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In this paper, we prove existence of optimal subspaces in a normed
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1. Introduction

Let (F, ∥ ∥) be a normed space and let m ∈ ℕ. We consider a monotone norm
� defined in ℝ

m, i.e., � is a norm such that �(x1, . . . , xm) ≤ �(y1, . . . , ym) if
∣xi∣ ≤ ∣yi∣, 1 ≤ i ≤ m. In addition, we will say that � is strictly monotone if
the strict inequality holds when we have strict inequality in some coordinate.

Let Y = {f1, . . . , fm} ⊂ F . For U a proximinal subset of F , we write
PU (fk), the metric projection of fk on the set U , 1 ≤ k ≤ m. If d(f, U) is the
distance from a point f to set U , we denote

(1) E(Y, U) = �(d(f1, U), . . . , d(fm, U)),

the deviation of the set Y from the set U .
For n ∈ ℕ we consider the set

Πn(F ) = {V subspace of F : dimV ≤ n}.

∗Totally supported by Universidad Nacional de Ŕıo Cuarto, CONICET and ANPCyT.
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The value

(2) E(Y ) := inf
V ∈Πn(F )

E(Y, V ),

is called the n-dimensional diameter of the set Y . We say that a linear
subspace V0 ∈ Πn(F ) is an n-optimal subspace for Y if E(Y ) = E(Y, V0). We
shall omit Y in (1) - (2) in those sections where it remains fixed.

Given a finite set Y , throughout this paper we denote by X the linear
space generated by the elements of Y and we write X = span Y . We observe
that if X has dimension at most n, then X is an n-optimal subspace for Y .
We will always assume that n < dimX .

The concepts n-dimensional diameter and n-optimal subspace were intro-
duced by A.N. Kolmogorov in [4]. Other works about this concepts can be
seen in [3] and [8]. Recently in [1] and [2] it was proved the existence of n-
optimal subspaces in a Hilbert space. They give a constructive proof of exis-
tence and applications to problem of finding a model space that describes a
given class of signals or images.

The present paper is organized as follows. In Section 2 we prove more
general results on existence of n-optimal subspaces (Theorems 1, 2, and Re-
mark 1). In Sections 3 and 4 we study properties of deviations, n-dimensional
diameters and n-optimal subspaces. Finally, in Section 5 we give a charac-
terization of n-optimal subspaces and prove a uniqueness result in Hilbert
spaces.

2. Existence of optimal subspaces

The following Lemma was proved in [6, p. 273].

Lemma 1. Let F be a Banach space of dimension n. Then there exist n
linearly independent elements e1, . . . , en ∈ F and n functionals g1, . . . , gn ∈
F ∗ such that ∥ek∥ = ∥gk∥ = 1, gi(ek) = 1 if i = k, and gi(ek) = 0 if i ∕= k,
1 ≤ i, k ≤ n.

Consequently, for every e =
n∑

i=1

�iei ∈ F we have then ∣�i∣ ≤ ∥e∥, 1 ≤ i ≤ n.

In the next theorem if ℕ0 = ℕ we will denote by ℕi a subsequence of ℕi−1

for i = 1, 2.

Theorem 1. Suppose F is a reflexive space and let Y = {f1, . . . , fm}⊂F .
Then there exists V0 ∈ Πn(F ) such that V0 is an n-optimal subspace for Y .

Proof. Let {Vs}s∈ℕ ⊂ Πn(F ) be such that

E = lim
s→∞

E(Vs).
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Let gsk ∈ PVs
(fk). It is easy to see that ∥gsk∥ ≤ 2∥fk∥. So, there exists a

positive constant M satisfying

∥fk − gsk∥ ≤ M, 1 ≤ k ≤ m, s ∈ ℕ.

Therefore, there are a subsequence of {Vs}s∈ℕ, say {Vs}s∈ℕ1,, and rk ∈ ℝ,
1 ≤ k ≤ m, such that

(3) lim
s∈ℕ1,s→∞

∥fk − gsk∥ = rk

and the dimension of Vs is constant, say l, for all s ∈ ℕ1. The last fact is
a consequence of that the dimension of Vs is at most n for all s ∈ ℕ. By
Lemma 1, for each s ∈ ℕ1, there exists a basis {ejs}

l

j=1 of Vs such that

∥ejs∥ = 1, and if gsk =
l∑

j=1

ckjsejs, then ∣ckjs∣ ≤ ∥gsk∥. So, using the triangle

inequality, we get

(4) ∣ckjs∣ ≤ M + sup
1≤i≤m

∥fi∥, 1 ≤ k ≤ m, 1 ≤ j ≤ l, s ∈ ℕ1.

Since F is reflexive, there are a subsequence of {Vs}s∈ℕ1
, say {Vs}s∈ℕ2

, and
ej ∈ F , 1 ≤ j ≤ l, such that ejs weakly converges to ej , s ∈ ℕ2, s → ∞.
From (4), we can assume

lim
s∈ℕ2,s→∞

ckjs = ckj , 1 ≤ j ≤ l, 1 ≤ k ≤ m.

Thus gsk weakly converges to
l∑

j=1

ckj ej =: bk ∈ span{e1, ..., el} =: V0 ∈ Πn(F ).

Now, using the weak lower semicontinuity of the norm ∥.∥ and (3), we get

∥fk − bk∥ ≤ lim inf
s∈ℕ2

∥fk − gsk∥ = rk, 1 ≤ k ≤ m.

So, the monotonicity of � implies

E(V0) ≤ � (∥f1 − b1∥, . . . , ∥fm − bm∥) ≤ �(r1, . . . , rm)

= lim
s∈ℕ2,s→∞

E(Vs) = E.

□

Remark 1. a) If F has finite dimension then F is a reflexive space,
so by Theorem 1 there exists an n-optimal subspace for Y .

b) When F is the a space conjugate to some Banach space, then there exists
an n-optimal subspace for Y . In fact, the proof follows by replacing in
Theorem 1 the weak convergence by w∗-convergence.
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We recall that a linear subspace U of F is a Chebyshev space if PU (f) is
a one-point set for all f ∈ F (see [6]).

Lemma 2. Suppose X is a Chebyshev space and let Y ={f1, . . . , fm}⊂F .
If PX is a linear operator, then there exists a linear subspace V0∈Πn(F ), such
that V0⊂X and

E(V0) ≤ ∥PX∥E(V ) for all V ∈ Πn(F ).

Proof. Since X has finite dimension, replacing in Theorem 1 F by X , there
is a linear subspace V0 ∈ Πn(F ), V0 ⊂ X, such that

E(V0) ≤ E(V ′) for all V ′ ∈ Πn(F ), V ′ ⊂ X.

Let V ∈ Πn(F ) and V ′ = PX(V ) ⊂ X . Since Y ⊂ X and PX is a linear
operator, we have PX(fk) = fk, 1 ≤ k ≤ m, and V ′ ∈ Πn(F ). We choose
g′k ∈ PV ′(fk) and gk ∈ PV (fk), so PX(gk) ∈ V ′. Then

(5) ∥fk − g′k∥ ≤ ∥fk − PX(gk)∥ = ∥PX(fk − gk)∥ ≤ ∥PX∥∥fk − gk∥,

and consequently E(V0) ≤ E(V ′) ≤ ∥PX∥E(V ). □

The next theorem immediately follows from Lemma 2.

Theorem 2. Under the same assumptions as in Lemma 2, if ∥PX∥ = 1,
then there exists V0 ∈ Πn(F ) such that V0 is an n-optimal subspace for Y .

Remark 2. If X is not a Chebyshev space, but there is a lineal metric
selection of PX (see [5, p. 25]) of norm 1, then the same proof of Lemma 2
shows the existence of an n-optimal subspace for Y .

Next, we give an example such that Remark 2 can be applied, but Re-
mark 1, b) cannot.

Example 1. By Theorem 15.5 in [7, p. 454] the space l1(ℕ) has a
subspace F which is not isomorphic to any conjugate Banach space. Moreover,
F has the following sequence {fn}n∈ℕ as a monotone basis:

fn = xn −
1

2
x2n+1 −

1

2
x2n+2, n ∈ ℕ,

where xn(m) = �n(m) and �n is the Kronecker delta. Let Y = {f1, f2}. For

g =
∞∑
n=1

�nfn ∈ F , and X = span Y , a straightforward computation shows

that P : F → X defined by P (g) = �1f1 + �2f2 is a lineal metric selection of
PX with ∥P∥ = 1.
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3. Properties of optimal subspaces

Lemma 3. Suppose � is a strictly monotone norm. If V0 ∈ Πn(F ) is an
n-optimal subspace for Y, then dimV0 = n.

Proof. Suppose dimV0 = r, r < n. Since V0 ∕= X = span Y , there
exists 1 ≤ j ≤ m such that fj /∈ V0. Let W = V0 ⊕ span{fj}. Clearly
W ∈ Πn(F ). We choose gk ∈ PW (fk) and ℎk ∈ PV0

(fk), 1 ≤ k ≤ m. Since
∥fk−gk∥ ≤ ∥fk−ℎk∥, ∥fj−ℎj∥ > 0, and ∥fj−gj∥ = 0, then E(W ) < E(V0),
a contradiction. □

Definition 1. Let Z ⊂ F be a Chebyshev subspace. Then we say that Z
has property (P ) if ∥PZ∥ = 1 and ∥PZ(f)∥ = ∥f∥ implies f ∈ Z.

Lemma 4. Let F be a strictly convex space and let Z ⊂ F be a Chebyshev
subspace. If ∥PZ∥ = 1, then Z has the property (P ).

Proof. Let f ∈ F be such that ∥PZ(f)∥ = ∥f∥. Suppose f /∈ Z, then

g = f

∥f∥ /∈ Z. Let u = g+PZ (g)
2 . Since ∥u− PZ(g)∥+ ∥u− g∥ = ∥g − PZ(g)∥,

then ∥u− PZ(g)∥ ≤ ∥u− ℎ∥ for all ℎ ∈ Z, and so

(6) PZ(g) = PZ(u).

On the other hand, the operator PZ is positive homogeneous, so we have
∥PZ(g)∥ = ∥g∥ = 1. The strict convexity of F implies ∥u∥ < 1. Since
∥PZ∥ = 1, (6) implies that 1 = ∥PZ(u)∥ ≤ ∥PZ∥∥u∥ = ∥u∥, a contradic-
tion. □

Remark 3. a) Every linear subspace of a Hilbert space has property
(P ).

b) The strict convexity is not a necessary condition for property (P ) to
occur (see Example 1).

In [1] the authors proved that if F is a Hilbert space, then the existence of
an n-optimal subspace for Y implies the existence of an n-optimal subspace
for Y contained in X . The following theorem shows that necessarily, all
n-optimal subspaces for Y must be contained in X , even for more general
normed spaces.

Theorem 3. Let F be a strictly convex space and let � be a strictly mono-
tone norm. Suppose X has property (P ) and PX is a linear operator. If
V0 ∈ Πn(F ) is an n-optimal subspace for Y , then V0 ⊂ X.
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Proof. Let V0 ∈ Πn(F ) be an n-optimal subspace for Y and V = PX(V0) ⊂
X. Since PX is a linear operator, V ∈ Πn(F ). So, (5) implies that V is an
n-optimal subspace for Y . Moreover,

(7) ∥fk − PV (fk)∥ = ∥fk − PX(PV0
(fk))∥, 1 ≤ k ≤ m,

and

(8) ∥PX(fk − PV0
(fk))∥ = ∥fk − PV0

(fk)∥, 1 ≤ k ≤ m.

From (7) and the uniqueness of the best approximant,

(9) PV (fk) = PX(PV0
(fk)), 1 ≤ k ≤ m.

As X has the property (P ), by (8) we get PX(fk − PV0
(fk)) = fk − PV0

(fk),
1 ≤ k ≤ m, and so

(10) PX(PV0
(fk)) = PV0

(fk), 1 ≤ k ≤ m.

Let X = span{PV0
(f1), . . . , PV0

(fm)} ⊂ V0. From (9) and (10), we have

(11) X ⊂ V0 ∩ V.

In addition, ∥fk−PX(fk)∥ ≤ ∥fk−PV0
(fk)∥, 1 ≤ k ≤ m. Then E(X) ≤ E(V0),

i.e., X ∈ Πn(F ) is an n-optimal subspace for Y . By Lemma 3 we know that
X, V and V0 have dimension n, so (11) implies V0 = V ⊂ X. □

4. Deviations and diameters

The proof of the next proposition follows the same patterns as the proof of
[6, Theorem 6.10, p. 157].

Proposition 1. Let Y1 = {f1, . . . , fm} ⊂ F, Y2 = {ℎ1, . . . , ℎm} ⊂ F and
let U ⊂ F. The following statements holds true.

a) ∣E(Y1, U)− E(Y2, U)∣ ≤ �(∥f1 − ℎ1∥, . . . , ∥fm − ℎm∥);

b) If U is a linear subspace, then E(�Y1, U) = ∣�∣E(Y1, U) for all � ∈ ℝ;

c) E(Y1 + Y2, U) ≤ E(Y1, U) + E(Y2, U);

d) If U1 ⊂ U , then E(Y1, U) ≤ E(Y1, U1).

We denote the supremum norm in ℝ
m by ∥x∥∞, i.e., ∥x∥∞ = max

1≤k≤m
∣xk∣,

x = (x1, . . . , xm) ∈ ℝ
m, and set e = (1, . . . , 1) ∈ ℝ

m.
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Proposition 2. Let Y = {f1, ..., fm} ⊂ F , and let U ⊂ F . Assume that
∥x∥∞ ≤ �(x) for all x ∈ ℝ

m. Then

(12) inf
�>0,Y⊂U+�S1

� ≤ E(Y, U) ≤ �(e) inf
�>0, Y⊂U+�S1

�,

where S1 is the closed ball in F with center 0 and radius 1.
In addition, the two inequalities in (12) become equalities if only if � is

the supremum norm.

Proof. Given n ∈ ℕ, let gk ∈ U , 1 ≤ k ≤ m, be such that ∥gk − fk∥ ≤
1
n
+ d(fk, U). Then

fk = gk + (fk − gk) ∈ U +

(
1

n
+ d(fk, U)

)
S1 ⊂ U +

(
1

n
+ E(Y, U)

)
S1.

Thus

(13) Y ⊂ U +

(
1

n
+ E(Y, U)

)
S1.

On the other hand, let � > 0 be such that Y ⊂ U + �S1. For fk ∈ Y , there
exist y ∈ S1, g ∈ U such that fk = g + �y. Then

d(fk, U) ≤ ∥fk − gk∥ ≤ ∥fk − g∥+
1

n
≤ �+

1

n
,

hence

(14) E(Y, U) ≤

(
�+

1

n

)
�(e).

Since n is arbitrary, from (13) and (14) we get (12). Finally, if � is the
supremum norm, clearly all inequalities in (12) are equalities.

Conversely, the equalities in (12) imply �(e) = 1, and from monotonicity
of � it follows that the closed ball in ℝ

m of center 0 and radius 1 in the
supremum norm is contained in the closed ball in ℝ

m of center 0 and radius 1
in the � norm. Since the supremum norm is less than or equal to the � norm,
the two balls coincide. So, � = ∥.∥∞. This concludes the proof. □

Remark 4. Notice that Proposition 2 was proved in [6], when � is the
supremum norm and U is a linear subspace of F .

Our next goal is to examine continuity of the deviation of the set Y ⊂ F
from a set U as function of the set U .

The one to one correspondence between proximinal sets and its associated
metric projections enables us to devise a notion of distance between proximinal
sets. Given two proximinal sets U1, U2, we define a distance by

d∗(U1, U2) = sup

{
∥g − ℎ∥

∥f∥
: f ∕= 0, g ∈ PU1

(f), ℎ ∈ PU2
(f)

}
.

The next lemma immediately follows.
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Lemma 5. Let Y = {f1, . . . , fm} ⊂ F and let U1, U2 be subsets of F .
Then

∣E(Y, U1)− E(Y, U2)∣ ≤ � (d(f1, U1)− d(f1, U2), . . . , d(fm, U1)− d(fm, U2)) .

The following proposition establishes a Lipschitz property of the function
E(Y, ⋅). It is a direct consequence of Lemma 5.

Proposition 3. Let Y = {f1, . . . , fm} ⊂ F and let U1, U2 be proximinal
subsets of F . Then

∣E(Y, U1)− E(Y, U2)∣ ≤ �(e) max
1≤k≤m

∥fk∥d∗(U1, U2).

Now, we consider the Hausdorff space (ℋ, ℎ), where ℋ = {K ⊂ F :
K is a non empty compact set}, and ℎ : ℋ×ℋ → ℝ is the metric defined by
ℎ(K1,K2) = max{d(K1,K2), d(K2,K1)}, with d(K1,K2) = max

f∈K1

{∥f − g∥ :

g ∈ PK2
(f)}.

Our next lemma gives a relation between the deviation over linear sub-
spaces and the deviation over subsets in ℋ.

Lemma 6. Let Y = {f1, . . . , fm} ⊂ F . If r > 2 max
1≤k≤m

∥fk∥, then

E(Y, U) = E(Y, U ∩ Sr)

for all U ⊂ F with 0 ∈ U , where Sr is the closed ball in F with 0 and radius
r > 0.

Proof. Given n ∈ ℕ, let gk ∈ U , 1 ≤ k ≤ m, be such that ∥gk − fk∥ ≤
1
n
+ d(fk, U). If ∥gk∥ > r for some k, we have

1

n
+ d(fk, U) ≥ ∥fk − gk∥ ≥ ∥gk∥ − ∥fk∥ > r − ∥fk∥.

Hence, d(fk, U) ≥ r − ∥fk∥ > ∥fk∥, which contradicts to 0 ∈ U . Thus, we
have gk ∈ U ∩ Sr, and consequently d(fk, U ∩ Sr) ≤ 1

n
+ d(fk, U). Since n

is arbitrary, d(fk, U ∩ Sr) = d(fk, U), 1 ≤ k ≤ m. The claim of Lemma 6
immediately follows. □

Proposition 4. Let Y = {f1, . . . , fm} ⊂ F and let U1, U2 ∈ Πn(F ).
Then

(15) ∣E(Y, U1)− E(Y, U2)∣ ≤ �(e)ℎ(U1 ∩ Sr, U2 ∩ Sr),

where Sr is defined as in Lemma 6.
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Proof. For the sake of simplicity, pK(f) will denote an arbitrary element
of the set PK(f). We shall show that if f ∈ F and g : ℋ → ℝ is the function
defined by g(K) = d({f},K), then

(16) ∣g(K1)− g(K2)∣ ≤ ℎ(K1,K2).

Indeed, if K1,K2 ∈ ℋ and y ∈ K1, we have

∥pK1
(f)− pK2

(pK1
(f))∥ ≤ ∥pK1

(f)− pK2
(y)∥ ≤ max

x∈K1

∥x− pK2
(y)∥

= d(K1,K2) ≤ ℎ(K1,K2).

Hence,

g(K2) = ∥f − pK2
(f)∥ ≤ ∥f − pK2

(pK1
(f))∥ ≤ ∥f − pK1

(f)∥

+ ∥pK1
(f)− pK2

(pK1
(f))∥ ≤ g(K1) + ℎ(K1,K2).

Analogously, we can get g(K1) ≤ g(K2) + ℎ(K1,K2), which proves (16).
Finally, by Lemma 6, Lemma 5 and (16), we obtain (15). □

The following proposition is an immediate consequence of Lemma 6.

Proposition 5. Let Y = {f1, . . . , fm} ⊂ F . If r ≥ 2 max
1≤k≤m

∥fk∥, then

E(Y ) = inf
W∈Πr

n
(F )

E(Y,W ),

where E(Y ) is defined by (2) and Πr
n(F ) = {V ∩ Sr : V ∈ Πn(F )}.

Next, we prove that the n-dimensional diameter of a set depends continuously
on the set.

Proposition 6. Let Y1 = {f1, . . . , fm} ⊂ F, Y2 = {ℎ1, . . . , ℎm} ⊂ F .
Then

∣E(Y1)− E(Y2)∣ ≤ �(∥f1 − ℎ1∥, . . . , ∥fm − ℎm∥).

Proof. Let Y1 = {f1, . . . , fm} ⊂ F, Y2 = {ℎ1, . . . , ℎm} ⊂ F . By the
definition of E(Y1), there exists U1 ∈ Πn(F ) such that

E(Y1, U1) < E(Y1) + �.

Since E(Y2) ≤ E(Y2, U1), using Lemma 1 a) we obtain

E(Y2)− E(Y1) < E(Y2, U1)− E(Y1, U1) + �

≤ �(∥f1 − ℎ1∥, . . . , ∥fm − ℎm∥) + �

for all � > 0. Then

E(Y2)− E(Y1) ≤ �(∥f1 − ℎ1∥, . . . , ∥fm − ℎm∥).

Analogously we can obtain E(Y1) − E(Y2) ≤ �(∥f1 − ℎ1∥, . . . , ∥fm − ℎm∥).
This completes the proof. □
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5. Characterization and uniqueness of n-optimal sub-

spaces in a Hilbert space

In this section, we characterize the n-optimal subspaces when F is a Hilbert
space. We begin with the particular case when F = ℝ

k and � is the Euclidean
norm in ℝ

m.
Let Y = {f1, . . . fm} be a set of vectors in ℝ

k, X = span{f1, . . . , fm}, and
r = dimX > n. We set

G =

⎡
⎢⎣

f1
...
fm

⎤
⎥⎦ ∈ ℝ

m×k.

Since GtG =

(
m∑
i=1

f t
i fi

)
is a symmetric matrix, then there exists an orthog-

onal matrix Q ∈ ℝ
k×k such that

(17) Qt

(
m∑

i=1

f t
i fi

)
Q = diag(�1, . . . , �k), and �1 ≥ ⋅ ⋅ ⋅ ≥ �k ≥ 0.

We observe that the range of GtG is r > n, therefore �n ∕= 0. We denote
p = max{j : 1 ≤ j ≤ n, �j > �n} if �1 > �n, and p = 0, otherwise, and
s = max{j : 1 ≤ j ≤ k, �j = �n}.

Let V ⊂ ℝ
k, dimV = n, and let {v1, . . . , vn} be an orthonormal basis for

V . Set A = [vt1 . . . vtn] ∈ ℝ
k×n and B = QtA ∈ ℝ

k×n.
We proceed with three lemmas.

Lemma 7. Let F = ℝ
k, and let � be the Euclidean norm on ℝ

m. Then

E(Y, V ) =
k∑

j=1

�j −
k∑

j=1

�j(BBt)jj .

Proof. It is easy to see that E(Y, V ) =
m∑
j=1

(
∥fj∥

2 −
n∑

i=1

(< fj, vi >)2
)
.

Let Δ = diag(�1, . . . , �k). Since

m∑

j=1

∥fj∥
2 = trace(GGt) = trace(GtG) =

k∑

j=1

�j

and

n∑

i=1

m∑

j=1

(< fj , vi >)2 =

n∑

i=1

viG
tGvti =

n∑

i=1

viQΔQtvti =

n∑

i=1

k∑

j=1

�j(Q
tvti)

2
j

=

k∑

j=1

�j

(
n∑

i=1

(Qtvti)
2
j

)
=

k∑

j=1

�j(BBt)jj ,
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we have E(Y, V ) =
k∑

j=1

�j −
k∑

j=1

�j(BBt)jj . □

Lemma 8. The following conditions are satisfied:

(18) trace(BBt) = n and 0 ≤ (BBt)ii ≤ 1, 1 ≤ i ≤ k.

Proof. Clearly, trace(BBt) = trace(BtB) = trace(AtA) = n.

As BBt = (BBt)tBBt, we get 0 ≤
k∑

j=1

(BBt)2ij = (BBt)ii, 1 ≤ i ≤ k.

Therefore

(19) 0 =

k∑

j=1,j ∕=i

(BBt)2ij + (BBt)ii
(
(BBt)ii − 1

)
, 1 ≤ i ≤ k.

Thus, (BBt)ii ≤ 1, 1 ≤ i ≤ k. □

Lemma 9. Let F = ℝ
k, and let � be the Euclidean norm in ℝ

m. Suppose
that V is n-optimal for Y . Then

a) If p > 0, we have (BBt)ii = 1, 1 ≤ i ≤ p;

b) If s < r, we have (BBt)ii = 0, s+ 1 ≤ i ≤ r.

Proof. From Lemma 7, we have E(Y, V ) =
k∑

j=1

�j −
k∑

j=1

�j(BBt)jj . Then

Theorem 4.5 in [1] implies 0 = E(Y, V )− E(Y ) =
n∑

i=1

�i −
k∑

i=1

�i(BBt)ii, i.e.,

(20)

p∑

i=1

�i(1− (BB)tii) + �n

(
(n− p)−

s∑

i=p+1

(BBt)ii

)
=

k∑

i=s+1

�i(BBt)ii.

a) Suppose that there exists j, 1 ≤ j ≤ p, such that 0 ≤ (BBt)jj < 1.
Then �n(1 − (BBt)jj) < �j(1− (BBt)jj) and by (20) we have,

�n

(
n−

s∑

i=1

(BBt)ii

)
= �n

p∑

i=1

(1 − (BBt)ii) + �n

(
(n− p)−

s∑

i=p+1

(BBt)ii

)

<

p∑

i=1

�i(1− (BBt)ii) + �n

(
(n− p)−

s∑

i=p+1

(BBt)ii

)

=
k∑

i=s+1

�i(BBt)ii ≤
k∑

i=s+1

�n(BBt)ii.
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Hence, n−
s∑

i=1

(BBt)ii <
k∑

i=s+1

(BBt)ii, i.e., n < trace(BBt), which contradicts

(18). Therefore, (BBt)ii = 1, 1 ≤ i ≤ p.

b) If there exists j, s + 1 ≤ j ≤ r, such that 0 < (BBt)jj ≤ 1, then
�j(BBt)jj < �n(BBt)jj , and by (20) we get,

�n

(
n−

s∑

i=1

(BBt)ii

)
= �n

p∑

i=1

(1 − (BBt)ii) + �n

(
(n− p)−

s∑

i=p+1

(BBt)ii

)

≤

p∑

i=1

�i(1− (BBt)ii) + �n

(
(n− p)−

s∑

i=p+1

(BBt)ii

)

=

k∑

i=s+1

�i(BBt)ii < �n

k∑

i=s+1

(BBt)ii.

Hence, n −
s∑

i=1

(BBt)ii <
k∑

i=s+1

(BBt)ii, i.e., n < trace(BBt), which again

contradicts (18). Thus (BBt)ii = 0, s+ 1 ≤ i ≤ r. □

For a matrix H , we denote by R(H) the range of H .
The following theorem characterizes the n-optimal subspaces in ℝ

k.

Theorem 4. Let F = ℝ
k, and let � be the Euclidean norm on ℝ

m. Then
V is n-optimal for Y if only if V = span{qt1, . . . , q

t
p} ⊕ W , where W is any

subspace of span{qtp+1, . . . , q
t
s}, dimW = n − p, and qj is the jtℎ column of

matrix Q.

Proof. When the set of indices satisfying certain condition is empty, we
shall mean that this condition must be omitted. Suppose V is n-optimal for
Y . Next, our goal is to show that

(21) n− p =

s∑

i=p+1

(BBt)ii for p ≥ 0.

There are only four cases to be considered: s < r, p > 0; s = r, p > 0; s < r,
p = 0, and s = r, p = 0. For the first three cases (21) is consequence of (20)
and Lemma 9, while the last case directly follows from (20).

Next, we shall prove that

(22) (BBt)ii = 0, s+ 1 ≤ i ≤ k.

If p = 0, then using (21) and Lemma 8 we obtain (22). If p > 0, Lemma 9,

(a) implies
p∑

i=1

(BBt)ii = p. From (21) it follows that
s∑

i=1

(BBt)ii = n. Now,
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by Lemma 8 we again get (22).
From Lemma 9, (19) and (22), we get

0 =

k∑

j=1,j ∕=i

(BBt)2ij , 1 ≤ i ≤ p or s+ 1 ≤ i ≤ k.

Since BBt is a symmetric matrix, BBt is the block matrix

⎡
⎣

Ip 0 0

0 B̃ 0
0 0 0

⎤
⎦ ,

where Ip is the identity matrix of order p, and B̃ is certain square matrix of
order s− p.
We put

Q = [[q1 . . . qp][qp+1 . . . qs][qs+1 . . . qk]] and B =

⎡
⎣

B1

B2

B3

⎤
⎦ ,

with B1 ∈ ℝ
p×n, B2 ∈ ℝ

(s−p)×n andB3 ∈ ℝ
(k−s)×n. SinceBBtB = B, we get

B3 = 0. As a consequence, A = QB = [q1 . . . qp]B1 + [qp+1 . . . qs]B2. Since
R([q1 . . . qp]B1) ⊂ R([q1 . . . qp]), R([qp+1 . . . qs]B2) ⊂ R([qp+1 . . . qs]),
and R([q1 . . . qp]) ∩R([qp+1 . . . qs]) = ∅, we get

R(A) ⊂ R([q1 . . . qp])⊕R([qp+1 . . . qs]B2).

As B2B
t
2 = B̃ and rank(BBt) = n, we have rank(B2) = rank(B̃) = n − p.

Therefore, rank([qp+1 . . . qs]B2) = n− p, and thus,

R(A) = R([q1 . . . qp])⊕R([qp+1 . . . qs]B2).

We conclude that V = span{qt1, . . . , q
t
p} ⊕ W , where W is a subspace of

span{qtp+1, . . . , q
t
s}, dimW = n−p. This completes the proof of the necessity.

Conversely, if V = span{qt1, . . . , q
t
p} ⊕ W , where W is any subspace of

span{qtp+1, . . . , q
t
s}, dimW = n − p, we have E(Y, V ) =

k∑
j=n+1

�j . Then V is

n-optimal for Y . □

The following theorem is an immediate consequence of Theorems 11 and
4.

Theorem 5. Let F be a Hilbert space, Y = {f1, . . . , fm} ⊂ F and X =
span{f1, . . . , fm}. Let k = dimX, and let V ⊂ F , dimV = n < k. Let
� : (X, �) → (ℝk,Euclidean norm) be an isometric isomorphism, and let Q ∈
ℝ

k×k be an orthogonal matrix such that

(23) Qt

(
m∑

i=1

�(fi)
t�(fi)

)
Q = diag(�1, . . . , �k) and �1 ≥ ⋅ ⋅ ⋅ ≥ �k ≥ 0.
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Define p = max{j : 1 ≤ j ≤ n, �j > �n} if �1 > �n or p = 0, otherwise,
and s = max{j : 1 ≤ j ≤ k, �j = �n}. Then V is n-optimal for Y if
only if V = span{�−1(qt1), . . . , �

−1(qtp)} ⊕ W , where W is any subspace of

span{�−1(qtp+1), . . . , �
−1(qts)}, dimW = n − p, and qj is the jtℎ column of

matrix Q.

Corollary 1. Under the assumptions of Theorem 5, we have

a) There is a unique n-optimal subspace V for Y if and only if �n > �n+1.
In this case, V = span{qt1, . . . , q

t
n}.

b) If �1 = �k, then any subspace of dimension n is n-optimal for Y .

Remark 5. The sufficiency in Corollary 1, a) was established in [1].
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