ X
n

be the map ϑn(ϕ)(a1r ⊗ x) = 1
r!ϕ(da1 · · · dar ⊗ x). It is easy

to check that ϑ∗ : X̃∗(E,M) −→ X
∗
(E, M) is a morphism of complexes, which

is a quasi-isomorphism when A is smooth. Hence, in this case, the Hochschild
cohomology of E with coefficients in M is the cohomology of X̃∗(E,M).

5.4. Compatibility with the canonical decomposition. Let us assume that
k ⊇ Q, A is a commutative ring, M is symmetric as an A-bimodule and the
cocycle f takes its values in k. Then, the Hochschild cohomology H∗(E, M) has a
decomposition similar to the one obtained in 4.4 for the Hochschild homology.
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