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Postnatal growth is an important life-history trait that varies widely across avian 
species, and several equations with a sigmoidal shape have been used to model it. 
Classical three-parameter models have an inflection point fixed at a percentage of 
the upper asymptote which could be an unrealistic assumption generating biased 
fits. The Richards model emerged as an interesting alternative because it includes 
an extra parameter that determines the location of the inflection point which can 
move freely along the growth curve. Recently, nonlinear mixed models (NLMM) 
have been used in modeling avian growth because these models can deal with a lack 
of independence among data as typically occurs with multiple measurements on the 
same individual or on groups of related individuals. Here, we evaluated the useful-
ness of von Bertalanffy, Gompertz, logistic, U4 and Richards’s equations modeling 
chick growth in the imperial shag Phalacrocorax atriceps. We modelled growth in 
commonly used morphological traits, including body mass, bill length, head length 
and tarsus length, and compared the performance of models by using NLMM. 
Estimated adult size, age at maximum growth and maximum growth rates markedly 
differed across models. Overall, the most consistent performance in estimated adult 
size was obtained by the Richards model that showed deviations from mean adult 
size within 5%. Based on AICc values, the Richards equation was the best model for 
all traits analyzed. For tarsus length, both Richards and U4 models provided indis-
tinguishable fits because the relative inflection value estimated from the Richards 
model was very close to that assumed by the U4 model. Our results highlight the 
bias incurred by three-parameter models when the assumed inflection placement 
deviates from that derived from data. Thus, the application of the Richards equation 
using the NLMM framework represents a flexible and powerful tool for the analysis 
of avian growth.
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Introduction

Postnatal growth is an important life-history trait that varies 
widely across avian orders and life-history strategies (Ricklefs 
1968a, Stearns 1992, Starck and Ricklefs 1998a, b). Patterns 
of growth also vary broadly among morphological traits such 
as bill length, tarsus length or wing length (Velando  et  al. 
2000, Svagelj and Quintana 2017). In virtue of that varia-
tion, several equations with a sigmoidal shape have been 
used to model avian growth (Ricklefs 1967, 1968a). In gen-
eral, these nonlinear models comprise a small number of 
parameters with biological meaning (usually three) that are 
useful for inter- and intraspecific comparisons. For example, 
parameters that are often used include the estimated adult 
size (A), a growth rate constant (k) and the inflection point 
(Ti) that indicates the age when growth is greatest (Starck and 
Ricklefs 1998b).

Ornithologists have mainly used logistic, Gompertz, 
and von Bertalanffy models (Ricklefs 1967, 1968a, Starck 
and Ricklefs 1998b) to describe the postnatal growth. 
Despite their utility and simplicity, these three-parameter 
models have fixed forms with an inflection placement fixed 
at a percentage of the upper asymptote (30, 37 and 50% 
for von Bertalanffy, Gompertz and logistic models, respec-
tively) which is often an unrealistic assumption (Tjørve 
and Tjørve 2017a). An interesting alternative to these 
equations is the Richards model (Richards 1959, Nelder 
1962, Sugden et al. 1981, Tjørve and Tjørve 2010). This 
four-parameter model includes an extra parameter d that 
determines the location of the inflection point which can 
move freely along the growth curve (Tjørve and Tjørve 
2010). Moreover, logistic, Gompertz, and von Bertalanffy 
models represent particular cases of the Richards equation 

when the d-parameter is fixed at specific values (Tjørve 
and Tjørve 2010, 2017a, b). Even though the Richards 
equation might be preferred over simpler models because 
of its greater flexibility and accuracy, model perfor-
mance can vary based on data characteristics as well as 
the methods used to fit the model. Unfortunately, stud-
ies comparing the performance of the Richards model in 
relation to typical three-parameter models are scarce and 
comparisons that are made often incorrectly assume inde-
pendence across the data used to construct growth curves 
(Sugden  et  al. 1981, Aggrey 2002, Tjørve and Tjørve 
2017b, Vrána et al. in press).

Recently, nonlinear mixed-effect models (Pinheiro and 
Bates 2000) have become a powerful tool to analyze postna-
tal growth (Oswald et al. 2012, Sofaer et al. 2013, Aldredge 
2016). Nonlinear mixed-effect models (hereafter, NLMM) 
can deal with a lack of statistical independence among data, as 
occurs with multiple measurements on the same individual or 
measurements on groups of related individuals (e.g. broods). 
These models allow the simultaneous inclusion of growth 
parameters as fixed effects, describing the average growth 
curve, as well as random effects allowing for random varia-
tion around the average values (Sofaer et al. 2013, Aldredge 
2016). Moreover, NLMM allow a regressive approach where 
the effect of predictor variables can be evaluated for each 
growth parameter (Kalmbach et al. 2009, Giudici et al. 2017, 
Svagelj and Quintana 2017, Tuero  et  al. 2018). Therefore, 
the application of the Richards equation using the NLMM 
approach appears as a flexible analytical tool to be considered 
for the analysis of avian growth.

In this paper, we assess the utility of three- and four-
parameter equations modeling chick growth in the imperial 
shag Phalacrocorax atriceps, a medium sized seabird. We 

Table 1. Parameterizations for von Bertalanffy, Gompertz, logistic, U4 and Richards growth models. W(t) is size at age t, and A, k, Ti and d are 
the upper asymptote, maximum relative growth rate, age at the inflection point and shape parameter, respectively. Wi is the absolute value 
at maximum growth (size at the inflection point). Relative values at maximum growth are presented as percentage of upper asymptote at 
inflection.
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model growth patterns in four traits and compare the 
performance of different growth models fitted by NLMM.

Material and methods

Data were collected from November to December 2015 at 
Punta León (43°05¢S, 64°30¢W), Chubut, Argentina. During 
egg hatching, we checked nests every ~3 d to establish hatch-
ing date. Nestlings were marked on the tarsus with tape bands 
labeled with their associated hatching order. During chick 
rearing, we checked nests every 3–5 d to obtain morphologi-
cal measurements of chicks until it was impossible to capture 

them, at an age of 35–40 d. At an age of ~20 d, chicks were 
ringed with numbered aluminum rings. Four measurements 
were considered in this study: body mass, bill length (exposed 
culmen), head length (from the tip of the bill to the poste-
rior ridge) and tarsus length (from the middle of the midtar-
sal joint to the distal end of the tars-metatarsus) following 
Svagelj and Quintana (2007). For bill, head and tarsus mea-
surements, we used a digital caliper (nearest 0.01 mm). We 
recorded body mass using 100, 300, 600, 1000 and 2500 g 
spring scales.

Imperial shags are sexually dimorphic in size with males 
being larger and heavier than females (Svagelj and Quintana 
2007). To simplify statistical analyses, we only considered 
female chicks and one chick per nest. For each nest, the 
female chick with the highest number of morphometric mea-
surements was selected. To determine the sex of chicks, we 
used measurements of tarsus and head lengths when chicks 
were 25 d old or older and applied discriminant functions 
(Svagelj and Quintana 2017). In total, the growth data ana-
lyzed corresponds to 209 measurements from 33 females 
(mean = 6.3, SD = 0.6 measurements per chick).

We analyzed growth using NLMM fitted by maximum 
likelihood (Pinheiro and Bates 2000). Growth data were fit-
ted to the von Bertalanffy, Gompertz, logistic and Richards 
models using parameterizations in the Ti-form (from Tjørve 
and Tjørve 2017a) shown in Table 1. In these parameteriza-
tions, W(t) is size at age t, and A, k, Ti and d are the upper 
asymptote (i.e. predicted adult size), maximum relative 
growth rate, age at the inflection point and shape param-
eter, respectively (Tjørve and Tjørve 2017a). In addi-
tion, we also evaluated the U4 model (Tjørve and Tjørve 
2017a) which is a three-parameter model generated from 
a Richards equation where d = 4, thus fixing the inflection 
point at 63% of the upper asymptote (Table 1). We used 
unified parameterizations proposed by Tjørve and Tjørve 
(2017a), so k parameter is in the same scale across all mod-
els. Lack of independence among repeated measurements 

Table 2. Instantaneous growth rate equations for von Bertalanffy, 
Gompertz, logistic, U4 and Richards models. Equations were 
obtained as first derivatives of growth models. Y(t) is daily growth 
rate at age t, and A, k, Ti and d are the upper asymptote, maximum 
relative growth rate, age at the inflection point and shape parameter, 
respectively.
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Table 3. Summary of model-selection results for von Bertalanffy, Gompertz, logistic, U4 and Richards models explaining variation in growth 
of female chicks of the imperial shag for body mass, bill, head and tarsus lengths. kp is the number of estimated parameters. Best models are 
shown in bold. AICc values for best models; body mass: 2404.57A, bill length: 675.35B, head length: 1018.33C, and tarsus length: 729.81D. 
See Methods for details.

Body mass Bill length

kp ΔAICc WeightAICc kp ΔAICc WeightAICc

von Bertalanffy 6 93.15 0.000 6 115.29 0.000
Gompertz 6 36.39 0.000 6 76.98 0.000
Logistic 7 17.48 0.000 7 2.12 0.257
U4 6 106.88 0.000 7 61.90 0.000
Richards 8 0.00A 1.000 8 0.00B 0.743

Head length Tarsus length

kp ΔAICc WeightAICc kp ΔAICc WeightAICc

von Bertalanffy 6 105.20 0.000 4 365.41 0.000
Gompertz 6 76.83 0.000 5 324.01 0.000
Logistic 6 10.73 0.005 6 199.85 0.000
U4 6 27.55 0.000 7 0.01 0.499
Richards 7 0.00C 0.995 8 0.00D 0.501
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Figure 1. Growth curves of female chicks of the imperial shag (n = 33) for (a) body mass, (b) bill length, (c) head length and (d) tarsus 
length. Curves were obtained from nonlinear mixed models applied to von Bertalanffy (green), Gompertz (orange), logistic (red), U4 (pink) 
and Richards (blue) models. Measured values are shown as circles. Mean ± SD of adult values are shown.

Table 4. Estimated upper asymptotes (A, as mean (SE)) for body mass, bill, head and tarsus lengths of female chicks of the imperial shag for 
von Bertalanffy, Gompertz, logistic, U4 and Richards equations. We obtained estimated values from nonlinear mixed models fitted by 
maximum likelihood. Adult values are reported as mean ± SD. All parameters are significant (t ≥ 18.1, p < 0.001). Deviation represents the 
percentage of deviation between estimated asymptotes and adult values. See methods for details.

Body mass (g) Bill length (mm)

Adults: 1965 ± 119 Adults: 55.7 ± 2.3

A (SE) Deviation (%) A (SE) Deviation (%)

von Bertalanffy 2993 (166) 52 72.3 (1.7) 30
Gompertz 2299 (78) 17 66.0 (1.2) 18
Logistic 1731 (34) –12 57.4 (0.6) 3
U4 1630 (31) –17 51.9 (0.5) –7
Richards 1866 (60) –5 55.8 (0.9) 0
  Head length (mm) Tarsus length (mm)

Adults: 131.2 ± 3.3 Adults: 65.5 ± 1.7

A (SE) Deviation (%) A (SE) Deviation (%)

von Bertalanffy 156.7 (2.9) 19 73.9 (1.0) 13
Gompertz 146.5 (1.9) 12 71.8 (0.7) 10
Logistic 131.5 (1.1) 0 68.8 (0.4) 5
U4 121.8 (0.8) –7 66.7 (0.3) 2
Richards 126.6 (1.5) –3 66.6 (0.3) 2



5

on the same individuals was accounted by the inclusion of  
growth parameters from chick identity as random effects 
on the intercept, allowing for random individual variation 
around average values. Prior to model comparisons, we evalu-
ated the significance of random effects using likelihood ratio 
tests, with non-significant random effects (i.e. parameters 
with negligible levels of variability among individuals, p > 
0.05) being discarded to avoid over-fitting (Pinheiro and 
Bates 2000). Structures of random effects retained in the mod-
els are in the appendix (Supplementary material Appendix 1 
Table A1). Models in body mass exhibited heteroscedasticity 
which was modeled considering a power variance function 
where variance increase with fitted values (Pinheiro and Bates 
2000). Adequacy of models was evaluated using Akaike infor-
mation criterion corrected for sample size (AICc) (Burnham 
and Anderson 2002). Model comparisons were made with 
ΔAICc, which is the difference between the lowest AICc value 
(i.e. best of suitable models) and AICc from each model. The 
AICc weight of a model (WeightAICc) indicates the relative 
likelihood that the specific model is the best of the suite of 
candidate models (Burnham and Anderson 2002). As an 

additional indicator of model fit, we also evaluated deviations 
between estimated upper asymptotes and mean adult values 
(from Svagelj and Quintana 2007). For all traits and growth 
parameters, coefficients of variation ( CV SD x= ( ) ×100 )  
were calculated to indicate the degree of variability in growth 
parameter estimates among models. Finally, we generated 
equations of the instantaneous growth rate Y(t) for each 
growth model (Table 2). These functions – obtained as  
first derivatives – represent the absolute daily increment in 
size at a given age and are particularly useful to visualize  
the maximum absolute growth rate (gmax = A k; Tjørve and 
Tjørve 2017a) and daily variations in growth trajectories 
(Ricklefs 1968a, Velando et al. 2000, Kalmbach et al. 2009, 
Martin 2015).

Statistical analyses were carried out using the nlme 
(Pinheiro  et  al. 2018) package from R software, ver. 3.4.4  
(R Development Core Team). Results are presented as mean 
± SE except where noted.

Data deposition

Data available from the Dryad Digital Repository: < https://
doi.org/10.5061/dryad.s448n5d > (Svagelj et al. 2018).

Results

Based on AICc values, the Richards model performed the 
best for all traits analyzed (Table 3). For body mass (Fig. 1a) 
and head length (Fig. 1c), there was no model uncertainty or 
competing models (WeightAICc: 1.000 and 0.995 for Richards 
models in body mass and head length, respectively; Table 3). 
Bill length (Fig. 1b) was best modelled by the Richards equa-
tion (WeightAICc = 0.743), followed by the logistic model that 
received some support (WeightAICc = 0.257; Table 3). Both 
Richards and the U4 models provided good fits for tarsus 

Table 5. Coefficients of variation ( CV SD x= ( ) ×100 ) of estimated 
upper asymptotes (A), maximum relative growth rates (k), age at the 
inflection points (Ti) and maximum absolute growth rates (gmax = A k) 
for body mass, bill length, head length and tarsus length of female 
chicks of the imperial shag. Coefficients represent the variation in 
estimates between von Bertalanffy, Gompertz, logistic, U4 and 
Richards’s models.

Coefficient of variation (%)

A k Ti
gmax

Body mass 26.6 40.0 5.2 19.5
Bill length 13.7 17.5 23.2 4.5
Head length 10.7 11.9 35.1 2.0
Tarsus length 4.6 5.5 38.6 1.8

Table 6. Maximum relative growth rates (k, in d–1), age at the inflection points (Ti, in days) and shape parameters (d) for body mass, bill, head 
and tarsus lengths of female chicks of the imperial shag for von Bertalanffy, Gompertz, logistic, U4 and Richards equations. We obtained 
estimated values from nonlinear mixed models fitted by maximum likelihood. All parameters are significant (t ≥ 12.9, p < 0.001). Standard 
errors are shown within parentheses. See methods for details.

Body mass Bill length

k (SE) Ti (SE) d (SE) k (SE) Ti (SE) d (SE)

von Bertalanffy 0.0218 (0.0011) 18.1 (0.8) – 0.0206 (0.0007) 9.6 (0.4) –
Gompertz 0.0307 (0.0008) 17.4 (0.5) – 0.0227 (0.0005) 11.7 (0.3) –
Logistic 0.0510 (0.0008) 17.3 (0.3) – 0.0271 (0.0004) 14.9 (0.2) –
U4 0.0650 (0.0014) 19.4 (0.2) – 0.0321 (0.0004) 17.7 (0.2) –
Richards 0.0433 (0.0020) 17.2 (0.3) 1.56 (0.09) 0.0282 (0.0006) 15.6 (0.3) 2.34 (0.15)

Head length Tarsus length

k (SE) Ti (SE) d (SE) k (SE) Ti (SE) d (SE)

von Bertalanffy 0.0224 (0.0008) 6.0 (0.3) – 0.0407 (0.0015) 5.0 (0.2) –
Gompertz 0.0237 (0.0007) 8.2 (0.3) – 0.0411 (0.0012) 6.7 (0.2) –
Logistic 0.0267 (0.0004) 11.9 (0.2) – 0.0424 (0.0007) 9.9 (0.2) –
U4 0.0300 (0.0004) 15.4 (0.2) – 0.0455 (0.0004) 13.0 (0.2) –
Richards 0.0281 (0.0005) 13.5 (0.4) 2.71 (0.21) 0.0458 (0.0005) 13.2 (0.3) 4.21 (0.15)
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length (WeightAICc: 0.501 and 0.499 for Richards and U4 
models, respectively; Table 3). These models were essentially 
identical with indistinguishable fits (Fig. 1d).

Overall, the most consistent performance in the upper 
asymptote estimates (A) across traits was obtained by the 
Richards model with deviations of within 5% of mean adult 
values (Table 4). The logistic model exhibit positive and 
negative deviations of within 12%. The U4 model tended to 
underestimate the adult values, while von Bertalanffy and 
Gompertz models always overestimated the adult values by as 
much as 52% (Table 4).

Estimates of the upper asymptote, maximum relative 
growth rate (k) and the age at the inflection point (Ti) had con-
siderable levels of variation between models (Table 5). Both 
upper asymptotes (Table 4) and maximum relative growth 
rates (Table 6) were highly variable across models in body mass 
(Table 5). On the other hand, the age at the inflection point 
widely differed across models for bill, head and tarsus length 
(Table 5 and 6). Curves on daily growth showed more clearly 
the differences in the age at the inflection point and maxi-
mum absolute growth rates (gmax) between models (Fig. 2). 

Differences in maximum absolute growth rate between models 
were particularly notorious for body mass, while bill, head and 
tarsus length showed less variation (Fig. 2, Table 5). For tarsus 
length – where both Richards and U4 models were similarly 
supported by the data –, curves on daily growth showed indis-
tinguishable fits between competing models (Fig. 2d).

Discussion

In the present study, we compared the performance of several 
growth equations using nonlinear mixed-effect models fitted 
by maximum likelihood. Based on AICc values, we found 
that the Richards equation was the best model for all traits 
analyzed. Also, the most consistent performance in the upper 
asymptote estimates was obtained by the Richards model. 
These results are a consequence of the flexibility provided by 
the fourth parameter d which allows an inflection placement 
derived from data, thus permitting an unbiased fit.

Von Bertalanffy, Gompertz, logistic and U4 are three-
parameter models with inflection points fixed at 30, 37, 50 
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Figure 2. Instantaneous growth rate of female chicks of the imperial shag for (a) body mass, (b) bill length, (c) head length and (d) tarsus 
length. Equations were obtained from first derivatives of growth models, and parameters were obtained from nonlinear mixed models 
applied to von Bertalanffy (green), Gompertz (orange), logistic (red), U4 (pink) and Richards (blue) models. Maximum absolute growth 
rates (gmax = A k) at the inflection point are shown as rhombs. See Methods for details.
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and 63% of the upper asymptote (Tjørve and Tjørve 2010, 
2017a). These models are particular cases of the Richards 
model for d-values of 2/3, →1 (but ≠ 1), 2 and 4, respec-
tively (Tjørve and Tjørve 2010, 2017a). In our study, inflec-
tion points for body mass, bill length, head length and tarsus 
length were located at 45% (d = 1.56), 53% (d = 2.34), 56% 
(d = 2.71) and 64% (d = 4.21) of the upper asymptote, respec-
tively. Thus, von Bertalanffy and Gompertz models always 
underrated the d parameter while the logistic model under-
rated d for bill, head and tarsus lengths and overrated it for 
body mass. Contrary to von Bertalanffy and Gompertz mod-
els, the U4 model overrated d for body mass, bill length and 
head length. In the case of tarsus length, both Richards and U4 
models similarly supported the data because the relative inflec-
tion value estimated from the Richards model was very close to 
that assumed by the U4 model. Only in the particular case in 
which the estimated d-parameter coincides with that assumed 
by any three-parameter model, fits would be similar between 
models and the estimation of d-parameter, redundant.

Estimates of growth parameters showed substantial varia-
tion between models. Upper asymptote estimates were par-
ticularly variable for body mass, exhibiting a lower variation 
for bill, head and tarsus lengths. Interestingly, upper asymp-
totes were systematically over- and underestimated when 
assumed inflection points were lower and higher (as percent-
age of asymptotic size) than those estimated by the Richards 
model (Table 4 and 6, Fig. 3). Also, the magnitude of the 
bias increased with the deviation from the estimated inflec-
tion point. Estimates of the age at maximum growth (for 
bill, head and tarsus lengths) and maximum relative growth 
rate (for body mass) were also highly variable across models. 

In addition, daily growth curves exposed the notorious dif-
ferences in maximum absolute growth rates across models 
in body mass. All these potential biases could be avoided 
by using the Richards model because the relative inflection 
value is calculated from the d-parameter which is estimated 
from data (Tjørve and Tjørve 2010). All in all, our results 
showed that the best alternative to model chick growth in 
the Imperial Shag would be the Richards model. This finding 
agrees with previous studies comparing the performance of 
Richards versus three-parameter models, where Richards was 
the preferred model or provided similar fits and parameters 
than best simpler models (Sugden  et  al. 1981, Tjørve and 
Tjørve 2010, 2017b, Vrána et al. in press).

Our main goal was to compare basic fits of different 
growth models by using nonlinear mixed models. However, 
it is important to mention that several alternatives, extensions 
and refinements also can be implemented. First, we used 
parameterizations in the Ti-form because we were interested 
in the estimation of the age at maximum growth. All models 
analyzed here also can be considered in their W0-form where 
Ti is replaced by a W0 parameter representing size at hatch-
ing (Tjørve and Tjørve 2017a). Second, truncation of data 
at the beginning or at the end of growth trajectory can pro-
duce unrealistic fits. Truncation at the beginning could be 
a consequence of lack of data close to hatching date, while 
truncation at the end is mainly associated with birds fledg-
ing before achieving adult size or the difficulty of capturing 
birds as fledging nears. When data are truncated at the begin-
ning or at the end, size at hatching (W0) and/or asymptotic 
size (A) can be fixed to population values to produce realis-
tic growth curves and growth-rate parameters (Austin et al. 
2011, Svagelj and Quintana 2017, Tjørve and Tjørve 2017a, 
b). Third, typical growth models are monotonic in the sense 
that show a unique (steady) trajectory throughout the growth 
curve. However, there are situations of non-monotonic (or 
multiphasic) growth, usually associated with an overshoot-
ing (chick body mass exceeding adult mass) and subsequent 
recession (decrease) of body mass in some seabird species 
(Ricklefs 1968b, Huin and Prince 2000, Oswald et al. 2012, 
Arnold et al. 2016). If growth is not monotonic, two cou-
pled growth models can be used (e.g. Richards–Richards; 
Oswald et al. 2012). In our study, the use of coupled models 
was unnecessary because imperial shags does not overshoot 
body mass prior to fledging (Svagelj and Quintana 2017). 
Fourth, we only considered one chick per brood but our 
analyses could be extended to multiple chicks per brood. 
NLMM can handle a lack of independence from differ-
ent levels by including growth parameters from each level 
as random effects (Pinheiro and Bates 2000). Thus, growth 
models could deal with multiple observations per chick and 
multiple chicks per brood, allowing for individual (among 
chicks) and grouped (among broods) variation around aver-
age values (Sofaer  et  al. 2013, Aldredge 2016). Fifth, here, 
we have used NLMM to fit average growth curves. However, 
one of the most interesting features of NLMM is that they 
allow a regressive approach that considers predictor variables 
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modelling growth parameters (Pinheiro and Bates 2000). 
Thus, the effect of predictor variables (e.g. sex, hatching 
order, brood size or hatching date) can be evaluated for each 
growth parameter (Kalmbach et al. 2009, Giudici et al. 2017, 
Svagelj and Quintana 2017). In summary, the combination 
of NLMM with the Richards equation represents a flexible 
and powerful analytical tool that deserves future consider-
ation by ornithologists.
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