HOCHSCHILD (CO)HOMOLOGY OF
DIFFERENTIAL OPERATOR RINGS

JORGE A. GUCCIONE AND JUAN J. GUCCIONE

ABSTRACT. We show that the Hochschild homology of a differential operator k-
algebra E = A#:U(g), is the homology of a deformation of the Chevalley-Eilenberg
complex of g with coefficients in (M QA" , bx). Moreover, when A is smooth and & is a
characteristic zero field, we obtain a type of Hochschild-Kostant-Rosenberg theorem
for these algebras. When A = k our complex reduce to the one obtained in [K] for
the homology of filtrated algebras whose associated graded algebras are symmetric
algebras. In the last section we give similar results for the cohomology.

INTRODUCTION

Let k be a field and A an associative k-algebra with 1. An extension E O A of
A is a differential operator ring on A if there exists a k-Lie algebra g and a vector
space embedding = — 7, of g into E, such that for all z,y € g, a € A:
1) Ta — aZ = a”, where a — a” is a derivation,
2) Ty —yT = [x,ylqg + f(x,y), where [—, —]4 is the bracket of gand f: gxg— A
is a bilinear map,
3) for a given basis (x;);er of g, E is a free left A-module with the standard
monomials in the z;’s as a basis.

This general construction was introduced in [Ch] and [Mc-R]. Several particular
cases of this type of extensions have been considered previously in the literature.
For instance:

- when g is one dimensional, f is trivial and F is the Ore extension Az, §], where
6(a) = a”,
- when A = k, one obtain the algebras studied by Sridharan in [S], which are the

quasi-commutative algebras F, whose associated graded algebras is a symmetric
algebra,

- in [Mc,§2] this type of extensions was studied under the hypothesis that A is
commutative and (z,a) — a” is an action and in [B-G-R, Theorem 4.2] the case
in which the cocycle is trivial was considered.

In [B-C-M] and [D-T] the study of the crossed products A# ¢H of an algebra A
by a Hopf algebra H was begun and in [M] was proved that the differential operator
rings on A are the crossed products of A by enveloping algebras of Lie algebras.
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In [G-G] we obtained a complex, simpler than the canonical one, giving the
Hochschild homology of a general crossed product = A# ¢H with coefficients in
an arbitrary E-bimodule M. In the present paper we show that, for differential
operators rings, a complex simpler than the one obtained in [G-G] also works, and
we give some applications of this result.

This paper is organized as follows: In Section 1 we recall the definition of differ-
ential operator rings following the Hopf algebra point of view of [B-C-M] and [D-T].
In Section 2 we recall a technical result, established in [G-G], that we need in order
to carry out our computations. In Section 3 we get a resolution of a differential
operator ring E = A#;U(g) as an E-bimodule. This resolution is a mixture of the
canonical Hochschild normalized resolution of A and the Chevalley-Eilenberg reso-
lution of g. In Section 4 we study the Hochschild homology of E with coefficients in
an arbitrary E-bimodule M. The main result is Theorem 4.1, where the promised
complex, which is a deformation of the Chevalley-FEilenberg complex of g with co-
efficients in (M ®E*, b.), is obtained. Then, we consider a natural filtration of this
complex, and we derive from it the spectral sequence of [St] in a more explicit way
than the original one. Then, we consider the case when A is a commutative smooth
algebra. The result obtained by us under this condition is a common generaliza-
tion of the Hochschild-Kostant-Rosenberg theorem and the computation given in
[K] for the Hochschild homology of algebras whose associated graded algebras are
symmetric algebras. Finally, in Section 5, we study the cohomology.

We thank the referee for a substantial simplification in the proof of Theo-
rem 3.1.1.

1. PRELIMINARIES

Let A be a k-algebra and H a Hopf algebra. A weak action of H on A is a
bilinear map (h,a) — a” from H x A to A such that, for h € H, a,b€ A

DRCOLED ST

2) 1" = ¢(h)1,

3) a' = a.
By an action of H on A we mean a weak action such that

4) ()" = aM for all h,l € H, a € A.

Let A be a k-algebra and H a Hopf algebra with a weak action on A. Given
a k-linear map f: H ® H — A we let A#;H denote the k-algebra (in general

non associative and without 1) whose underlying vector space is A ® H and whose
multiplication is given by

(@on)be) =Y a"” f(h®1V) e,
(1)

foralla,b € A, h,l € H. The element a®h of A# ;H will usually be written a#h to
remind us H is weakly acting on A. The algebra A# ¢H is called a crossed product
if it is associative with 1#1 as identity element. In [B-C-M] was proved that this
happen if and only if f and the weak action satisfy the following conditions

1) (Normality of f) for all h € H we have f(h,1) = f(1,h) = €(h)14,
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2) (Cocycle condition) for all h,l,m € H we have

Z £( Z(l) (1) f(h(z) 1), Z £( h(l) l(l) (}1(2)1(2)’m)7
(h)(1)(m) (h) ()

3) (Twisted module condition) for all h,l € H, a € A we have

EE: @ﬁ<n)hﬂjf hf” l@) EE: f 1)Z(U h@)ﬂ%.

(h) () (h)()

From now on, we assume that H is the enveloping algebra U(g) of a Lie algebra
g. In this case, item 1) of the definition of weak action implies that (ab)* =
a®b + ab® for z € g. So, a weak action determines a linear map 0: g — Dery(A)
by §(x)(a) = a®. Moreover if (h,a) — a” is an action, then § is a homomorphism
of Lie algebras. Reciprocally given a linear map ¢: g — Dery(A), there exists a
(generality non-unique) weak action of U(g) on A such that 6(z)(a) = a®. When
d is a homomorphism of Lie algebras, there is a unique action of U(g) on A such
that 6(z)(a) = a®. For a proof of these facts see [B-C-M].

Next we show that each normal cocycle f: U(g) ® U(g) — A is convolution
invertible, giving a formula for f—!.

Remark 1.1. Each normal cocycle f: U(g) ® U(g) — A is convolution invertible.
Moreover, for each h € U(g) and each family z1,...,z, of elements of g, we have

f7r1,h) = f71(h,1) = €(h)14 and

fH @b Z 'y Yo Dy, h V) x

=1 1<pq1,..., pr TE€EShp, .., p (h)

p1+-t+p=r
X f(xf(pﬁ-l) " Tr(prtp2)s h(Z)) o 'f(xT(p1+--~+p171+1) “Tr(r)s h(l))’
where Shy, . p, denotes the multishuffles associated to pi,...,p;. That is,

i i+1
Shpy,..pp = {T € 6,: T(1+ij) << T(ij) for 0 <i < l}.
Jj=1 j=1

This fact can be proved by a direct computation.

2. A METHOD FOR CONSTRUCTING RESOLUTIONS

Let k£ be a commutative ring with 1 and F a k-algebra. In this section we recall
a result that we will use in section 3. For the proof we remit to [G-G]J.

Let

03
0 0
M2 d12 d22
Yo Xo2 Xi2
02
0 0
M1 d11 d21
Y; Xo1 X1
01
0 0
Mo le d20
Yo Xoo X1
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be a diagram of F-bimodules and morphisms of E-bimodules verifying:
1) The column and the rows are chain complexes,
2) Each X, is isomorphic to a free E-bimodule F ® X ,, ® F,
3) Each row is contractible as a complex of left F-modules, with a chain con-

tracting homotopy oQ,: Yy — Xos and 07, ,: Xps = Xpq1,6 (r > 0).

We define E-bimodule morphisms d.,: X, — Xrti—1,5-1 (r>0and 1 <1 <s),
recursively by

_Ug,s—loaso,uls(x) ifr=0and! =1,
d(x)=14 — 22;11 o) 1410 déiji’s_j od, (x) ifr=0and1<!<s,
-1 1—i . .
= Xm0 O 1,6m1 O iy o 0 dig(x) i 7 >0,

forx=1%X® 1 with X € X .

Theorem 2.1. Let pi: Yy — E be a morphism of E-bimodules such that
EEY, 2y &2y, Ly, 2y, By Doy &

is a complex that is contractible as a complex of left E-modules. Then
E&xo & x, &ox, &ox, Box, &oxg Loy, Ao

where

b= [1 O [iQ, X, = GB X, s and d, = Z idis,

r4+s=n rt+s=n [=0
r4+1>0

18 a relative projective resolution of E as an E-bimodule.

3. A RESOLUTION FOR A DIFFERENTIAL OPERATOR RING

Let E = A#+U(g) be a crossed product. In this section we obtain an E-bimodule
resolution (X, d,) of E, that is simpler than the canonical of Hochschild. Then an
explicit expression of the boundary maps of this resolution is given. To begin, we
fix some notations:

1) For each k-algebra B and each r € N, we write B=B/k, B =B®---® B
(r times) and B' = B ® @ B (r times). Moreover, for b € B, we also let b
denote the class of b in B.

Given ap ® - - ®@a, € A™H! and 0 <i < j <r, wewrite a;; =a; ®--- ® a;.

= W N
T O —

For each Lie k-algebra g and each s € N, we write g"* = gA--- A g (s times).

Givenx = 21 A---Axg € g% and 1 < i < s, we write Xp = T1 A+ - -AT; A+ - - A,

(S

Given x =z A---Azg € g™ and 1 <i < j <s, we write Xgp =21 A--- A
fi/\.../\fj/\‘../\xs_
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3.1. The complex (Y/,0%). Let g be the direct sum of two copies {y, : = € g}
and {2, : * € g} of g, endowed with the bracket given by [y.,y.]e = Y[z,2), and
[Y» 220'lg = 22, 2a']lg = Z[z,01],- Note that g is the semi-direct sum arising from the
adjoint action of g on itself. Let w: U(g) — U(g) be the algebra map defined by
m(yz) = m(z;) = x. Let A(g) be the exterior algebra generated by g. That is, the
algebra generated by the elements e, (x € g) and the relations ey, 4. = Aey + €47
and e =0(\N€k,x, 2’ €g). Let us consider the action of U(g) on A(g) determined
by €7 = e[z, and €37 = 0. The enveloping algebra U(g) of g acts weakly on
A®A(g) via (a®e)* = a™ W @e+a®e® (a € A, e € A(g) and u € U(g)). Moreover,
the map f: U(§) x U(3) — A ® A(g), defined by f(u,v) = f(x(u),7(v)) ® 1, is a
normal 2-cocycle which satisfies the twisted module condition.

Theorem 3.1.1. Let Y/ be the graded algebra generated by A, the degree zero
elements Yy, z» (v € g), the degree one elements e, (x € g) and the relations

Yhz+a' = MYz + Yur s Yz = a® + Yz, €x' Yz = YzCar + €la’,x]g>
Zagda’ = Ng + 2o, Zpa = a® + azy, €x' 2y = Zgz€y/,
Exzta = Aegp + €g/, €x@ = A€y, ei =0,

Yo' Yo = YzYzr + Y[z z] g + f(:zc',x) - f(l', x/)v
Zg'Yr = Yoz + Rlz!,x] 4 + f(x’,x) - f(xa IL‘/),
Zy'Zg = ZgRg! + Rla!,x]g + f((E/7.I‘) - f(x,x').

Let (x;)ier be a basis of g with indexes running on an ordered set I. For each i € 1
let us write Y; = Yu,, 2; = 2z, and e; = e,,. Then each Y] is a free A-module with
basis

TS Ly 1>0,i <---<ige€l, mjn; >0,5; € {0,1}
i i %i i ” & mj—l—(S +n;>0,01+---+0 =5

Proof. Let ¥: Y, — (A® A(g))#¢U(g) be the homomorphism of algebras defined
by ¥(a) = (a®@1)#1 for all a € A and ¥(y,) = (1@ 1)#ys, V(2:) = (1@ 1)#2, and
Y(ez) = (1 ® e,)#1 for all z € g. Because of the Poincaré-Birkhoff-Witt theorem,

I(y; e fll z! ---yg”efllzgl) (1>0,41 <---<i€l,mjn; >0andd; € {0,1}),

is a basis of (A ® A(g))# U (g) as an A-module. The theorem follows immediately
from this fact. O

Remark 3.1.2. Note that E is a subalgebra of Y, by embedding a € A to a and
x € g to y,. This gives rise to an structure of left F-module on Y/. Similarly we
consider Y] as a right F-module via the embedding of E in Y] that sends a € A to
a and x € g to z,.

Theorem 3.1.3. Leti': Y — E be the algebra map defined by i’ (a) = a fora € A
and [ (y;) = 1/ (zi) = x; for i € I. There is a unique derivation 0,: Y] — Y/ |
such that 01(e;) = z; —y; for i € I. Moreover, the chain complex of E-bimodules

7 / /

E<ﬂ—Y 1Y/ QY/ 3yl<_Y4<_Y/ 6yl
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18 contractible as a complex of k-modules. A chain contracting homotopy is given

m1 miy _ o m | my
by Uo(a#xi1 s ) = az;, z;' and
51 ]
O-5+1(ay11 Z’Ll e y 6 Z )
§ : m1+n1 mjfl"‘nj*l h mjtnj—h—=1 mji1 bjp1 njt1 o omy 8 n
az; Zij Yi; €i; %, ti+1 i1 Tt i G
i<a
O§h<mj
where a = min{k : 6 = 1} (in particular 5y = -+ = §o—1 =0).

Proof. We must check that fi’ ooy = id, ogopi’ +0] 001 = id and 9, 004 1+0500, =
id for all s > 0. It is immediate that

oo Uo(a#a:ml cexpt) = (az]t e 20") = agtbat -xp and
o0 OH (ay“ zl . yzl ! ) _ O_O(a#xml-i-nl ___IZLH—M) _ azml-i—m . _ZZLH—m'

Let us compute 0, 00541 for s > 0 and o, 00, for s > 0. To abbreviate we write

mén e My Oy T
\Y Fe _yl fj R T for 1 <u<wv<l,
ZithLrl = z;:“J“"“ . z;’Z”J“"” forl<u<wv<l,
|5’h:51—|—"'—|—(5h fOI‘lShSl.
We have
/ mén\ _ o/ m+4n _h _ _my+n,—h-1 mon
8s+1 OUS+1< Mm ) - as (_ § : azil,uflyiuehiziu Miu+1,z)
u<o
0<h<mq,
_ § : m—|—n h _my+n h+1_mqy+n,—h—1 mon
- az (ylu 'Luu " ylu 7/uu h )M1u+1,l
<o
0<h<mq,
|5| m+n My +1qy—h—1 mén My Noy+1n ymén
Z Z voyals 1y €i, %, M1u+1,v713/iv i Miv+1,z
u<o >
O0<h<myq,
E E : |5|v m+n _h My +n,—h—17 ymdn my,+1 nv mon
+ 5Uazi1,u—1y ezu ZZ M1u+1,v71ylv Mlv+1 v’
u<a v>o
0<h<mqg, —
where o = min{k : 6, = 1}. Since
m-+n h mt+n h+1 m +n,—h—1 mén
Z azil,u (ylu 1 ‘o ylu uu ' )Miu-‘rl,l
u<o
O0<h<myg,
m+n mu—l—nu Moy M mén __ m-+n moén mon
- Z a 11 u—l Zu o ylu Z'Lu >Miu+1,l - ale,a—lM o Mlll ?
u<o
we obtain
/ moény __ m+n m6n mén
Og11 0051 (aM?) = —aZ T MPPP™ + aM)
|5|U m+n My+1ny—h—1 min My _Ny+17 rmén
Z Z dvaZ; 1y €i, 2. Miu+1,v—1yiu ;. Miu+1,z
u<a >
0<h<mg, —
|5| m—|—n h _my+n,—h—1y\rmén my+1 _ny,n rmdén
+ E E vOpali S Y €i 2 1\/I1qu1 oY Miv+1,z'

u<a V>
0<h<m, —
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On the other hand

111

o Oa/( Mm&n) =0, (Z(_1)|5|U—15UGM;111’<1111(yZluzZ)u-l-l y;f:)lv-i-l ZU)MZ)IJ(E?Z)

V>

Since
mon M na—i—l meq+1 na mon _ m+n Nea mén
( M’Ll Ja—1 (yza To yza 7,(1 )M’L a1, l) - Z 1yz ela o M1a+1 1

m+n My+n,—h—1 mén Me na—l—l mea+1 na mén
z : aZ yzueluzl M1u+1a 1(yla P ~ Y, i )Mia+1,l

u<o
0<h<my,

and, for v > «,

O’S((IM?:’(SH (ylv nv+1 yr:)zl,—l—l nv)Mm&l)

741} Ty41,1
_ § : m—|—n Moy +ny—h—1 mon My nv—&—l mey+1 nU méon
- aZ yzu 61’“274 M1u+1 v—1 (ylu Ty yzv Ty ):'-\/-I:i"u«l»l,l7
u<a
0<h<mgq,
we obtain

04 0 8/( Mm6n) — aZm—i—n M}mé’n

111 —1 1ol

|6| m+n May+1y—h—1 min My _No+1n fmdén
+ E E vopal yZ €i, %, Miu+1,v—1yiu zZ; Miu+1,l

u<o v>o
0<h<mgq, -

|5| m—|—n My+1y—h—1 mdn My+1 1y min
g E vopal y €i, % M; z "M

Tu Ty ly41,0— 1y2

u<a V>
0<h<mgy, —

The result follows immediately from these facts. [J

3.2. The resolution (X,,d,). Let Y; = E® g™ ®@U(g) (s > 0) and X,s =
E®gM® A ®F (r,s > 0). The groups X,; are E-bimodules in an obvious way
and the groups Y; are E-bimodules via the left canonical action and the right action

<a0®(v®x®w))(a#u) — Z a’O(CLW(l))U(l)f(w(Q)7 u(l))U@) ®(U(3)®X®w(3)u(2)),
(w)(v)(w)

where x = x1 A --- A xs. Let us consider the diagram

03
0 0
M2 d12 d22
Y Xo2 X12
5] ?
0 0
M1 d11 d21
Y; Xo1 X1
01
Ho d(1)0 dgo
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where 0.: Y, — Yi_1, pte: Xox — Yi and d9,: X, — X1 ., are defined by:

S

ds(a#tv @ x Q@ w) = Z(—l)i Z af(w®, xz(.l))#v@):c?) @ Xp @ w
= ))

— Z(_l)i Z af(azgl),w(l))”(l)#v@) ® Xp & xEZ)w(Q)
=1 (w) (@)
- Z (=) a#v @ [2i, 7] A Xgp @ W,

1<i<j<s

Lbs (ao#v RX® al#w) = Z aoall’m#v(z) R X w,
(v)

(1)
dgs (ao#v XX a1,r+1#w) = Z apay #U(Z) ® X ® ag p41H#W
(v)

-
+ Z(—l)iao#v XX a1,i—1® AAi41® A1+ 1FFW,
i=1

where aj,11 = a1 ® -+ ® @41 and x = 21 A --- A x5, It is immediate that
the us’s and the d%,’s are E-bimodule maps. In the proof of Theorem 3.2.1 we
will see that the 0s’s also are. Each horizontal complex X, is the tensor product
(EQU(g))®4(ARA", b.)® 4 E, where EQU (g) is a right A-module via the canonical
inclusion of A in E. Hence, the family og,: Yy — Xos, 07, . Xps = Xpq1s
(r > 0), of left F-module maps, defined by

Tpi1s (a0 @ X @ ar,#w) = (1) Ta#v @ x @ ar, 41 @ 1#w  (r> —1),
is a contracting homotopy of

0 0 0 0 0
dls d25 d2$ d3s d4s

Ys (M; XOS A — Xls XQs XSs X4s

Moreover each X, is a projective relative E-bimodule. We define E-bimodule maps
dﬁ,sz Xrs = Xoqi-1,5-1 (r>0and 1 <1<s),

recursively by:

_08,5—105’50M5(y) ifr=0andl=1,
d(y)={ =0l odjod(y) ifr=0and1<<s,

-1 1—j ; .
—2i—o O 411,61 © dy 1oy o dig(y) ifr>0,
where y = 1#1 @z A - ANxs ®ay, ® 1#1 € X,.;.
Theorem 3.2.1. The complex

d d d d d d d
EiX0<—lX1<—2X2%3X3<—4X4%5X5<—6X6%7...
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where p(ao#tv ® a1#Ew) = 3 () ) 06t F 0@, 0D Fw®,

Xo= P X and  di= ) idis

r+s=n r+s=n [=(0
r4+1>0

18 a relative projective resolution of the E-bimodule E.

Proof. Let p: Yy — E and (Y], 0.) be as in Theorem 3.1.1 and let u: Yy — E be
the E-bimodule map defined by

la®@ow)= Y af(0®,w®)p@u®.
(v)(w)

Let ¥,: (Yi,0x) — (Y/,0.) be the isomorphism of E-bimodule complexes, deter-
mined by ¥s(x1 A+ Axg) = €z, A+ Aeg,. Since g = ' o ¥y, we obtain from
Theorem 3.1.1, that the complex of E-bimodules

o 0 0: 1) o O, O
ELY, v &y, &y, &y, & vy &Ly &

is contractible as a complex of k-modules. Hence, the result follows immediately
from Theorem 2.1. [

The boundary maps of the relative projective resolution of F that we just found
are defined recursively. Next we compute these morphisms.

Theorem 3.3. For x;,x; € g, we put ﬁ;j = f(xi,x;) — f(xj, 7). We have:

S

drs(ao#l @x @ay,a#l) = > (=) ag#z; @ xp @ ay 11 #1
=1

+ Z(—l)i‘wao#l ® Xp @ a1, 17T;
i1
S .
+ ) (—D)Ma#l @ xp® a1 5 1® 4 @ apg1,p41#1
13}11:31r+1

+ Z (=)o #1 @ [24, 7] A Xgp @ @y 4171,
1<i<j<s

E(ao#l @x@a,m#l) = Y ()Tl @ xp @ an, @ fij ® an, 4141

1<i<j<s
0<h<r

anddﬁ,S:Ofor alll >3, whereaj y41 =01 @@ ar41 and x =1 N --- AN .

Proof. To unify the expressions in the proof, we put df, := ps, d*,, = 9 and
d?,, = 0. First, we compute the maps d},. For r = —1 the assertion is trivial.
Suppose 7 > 0 and the result is valid for d!,, with —1 < v/ < r. Since, for all

r,s > 0,

(1) Ors (bO#'U®X®b1,r—1 & l#w)) = O,
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then

A (ao#l @x@ay, ® 1#1) = —00,_ody_; ,od), (ap#l ® x @ ai, ® 1#1)
= ( 1)T+1 Es 10 dr—l,s (ao#]_ ®WX® alr#l)'
Hence, the formula for d!, (ao#l KX Ray, ® 1#1) follows immediately by induction
on r. Now, let us compute d?,. Suppose r > 0 and the result is valid for d?,, with
0 <7’ <r. Using (1) twice, we get
a2, (ao#l ® x ® a1, ® 141)
= - 2+1 sao(dF s © dy, + di,sfl odr,)(ao#l ® x ® a;, ® 141)

= 004152 ( > Z 1) a0 41 @ xp® a1y @ fi; © ah+1,r#1>

1<i<j<s h=0

— ) 1,0 (di,s_l (Z(—l)j”ao#l ®Xp® ai, @ 1#1) <1#:cj>>

j=1

= Z Z(—l)HjJrhao#l @ Xgp @ a1 @ ﬁj ® apy1,r @ 191
1<i<j<s h=0

o-SH,s_z( > (—1>”jao#1®xw®alr®ﬁj#1>

1<i<j<s
,
= Z Z(—l)i+j+ha0#1 Q@ Xpp @ a1, @ fij @ apg1,r @ 1#1.
1<i<j<s I=0
To prove that dl, = 0 for all [ > 2, it is sufficient to check that

079+2,s—4 o d?—l—l,s—Q ody, (GO#l XX ay, & 1#1) =0,
Tpi1,5-3 0 yy1 s 00 di (a0#l @ x ®ay, ® 1#1) =0,
Opi1agodi, jody (a#l®@x®@a, ®1#1)=0. O

Next, we give an explicit formula for the comparison map between (X, d,) and
the canonical normalized Hochschild resolution (F ® E ®E, b.). Using this map
it is easy to obtain explicit quasi-isomorphisms from the complex obtained in the
following section for the Hochschild homology into the canonical one, and similarly
for the cohomology.

Remark 3.4. There is a map of complexes 0, : (X,,d,) — (E® E" © E,b,), given
by
Orrs(lE@TIN - N2s®a1 @ ®a,® 1p)

= Y se(r)le @ (Lter) © - © (Lfs) * (@#l) ©- - © (e #1) © 1,

TEG,

where * denotes the shuffle product defined by

(e1®- - ®es)*(esy1 @ Qey) = Z 5g(0)eqr(1) @ -+ ® €g(n)-
oce{(s,n—s)—shuffles}
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4. THE HOCHSCHILD HOMOLOGY

Let E = A#+U(g) and M an E-bimodule. We use Theorem 3.2.1 in order to con-
struct a complex X, (FE, M), simpler than the canonical one, giving the Hochschild
homology of F with coefficients in M.

The complex X,(E,M). Let r,s,l > 0 with [ < min(2,s) and r +1 > 0. We

define the morphism ai,sz MoA ® g — M ® Attt ® g"*~ ! by:

r—1
Ers(m X ai, X X) =ma] ® asr ¥ X + Z(—l)lm Kar;—1 ¥ aiti+1 @a; 12, XX

=1
+(—=1)"a,m®a; ,—1 @ X,

)

dyy(m@an, ©x) = (<1 (1aa)m - m(1#:)) © a1, © %
=1

+ Z (_1)i+rm Qaip-1®a; Qapyir @ Xp
=1

1<h<r
+ Z (—1)i+j+rm X al,r & [Ii, acj] VAN Xup,
1<i<j<s

Ers<m®a1?" ®X) = Z (_1)i+j+hm®a1h ®fzj ®ah+1,r ®Xli§)7

1<i<j<s
0<h<r

where a1, =a1 ® -+ @ ap, x =21 A --- Axg and fi; = f(zi, x;) — f(zj, 2;).

Theorem 4.1. The Hochschild homology H.(A, M), of E with coefficients in M,
is the homology of

X.(E,M) = Xo& X, &X,%E X, 8%, 5 X8 X8
where
o . _ min(s,2) »
Xo=P MeA g™ ad dy= > Y d,..
r+s=n rt+s=n =0
r+1>0

Proof. Tt follows from the fact that X,(E, M) is the complex obtained by taking
the tensor product M @ ge (X, d,), where (X, d.) is the complex of Theorem 3.2.1,
and using the identifications ¥,s: M @A @ ¢’ — M Qpc EQgM @A @ E, given
by d,s(m®@a;, ®x) =m® (1#1 xR a1, @ 1#1). O

Note that when f takes its values in k, then X,(E, M) is the total complex of
the double complex (M ® A ® g/\*,c_io Ei*)

%)

4.2. Stefan’s Spectral sequence. Next we show that the complex X, (E, M)
has a natural filtration, which gives a more explicit version of the homology spectral
sequence obtained in [St].

For cach z € g, we have the morphism ©7: (M ®A",b,) — (M®A",b,), defined
by ©f(m ® ay,) = ((1#x)m — m(l#x)) Qal + ) 1cpe, MO AL L1 Q af @ A1,
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Proposition 4.2.1. For each x,x' € g the endomorphisms of H.(A, M) induced
by ©F 0 OF — O% 0 O and by 0" coincide. Consequently H, (A, M) is a right
U(g)-module.

Proof. By a standard argument it is sufficient to prove it for Ho(A, M). In this case,
the assertion can be easily checked, using that (1#x’)(1#x) = f(2/, z)#1 + 1#2'x
for all z,2"' € g. O

The chain complex 7*(E, M) has the filtration Fy C Fy C Fy C ..., where

Fi(X,) = @ MoA ®gh*.

Using this fact and Proposition 4.2.1, we obtain the following;:

Corollary 4.2.2. There is a converging spectral sequence

Egs - HS(97HT(A7M)) = HT+S(E7M)'

Given an A-bimodule M we let [A, M| denote the k-submodule of M generated
by the commutators am — ma (a € A and m € M).

Corollary 4.2.3. If A is separable, then H,(E, M) = H, (g, %)

4.3. Smooth algebras. Let A be a commutative ring and let M be a symmetric
A-bimodule. In the famous paper [H-K-R| was proved that if A is a commutative
smooth k-algebra, then H,,(A, M) = M®4 0% i, where Q7 ;- denotes the A-module
of differential n-forms of A. Next, we generalize this result by computing the
Hochschild homology of a differential operator ring £ = A# ;U(g) with coefficients
in an E-bimodule M which is symmetric as an A-bimodule, under the hypothesis
that Q C k£ and A is a commutative smooth k-algebra.

Let us assume that Q C k, A is a commutative ring and M is symmetric as an
A-bimodule. For each r,s,l > 0 with 1 <[ < min(2, s), we define the morphism

cfivfnsz M @42, ), ® g — M ®y Q’X;fl ® gt by:

S

AL, (m®aday - da, @ x) = Z(—l)”"((l#xi)m — m(1#x;)) ®a day - - - da, @ Xp
i=1

+ Z (—1)""m ® day - - ~dap—1day dapiq - - - day @ Xp
i=1
1<h<r

+ Z (=)™ m @4 day - - - da, @ [z, ;] A Xigp,
1<i<j<s

A2, (m @4 day - - - da, @ x) = Z (—1)™m®a dﬁ-jdal - dar ® Xy,
1<i<j<s

where x =z A--- Az, and ﬁ-j = f(x;,x;) — f(x;,2;). Consider the complex

XEM= x2x&E2558x583858x5 8
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where
_ _ min(s,2)
Xo= P Moy, 0" and dy= > Y d.
r4+s=n r4+s=n =1
r+1>0

Let ¥,,: X,, — )Afn be the map ¢, (m®a;, ®x) = %m@A day ---da, ®x. It is easy
to check that 9, : X,(E, M) — X, (E, M) is a morphism of complexes, which is a
quasi-isomorphism when A is smooth. Hence, in this case, the Hochschild homology
of E with coefficients in M is the homology of X, (E, M).

A filtrated algebra F is called quasi-commutative if its associated graded algebra
is commutative. In [S] was proved that if E' a quasi-commutative algebra whose
associated graded algebra is a polynomial ring, then F is isomorphic to a differential
polynomial ring k# U (g), with g a finite dimensional Lie algebra. The Hochschild
homology of this type of algebras was computed in [K, Theorem 3]. Next, we
generalize this result.

Remark 4.3.1. Now, we assume that g acts trivially on A. Consider the symmetric
algebra S = S4(g), endowed with the Poisson bracket defined by {a,x} = {a,b} =0
and {z,y} = f(z,y) — f(y,x) + [z,y]g (a € A, x,y € g). It is easy to check that
X «(E, E) is isomorphic to the canonical complex (2% Sk 04 ) introduced by Brylinski
and Koszul in [B] and [Ko] respectively. In fact an isomorphism ©,: (€25, 0+) —

X«(E, E)is given by O, 4(Pda; - - - daydxy - - - dzs) = (—1)*n(P)day - - - dayxi A+ - - A
Ts, where P € S, ay,...,a, € A, x1,...,25s € gand n: S — F is the symmetrization
n(ayr - yn) = % deen Yo1) " " Yo(n)-

4.4. Compatibility with the canonical decomposition. Let us assume that
k2 Q, A is a commutative ring, M is symmetric as an A-bimodule and the cocycle
[ takes its values in k. In [G-S] was obtained a decomposition of the canonical
Hochschild complex (M ® A, b.). It is easy to check that the maps dy and d;

are compatible with this decomposition. Since dy is the zero map, we obtain a
decomposition of X, (F, M), and then a decomposition of H,(E, M).

5. THE HOCHSCHILD COHOMOLOGY

Let E = A#+U(g) and M an E-bimodule. Using again Theorem 3.5 we con-

struct a complex 7*(E, M), simpler than the canonical one, giving the Hochschild
cohomology of E with coefficients in M.

The complex X (E, M). Let r,s,l > 0 with | < min(2,s) and r +1 > 0. We

define the morphism d; : Homy (ZTH_I ® gL, M) — Homy(A" @ g"s, M), by:

r—1

dy (p)(a1r ® X) = a1p(as, ® X) + Z(—l)i@(al,z‘—l ® a;aiy1 @ ajy2,r @ X)
i=1

+ (=1)"p(a1,r—1 @ x)a,,
S
—Trs

d, () (a1, @%) =Y (1) [p(ar, @ xp) (1#2:) — (1#3:)p(a1, © Xp)]

=1
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T Z 1) p(arn-1 @ aj' ® api1,r © Xp)

bY )y, [ 2] A ),
1<i<j<s

dy (p) (a1, ®x) = E (—1)F T p(ay, @ fii @ aniir @ Xp),
1<i<j<s
0<h<r

where a;, = a1 ®---®a,, x =1 A---Axs and ﬁj = f(x;,x;)— f(zj,x;). Applying
the functor Hompge (—, M) to the complex (X, d,) of Theorem 3.2.1, and using the
identifications

9" Homy(A" ® ¢"*, M) — Homp (F®@ g™ @A ® E,M),
given by 97 (¢)(1#1 ® x ® a1, ® 1#1) = ¢(aj, ® x), we obtain the complex
—x —0 gt —
X'(EM= X X

where

min(s,2)

@ Homy (A" @ g"*, M) and Z Z d,’.

r4+s=n rts=n
r+1>0

Note that when f takes its values in k, then 7*(E , M) is the total complex of the
double complex (Homy, (A" @ g, M),ES*,E{*).

Theorem 5.1. The Hochschild cohomology H*(E, M), of E with coefficients in
M, is the homology ofy*(E7 M).

Proof. Tt is an immediate consequence of the above discussion. [J

5.2. Stefan’s Spectral sequence. Next we show that the complex X (E, M) has

a natural filtration, which gives a more explicit version of the cohomology spectral
sequence obtained in [St].

For each x € g, we have the map ©% : (Homk(z* M), b*) — (Homk(z*, M), b*),
defined by ©7 (¢)(a1,) = (1#z)p(arr) —p(ar,) (1#z) =30, p(arp—10a;@ap11,).

Proposition 5.2.1. For each x,x’ € g the endomorphisms of H*(A, M) induced
by ©F, 0 ©F — O 0 ©F, and by @E‘m, 2] coincide. Consequently H* (A, M) is a left
U(g)-module.

Proof. 1t is similar to the proof of Proposition 4.2.1. [

The cochain complex X (E, M) has the filtration F' 0D F'D ..., where

Fl(yn) = @ I‘IOIH]€ (ZT X g/\s’ M)
r4+s=n
r>0,s>1

From this fact and Proposition 5.2.1, we obtain the following:
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Corollary 5.2.2. There is a converging spectral sequence

Ey® =H(g, H'(A,M)) = H(E, M).

Given an A-bimodule M we let M4 denote the k-submodule of M consisting of
the elements m verifying am = ma for all a € A.

Corollary 5.2.3. If A is separable, then H*(E, M) = H* (g, MA).

5.3. Smooth algebras. Let us assume that £ O Q, A is a commutative ring and
M is symmetric as an A-bimodule. For each r; s, > 0 with 1 <[ < min(2, s), we

define the morphism d’”s HomA(Qf;;i: loghs—t M) — HomA(QTA/k ®g"s, M), by:

S

di*(¢)(day - -~ da, @ x) = Z(—l)HT [(day - - da, ® xp), (1#1;)]

+ Z H_T da1 dh_ldaii dhy1---dr ® Xb)

+ Z Dt o(day - - - day ® |34, 7] A Xp),
1<i<j<s
dy*(p)(day - -da, @x) = Y (1) p(dfidar - da, @ xgp),
1<i<j<s

where x = z1A---Axg, ﬁj = f(zi,x;)— f(z;,2;) and [gp(dal - day ®Xyp), (1#%)} =
p(day - - - da, @ xp)(1#x;) — (1#z;)p(day - - - da, @ Xp). Consider the complex

XEM= X0E 8 s E b 5 B B
where
_ min(s,2) _
= @ Homy (Q ), ® ¢"*, M)  and  d" = Z Z d;®.
r+s=n r+s=n =1
r+1>0

Let 97: X™ — X" be the map 9" (¢p)(aj, ® x) = Lo(day -+ - da, ® x). 1t is easy
to check that ¥*: X*(E,M) — X (E,M) is a morphism of complexes, which
is a quasi-isomorphism when A is smooth. Hence, in this case, the Hochschild
cohomology of F with coefficients in M is the cohomology of X “(E,M).

5.4. Compatibility with the canonical decomposition. Let us assume that
E 2 Q, A is a commutative ring, M is symmetric as an A-bimodule and the
cocycle f takes its values in k. Then, the Hochschild cohomology H*(E, M) has a
decomposition similar to the one obtained in 4.4 for the Hochschild homology.
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