OPTIMAL SUBSPACES IN NORMED SPACES*

H. H. Cuenya, F. E. Levis, M. D. Lorenzo, and C. N. Rodriguez

In this paper, we prove existence of optimal subspaces in a normed space. We give properties of diameters of a subspace, and properties of optimal subspaces and of their deviations. Characterization and uniqueness of optimal subspaces in an Hilbert space are considered.

Mathematics Subject Classification (2000): Primary 41A65. Secondary 41A28.

Key words and phrases: n-dimensional diameter, optimal subspace, reflexive space.

1. Introduction

Let $(F,\| \|)$ be a normed space and let $m \in \mathbb{N}$. We consider a monotone norm ρ defined in \mathbb{R}^{m}, i.e., ρ is a norm such that $\rho\left(x_{1}, \ldots, x_{m}\right) \leq \rho\left(y_{1}, \ldots, y_{m}\right)$ if $\left|x_{i}\right| \leq\left|y_{i}\right|, 1 \leq i \leq m$. In addition, we will say that ρ is strictly monotone if the strict inequality holds when we have strict inequality in some coordinate.

Let $Y=\left\{f_{1}, \ldots, f_{m}\right\} \subset F$. For U a proximinal subset of F, we write $P_{U}\left(f_{k}\right)$, the metric projection of f_{k} on the set $U, 1 \leq k \leq m$. If $d(f, U)$ is the distance from a point f to set U, we denote

$$
\begin{equation*}
E(Y, U)=\rho\left(d\left(f_{1}, U\right), \ldots, d\left(f_{m}, U\right)\right) \tag{1}
\end{equation*}
$$

the deviation of the set Y from the set U.
For $n \in \mathbb{N}$ we consider the set

$$
\Pi_{n}(F)=\{V \text { subspace of } F: \operatorname{dim} V \leq n\} .
$$

[^0]The value

$$
\begin{equation*}
E(Y):=\inf _{V \in \Pi_{n}(F)} E(Y, V) \tag{2}
\end{equation*}
$$

is called the n-dimensional diameter of the set Y. We say that a linear subspace $V_{0} \in \Pi_{n}(F)$ is an n-optimal subspace for Y if $E(Y)=E\left(Y, V_{0}\right)$. We shall omit Y in (1) - (2) in those sections where it remains fixed.

Given a finite set Y, throughout this paper we denote by X the linear space generated by the elements of Y and we write $X=\operatorname{span} Y$. We observe that if X has dimension at most n, then X is an n-optimal subspace for Y. We will always assume that $n<\operatorname{dim} X$.

The concepts n-dimensional diameter and n-optimal subspace were introduced by A. N. Kolmogorov in [4]. Other works about this concepts can be seen in [3] and [8]. Recently in [1] and [2] it was proved the existence of n optimal subspaces in a Hilbert space. They give a constructive proof of existence and applications to problem of finding a model space that describes a given class of signals or images.

The present paper is organized as follows. In Section 2 we prove more general results on existence of n-optimal subspaces (Theorems 1,2 , and Remark 1). In Sections 3 and 4 we study properties of deviations, n-dimensional diameters and n-optimal subspaces. Finally, in Section 5 we give a characterization of n-optimal subspaces and prove a uniqueness result in Hilbert spaces.

2. Existence of optimal subspaces

The following Lemma was proved in [6, p. 273].
Lemma 1. Let F be a Banach space of dimension n. Then there exist n linearly independent elements $e_{1}, \ldots, e_{n} \in F$ and n functionals $g_{1}, \ldots, g_{n} \in$ F^{*} such that $\left\|e_{k}\right\|=\left\|g_{k}\right\|=1, g_{i}\left(e_{k}\right)=1$ if $i=k$, and $g_{i}\left(e_{k}\right)=0$ if $i \neq k$, $1 \leq i, k \leq n$.
Consequently, for every $e=\sum_{i=1}^{n} \alpha_{i} e_{i} \in F$ we have then $\left|\alpha_{i}\right| \leq\|e\|, 1 \leq i \leq n$.
In the next theorem if $\mathbb{N}_{0}=\mathbb{N}$ we will denote by \mathbb{N}_{i} a subsequence of \mathbb{N}_{i-1} for $i=1,2$.

Theorem 1. Suppose F is a reflexive space and let $Y=\left\{f_{1}, \ldots, f_{m}\right\} \subset F$. Then there exists $V_{0} \in \Pi_{n}(F)$ such that V_{0} is an n-optimal subspace for Y.

Proof. Let $\left\{V_{s}\right\}_{s \in \mathbb{N}} \subset \Pi_{n}(F)$ be such that

$$
E=\lim _{s \rightarrow \infty} E\left(V_{s}\right)
$$

Let $g_{s k} \in P_{V_{s}}\left(f_{k}\right)$. It is easy to see that $\left\|g_{s k}\right\| \leq 2\left\|f_{k}\right\|$. So, there exists a positive constant M satisfying

$$
\left\|f_{k}-g_{s k}\right\| \leq M, \quad 1 \leq k \leq m, \quad s \in \mathbb{N}
$$

Therefore, there are a subsequence of $\left\{V_{s}\right\}_{s \in \mathbb{N}}$, say $\left\{V_{s}\right\}_{s \in \mathbb{N}_{1}}$, and $r_{k} \in \mathbb{R}$, $1 \leq k \leq m$, such that

$$
\begin{equation*}
\lim _{s \in \mathbb{N}_{1}, s \rightarrow \infty}\left\|f_{k}-g_{s k}\right\|=r_{k} \tag{3}
\end{equation*}
$$

and the dimension of V_{s} is constant, say l, for all $s \in \mathbb{N}_{1}$. The last fact is a consequence of that the dimension of V_{s} is at most n for all $s \in \mathbb{N}$. By Lemma 1, for each $s \in \mathbb{N}_{1}$, there exists a basis $\left\{e_{j s}\right\}_{j=1}^{l}$ of V_{s} such that $\left\|e_{j s}\right\|=1$, and if $g_{s k}=\sum_{j=1}^{l} c_{j s}^{k} e_{j s}$, then $\left|c_{j s}^{k}\right| \leq\left\|g_{s k}\right\|$. So, using the triangle inequality, we get

$$
\begin{equation*}
\left|c_{j s}^{k}\right| \leq M+\sup _{1 \leq i \leq m}\left\|f_{i}\right\|, \quad 1 \leq k \leq m, \quad 1 \leq j \leq l, \quad s \in \mathbb{N}_{1} \tag{4}
\end{equation*}
$$

Since F is reflexive, there are a subsequence of $\left\{V_{s}\right\}_{s \in \mathbb{N}_{1}}$, say $\left\{V_{s}\right\}_{s \in \mathbb{N}_{2}}$, and $e_{j} \in F, 1 \leq j \leq l$, such that $e_{j s}$ weakly converges to $e_{j}, s \in \mathbb{N}_{2}, s \rightarrow \infty$. From (4), we can assume

$$
\lim _{s \in \mathbb{N}_{2}, s \rightarrow \infty} c_{j s}^{k}=c_{j}^{k}, \quad 1 \leq j \leq l, \quad 1 \leq k \leq m
$$

Thus $g_{s k}$ weakly converges to $\sum_{j=1}^{l} c_{j}^{k} e_{j}=: b_{k} \in \operatorname{span}\left\{e_{1}, \ldots, e_{l}\right\}=: V_{0} \in \Pi_{n}(F)$.
Now, using the weak lower semicontinuity of the norm $\|\cdot\|$ and (3), we get

$$
\left\|f_{k}-b_{k}\right\| \leq \liminf _{s \in \mathbb{N}_{2}}\left\|f_{k}-g_{s k}\right\|=r_{k}, \quad 1 \leq k \leq m
$$

So, the monotonicity of ρ implies

$$
\begin{aligned}
E\left(V_{0}\right) & \leq \rho\left(\left\|f_{1}-b_{1}\right\|, \ldots,\left\|f_{m}-b_{m}\right\|\right) \leq \rho\left(r_{1}, \ldots, r_{m}\right) \\
& =\lim _{s \in \mathbb{N}_{2}, s \rightarrow \infty} E\left(V_{s}\right)=E
\end{aligned}
$$

Remark 1. a) If F has finite dimension then F is a reflexive space, so by Theorem 1 there exists an n-optimal subspace for Y.
b) When F is the a space conjugate to some Banach space, then there exists an n-optimal subspace for Y. In fact, the proof follows by replacing in Theorem 1 the weak convergence by w^{*}-convergence.

We recall that a linear subspace U of F is a Chebyshev space if $P_{U}(f)$ is a one-point set for all $f \in F$ (see [6]).

Lemma 2. Suppose X is a Chebyshev space and let $Y=\left\{f_{1}, \ldots, f_{m}\right\} \subset F$. If P_{X} is a linear operator, then there exists a linear subspace $V_{0} \in \Pi_{n}(F)$, such that $V_{0} \subset X$ and

$$
E\left(V_{0}\right) \leq\left\|P_{X}\right\| E(V) \quad \text { for all } V \in \Pi_{n}(F)
$$

Proof. Since X has finite dimension, replacing in Theorem $1 F$ by X, there is a linear subspace $V_{0} \in \Pi_{n}(F), V_{0} \subset X$, such that

$$
E\left(V_{0}\right) \leq E\left(V^{\prime}\right) \quad \text { for all } V^{\prime} \in \Pi_{n}(F), \quad V^{\prime} \subset X
$$

Let $V \in \Pi_{n}(F)$ and $V^{\prime}=P_{X}(V) \subset X$. Since $Y \subset X$ and P_{X} is a linear operator, we have $P_{X}\left(f_{k}\right)=f_{k}, 1 \leq k \leq m$, and $V^{\prime} \in \Pi_{n}(F)$. We choose $g_{k}^{\prime} \in P_{V^{\prime}}\left(f_{k}\right)$ and $g_{k} \in P_{V}\left(f_{k}\right)$, so $P_{X}\left(g_{k}\right) \in V^{\prime}$. Then

$$
\begin{equation*}
\left\|f_{k}-g_{k}^{\prime}\right\| \leq\left\|f_{k}-P_{X}\left(g_{k}\right)\right\|=\left\|P_{X}\left(f_{k}-g_{k}\right)\right\| \leq\left\|P_{X}\right\|\left\|f_{k}-g_{k}\right\| \tag{5}
\end{equation*}
$$

and consequently $E\left(V_{0}\right) \leq E\left(V^{\prime}\right) \leq\left\|P_{X}\right\| E(V)$.
The next theorem immediately follows from Lemma 2.
Theorem 2. Under the same assumptions as in Lemma 2, if $\left\|P_{X}\right\|=1$, then there exists $V_{0} \in \Pi_{n}(F)$ such that V_{0} is an n-optimal subspace for Y.

Remark 2. If X is not a Chebyshev space, but there is a lineal metric selection of P_{X} (see [5, p. 25]) of norm 1, then the same proof of Lemma 2 shows the existence of an n-optimal subspace for Y.

Next, we give an example such that Remark 2 can be applied, but Remark 1, b) cannot.

Example 1. By Theorem 15.5 in [7, p. 454] the space $l_{1}(\mathbb{N})$ has a subspace F which is not isomorphic to any conjugate Banach space. Moreover, F has the following sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ as a monotone basis:

$$
f_{n}=x_{n}-\frac{1}{2} x_{2 n+1}-\frac{1}{2} x_{2 n+2}, \quad n \in \mathbb{N}
$$

where $x_{n}(m)=\delta_{n}(m)$ and δ_{n} is the Kronecker delta. Let $Y=\left\{f_{1}, f_{2}\right\}$. For $g=\sum_{n=1}^{\infty} \alpha_{n} f_{n} \in F$, and $X=\operatorname{span} Y$, a straightforward computation shows that $P: F \rightarrow X$ defined by $P(g)=\alpha_{1} f_{1}+\alpha_{2} f_{2}$ is a lineal metric selection of P_{X} with $\|P\|=1$.

3. Properties of optimal subspaces

Lemma 3. Suppose ρ is a strictly monotone norm. If $V_{0} \in \Pi_{n}(F)$ is an n-optimal subspace for Y, then $\operatorname{dim} V_{0}=n$.

Proof. Suppose $\operatorname{dim} V_{0}=r, r<n$. Since $V_{0} \neq X=\operatorname{span} Y$, there exists $1 \leq j \leq m$ such that $f_{j} \notin V_{0}$. Let $W=V_{0} \oplus \operatorname{span}\left\{f_{j}\right\}$. Clearly $W \in \Pi_{n}(F)$. We choose $g_{k} \in P_{W}\left(f_{k}\right)$ and $h_{k} \in P_{V_{0}}\left(f_{k}\right), 1 \leq k \leq m$. Since $\left\|f_{k}-g_{k}\right\| \leq\left\|f_{k}-h_{k}\right\|,\left\|f_{j}-h_{j}\right\|>0$, and $\left\|f_{j}-g_{j}\right\|=0$, then $E(W)<E\left(V_{0}\right)$, a contradiction.

Definition 1. Let $Z \subset F$ be a Chebyshev subspace. Then we say that Z has property (P) if $\left\|P_{Z}\right\|=1$ and $\left\|P_{Z}(f)\right\|=\|f\|$ implies $f \in Z$.

Lemma 4. Let F be a strictly convex space and let $Z \subset F$ be a Chebyshev subspace. If $\left\|P_{Z}\right\|=1$, then Z has the property (P).

Proof. Let $f \in F$ be such that $\left\|P_{Z}(f)\right\|=\|f\|$. Suppose $f \notin Z$, then $g=\frac{f}{\|f\|} \notin Z$. Let $u=\frac{g+P_{Z}(g)}{2}$. Since $\left\|u-P_{Z}(g)\right\|+\|u-g\|=\left\|g-P_{Z}(g)\right\|$, then $\left\|u-P_{Z}(g)\right\| \leq\|u-h\|$ for all $h \in Z$, and so

$$
\begin{equation*}
P_{Z}(g)=P_{Z}(u) \tag{6}
\end{equation*}
$$

On the other hand, the operator P_{Z} is positive homogeneous, so we have $\left\|P_{Z}(g)\right\|=\|g\|=1$. The strict convexity of F implies $\|u\|<1$. Since $\left\|P_{Z}\right\|=1$, (6) implies that $1=\left\|P_{Z}(u)\right\| \leq\left\|P_{Z}\right\|\|u\|=\|u\|$, a contradiction.

Remark 3. a) Every linear subspace of a Hilbert space has property (P).
b) The strict convexity is not a necessary condition for property (P) to occur (see Example 1).

In [1] the authors proved that if F is a Hilbert space, then the existence of an n-optimal subspace for Y implies the existence of an n-optimal subspace for Y contained in X. The following theorem shows that necessarily, all n-optimal subspaces for Y must be contained in X, even for more general normed spaces.

Theorem 3. Let F be a strictly convex space and let ρ be a strictly monotone norm. Suppose X has property (P) and P_{X} is a linear operator. If $V_{0} \in \Pi_{n}(F)$ is an n-optimal subspace for Y, then $V_{0} \subset X$.

Proof. Let $V_{0} \in \Pi_{n}(F)$ be an n-optimal subspace for Y and $V=P_{X}\left(V_{0}\right) \subset$ X. Since P_{X} is a linear operator, $V \in \Pi_{n}(F)$. So, (5) implies that V is an n-optimal subspace for Y. Moreover,

$$
\begin{equation*}
\left\|f_{k}-P_{V}\left(f_{k}\right)\right\|=\left\|f_{k}-P_{X}\left(P_{V_{0}}\left(f_{k}\right)\right)\right\|, \quad 1 \leq k \leq m \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|P_{X}\left(f_{k}-P_{V_{0}}\left(f_{k}\right)\right)\right\|=\left\|f_{k}-P_{V_{0}}\left(f_{k}\right)\right\|, \quad 1 \leq k \leq m \tag{8}
\end{equation*}
$$

From (7) and the uniqueness of the best approximant,

$$
\begin{equation*}
P_{V}\left(f_{k}\right)=P_{X}\left(P_{V_{0}}\left(f_{k}\right)\right), \quad 1 \leq k \leq m \tag{9}
\end{equation*}
$$

As X has the property (P), by (8) we get $P_{X}\left(f_{k}-P_{V_{0}}\left(f_{k}\right)\right)=f_{k}-P_{V_{0}}\left(f_{k}\right)$, $1 \leq k \leq m$, and so

$$
\begin{equation*}
P_{X}\left(P_{V_{0}}\left(f_{k}\right)\right)=P_{V_{0}}\left(f_{k}\right), \quad 1 \leq k \leq m \tag{10}
\end{equation*}
$$

Let $\bar{X}=\operatorname{span}\left\{P_{V_{0}}\left(f_{1}\right), \ldots, P_{V_{0}}\left(f_{m}\right)\right\} \subset V_{0}$. From (9) and (10), we have

$$
\begin{equation*}
\bar{X} \subset V_{0} \cap V \tag{11}
\end{equation*}
$$

In addition, $\left\|f_{k}-P_{\bar{X}}\left(f_{k}\right)\right\| \leq\left\|f_{k}-P_{V_{0}}\left(f_{k}\right)\right\|, 1 \leq k \leq m$. Then $E(\bar{X}) \leq E\left(V_{0}\right)$, i.e., $\bar{X} \in \Pi_{n}(F)$ is an n-optimal subspace for Y. By Lemma 3 we know that \bar{X}, V and V_{0} have dimension n, so (11) implies $V_{0}=V \subset X$.

4. Deviations and diameters

The proof of the next proposition follows the same patterns as the proof of [6, Theorem 6.10, p. 157].

Proposition 1. Let $Y_{1}=\left\{f_{1}, \ldots, f_{m}\right\} \subset F, Y_{2}=\left\{h_{1}, \ldots, h_{m}\right\} \subset F$ and let $U \subset F$. The following statements holds true.
a) $\left|E\left(Y_{1}, U\right)-E\left(Y_{2}, U\right)\right| \leq \rho\left(\left\|f_{1}-h_{1}\right\|, \ldots,\left\|f_{m}-h_{m}\right\|\right)$;
b) If U is a linear subspace, then $E\left(\alpha Y_{1}, U\right)=|\alpha| E\left(Y_{1}, U\right)$ for all $\alpha \in \mathbb{R}$;
c) $E\left(Y_{1}+Y_{2}, U\right) \leq E\left(Y_{1}, U\right)+E\left(Y_{2}, U\right)$;
d) If $U_{1} \subset U$, then $E\left(Y_{1}, U\right) \leq E\left(Y_{1}, U_{1}\right)$.

We denote the supremum norm in \mathbb{R}^{m} by $\|x\|_{\infty}$, i.e., $\|x\|_{\infty}=\max _{1 \leq k \leq m}\left|x_{k}\right|$, $x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$, and set $e=(1, \ldots, 1) \in \mathbb{R}^{m}$.

Proposition 2. Let $Y=\left\{f_{1}, \ldots, f_{m}\right\} \subset F$, and let $U \subset F$. Assume that $\|x\|_{\infty} \leq \rho(x)$ for all $x \in \mathbb{R}^{m}$. Then

$$
\begin{equation*}
\inf _{\epsilon>0, Y \subset U+\epsilon S_{1}} \epsilon \leq E(Y, U) \leq \rho(e) \inf _{\epsilon>0, Y \subset U+\epsilon S_{1}} \epsilon, \tag{12}
\end{equation*}
$$

where S_{1} is the closed ball in F with center 0 and radius 1.
In addition, the two inequalities in (12) become equalities if only if ρ is the supremum norm.

Proof. Given $n \in \mathbb{N}$, let $g_{k} \in U, 1 \leq k \leq m$, be such that $\left\|g_{k}-f_{k}\right\| \leq$ $\frac{1}{n}+d\left(f_{k}, U\right)$. Then

$$
f_{k}=g_{k}+\left(f_{k}-g_{k}\right) \in U+\left(\frac{1}{n}+d\left(f_{k}, U\right)\right) S_{1} \subset U+\left(\frac{1}{n}+E(Y, U)\right) S_{1}
$$

Thus

$$
\begin{equation*}
Y \subset U+\left(\frac{1}{n}+E(Y, U)\right) S_{1} \tag{13}
\end{equation*}
$$

On the other hand, let $\epsilon>0$ be such that $Y \subset U+\epsilon S_{1}$. For $f_{k} \in Y$, there exist $y \in S_{1}, g \in U$ such that $f_{k}=g+\epsilon y$. Then

$$
d\left(f_{k}, U\right) \leq\left\|f_{k}-g_{k}\right\| \leq\left\|f_{k}-g\right\|+\frac{1}{n} \leq \epsilon+\frac{1}{n}
$$

hence

$$
\begin{equation*}
E(Y, U) \leq\left(\epsilon+\frac{1}{n}\right) \rho(e) \tag{14}
\end{equation*}
$$

Since n is arbitrary, from (13) and (14) we get (12). Finally, if ρ is the supremum norm, clearly all inequalities in (12) are equalities.

Conversely, the equalities in (12) imply $\rho(e)=1$, and from monotonicity of ρ it follows that the closed ball in \mathbb{R}^{m} of center 0 and radius 1 in the supremum norm is contained in the closed ball in \mathbb{R}^{m} of center 0 and radius 1 in the ρ norm. Since the supremum norm is less than or equal to the ρ norm, the two balls coincide. So, $\rho=\|\cdot\|_{\infty}$. This concludes the proof.

Remark 4. Notice that Proposition 2 was proved in [6], when ρ is the supremum norm and U is a linear subspace of F.

Our next goal is to examine continuity of the deviation of the set $Y \subset F$ from a set U as function of the set U.

The one to one correspondence between proximinal sets and its associated metric projections enables us to devise a notion of distance between proximinal sets. Given two proximinal sets U_{1}, U_{2}, we define a distance by

$$
d_{*}\left(U_{1}, U_{2}\right)=\sup \left\{\frac{\|g-h\|}{\|f\|}: f \neq 0, g \in P_{U_{1}}(f), h \in P_{U_{2}}(f)\right\}
$$

The next lemma immediately follows.

Lemma 5. Let $Y=\left\{f_{1}, \ldots, f_{m}\right\} \subset F$ and let U_{1}, U_{2} be subsets of F. Then
$\left|E\left(Y, U_{1}\right)-E\left(Y, U_{2}\right)\right| \leq \rho\left(d\left(f_{1}, U_{1}\right)-d\left(f_{1}, U_{2}\right), \ldots, d\left(f_{m}, U_{1}\right)-d\left(f_{m}, U_{2}\right)\right)$.
The following proposition establishes a Lipschitz property of the function $E(Y, \cdot)$. It is a direct consequence of Lemma 5 .

Proposition 3. Let $Y=\left\{f_{1}, \ldots, f_{m}\right\} \subset F$ and let U_{1}, U_{2} be proximinal subsets of F. Then

$$
\left|E\left(Y, U_{1}\right)-E\left(Y, U_{2}\right)\right| \leq \rho(e) \max _{1 \leq k \leq m}\left\|f_{k}\right\| d_{*}\left(U_{1}, U_{2}\right)
$$

Now, we consider the Hausdorff space (\mathcal{H}, h), where $\mathcal{H}=\{K \subset F$: K is a non empty compact set $\}$, and $h: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ is the metric defined by $h\left(K_{1}, K_{2}\right)=\max \left\{d\left(K_{1}, K_{2}\right), d\left(K_{2}, K_{1}\right)\right\}$, with $d\left(K_{1}, K_{2}\right)=\max _{f \in K_{1}}\{\|f-g\|:$ $\left.g \in P_{K_{2}}(f)\right\}$.

Our next lemma gives a relation between the deviation over linear subspaces and the deviation over subsets in \mathcal{H}.

Lemma 6. Let $Y=\left\{f_{1}, \ldots, f_{m}\right\} \subset F$. If $r>2 \max _{1 \leq k \leq m}\left\|f_{k}\right\|$, then

$$
E(Y, U)=E\left(Y, U \cap S_{r}\right)
$$

for all $U \subset F$ with $0 \in U$, where S_{r} is the closed ball in F with 0 and radius $r>0$.

Proof. Given $n \in \mathbb{N}$, let $g_{k} \in U, 1 \leq k \leq m$, be such that $\left\|g_{k}-f_{k}\right\| \leq$ $\frac{1}{n}+d\left(f_{k}, U\right)$. If $\left\|g_{k}\right\|>r$ for some k, we have

$$
\frac{1}{n}+d\left(f_{k}, U\right) \geq\left\|f_{k}-g_{k}\right\| \geq\left\|g_{k}\right\|-\left\|f_{k}\right\|>r-\left\|f_{k}\right\|
$$

Hence, $d\left(f_{k}, U\right) \geq r-\left\|f_{k}\right\|>\left\|f_{k}\right\|$, which contradicts to $0 \in U$. Thus, we have $g_{k} \in U \cap S_{r}$, and consequently $d\left(f_{k}, U \cap S_{r}\right) \leq \frac{1}{n}+d\left(f_{k}, U\right)$. Since n is arbitrary, $d\left(f_{k}, U \cap S_{r}\right)=d\left(f_{k}, U\right), 1 \leq k \leq m$. The claim of Lemma 6 immediately follows.

Proposition 4. Let $Y=\left\{f_{1}, \ldots, f_{m}\right\} \subset F$ and let $U_{1}, U_{2} \in \Pi_{n}(F)$. Then

$$
\begin{equation*}
\left|E\left(Y, U_{1}\right)-E\left(Y, U_{2}\right)\right| \leq \rho(e) h\left(U_{1} \cap S_{r}, U_{2} \cap S_{r}\right) \tag{15}
\end{equation*}
$$

where S_{r} is defined as in Lemma 6.

Proof. For the sake of simplicity, $p_{K}(f)$ will denote an arbitrary element of the set $P_{K}(f)$. We shall show that if $f \in F$ and $\mathfrak{g}: \mathcal{H} \rightarrow \mathbb{R}$ is the function defined by $\mathfrak{g}(K)=d(\{f\}, K)$, then

$$
\begin{equation*}
\left|\mathfrak{g}\left(K_{1}\right)-\mathfrak{g}\left(K_{2}\right)\right| \leq h\left(K_{1}, K_{2}\right) \tag{16}
\end{equation*}
$$

Indeed, if $K_{1}, K_{2} \in \mathcal{H}$ and $y \in K_{1}$, we have

$$
\begin{aligned}
\left\|p_{K_{1}}(f)-p_{K_{2}}\left(p_{K_{1}}(f)\right)\right\| & \leq\left\|p_{K_{1}}(f)-p_{K_{2}}(y)\right\| \leq \max _{x \in K_{1}}\left\|x-p_{K_{2}}(y)\right\| \\
& =d\left(K_{1}, K_{2}\right) \leq h\left(K_{1}, K_{2}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathfrak{g}\left(K_{2}\right) & =\left\|f-p_{K_{2}}(f)\right\| \leq\left\|f-p_{K_{2}}\left(p_{K_{1}}(f)\right)\right\| \leq\left\|f-p_{K_{1}}(f)\right\| \\
& +\left\|p_{K_{1}}(f)-p_{K_{2}}\left(p_{K_{1}}(f)\right)\right\| \leq \mathfrak{g}\left(K_{1}\right)+h\left(K_{1}, K_{2}\right) .
\end{aligned}
$$

Analogously, we can get $\mathfrak{g}\left(K_{1}\right) \leq \mathfrak{g}\left(K_{2}\right)+h\left(K_{1}, K_{2}\right)$, which proves (16).
Finally, by Lemma 6, Lemma 5 and (16), we obtain (15).
The following proposition is an immediate consequence of Lemma 6.
Proposition 5. Let $Y=\left\{f_{1}, \ldots, f_{m}\right\} \subset F$. If $r \geq 2 \max _{1 \leq k \leq m}\left\|f_{k}\right\|$, then

$$
E(Y)=\inf _{W \in \Pi_{n}^{r}(F)} E(Y, W)
$$

where $E(Y)$ is defined by (2) and $\Pi_{n}^{r}(F)=\left\{V \cap S_{r}: V \in \Pi_{n}(F)\right\}$.
Next, we prove that the n-dimensional diameter of a set depends continuously on the set.

Proposition 6. Let $Y_{1}=\left\{f_{1}, \ldots, f_{m}\right\} \subset F, Y_{2}=\left\{h_{1}, \ldots, h_{m}\right\} \subset F$. Then

$$
\left|E\left(Y_{1}\right)-E\left(Y_{2}\right)\right| \leq \rho\left(\left\|f_{1}-h_{1}\right\|, \ldots,\left\|f_{m}-h_{m}\right\|\right)
$$

Proof. Let $Y_{1}=\left\{f_{1}, \ldots, f_{m}\right\} \subset F, Y_{2}=\left\{h_{1}, \ldots, h_{m}\right\} \subset F$. By the definition of $E\left(Y_{1}\right)$, there exists $U_{1} \in \Pi_{n}(F)$ such that

$$
E\left(Y_{1}, U_{1}\right)<E\left(Y_{1}\right)+\epsilon
$$

Since $E\left(Y_{2}\right) \leq E\left(Y_{2}, U_{1}\right)$, using Lemma 1 a) we obtain

$$
\begin{aligned}
E\left(Y_{2}\right)-E\left(Y_{1}\right) & <E\left(Y_{2}, U_{1}\right)-E\left(Y_{1}, U_{1}\right)+\epsilon \\
& \leq \rho\left(\left\|f_{1}-h_{1}\right\|, \ldots,\left\|f_{m}-h_{m}\right\|\right)+\epsilon
\end{aligned}
$$

for all $\epsilon>0$. Then

$$
E\left(Y_{2}\right)-E\left(Y_{1}\right) \leq \rho\left(\left\|f_{1}-h_{1}\right\|, \ldots,\left\|f_{m}-h_{m}\right\|\right)
$$

Analogously we can obtain $E\left(Y_{1}\right)-E\left(Y_{2}\right) \leq \rho\left(\left\|f_{1}-h_{1}\right\|, \ldots,\left\|f_{m}-h_{m}\right\|\right)$. This completes the proof.

5. Characterization and uniqueness of n-optimal subspaces in a Hilbert space

In this section, we characterize the n-optimal subspaces when F is a Hilbert space. We begin with the particular case when $F=\mathbb{R}^{k}$ and ρ is the Euclidean norm in \mathbb{R}^{m}.

Let $Y=\left\{f_{1}, \ldots f_{m}\right\}$ be a set of vectors in $\mathbb{R}^{k}, X=\operatorname{span}\left\{f_{1}, \ldots, f_{m}\right\}$, and $r=\operatorname{dim} X>n$. We set

$$
G=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{m}
\end{array}\right] \in \mathbb{R}^{m \times k}
$$

Since $G^{t} G=\left(\sum_{i=1}^{m} f_{i}^{t} f_{i}\right)$ is a symmetric matrix, then there exists an orthogonal matrix $Q \in \mathbb{R}^{k \times k}$ such that

$$
\begin{equation*}
Q^{t}\left(\sum_{i=1}^{m} f_{i}^{t} f_{i}\right) Q=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right), \quad \text { and } \quad \lambda_{1} \geq \cdots \geq \lambda_{k} \geq 0 . \tag{17}
\end{equation*}
$$

We observe that the range of $G^{t} G$ is $r>n$, therefore $\lambda_{n} \neq 0$. We denote $p=\max \left\{j: 1 \leq j \leq n, \lambda_{j}>\lambda_{n}\right\}$ if $\lambda_{1}>\lambda_{n}$, and $p=0$, otherwise, and $s=\max \left\{j: 1 \leq j \leq k, \lambda_{j}=\lambda_{n}\right\}$.

Let $V \subset \mathbb{R}^{k}, \operatorname{dim} V=n$, and let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis for V. Set $A=\left[\begin{array}{lll}v_{1}^{t} & \ldots & v_{n}^{t}\end{array}\right] \in \mathbb{R}^{k \times n}$ and $B=Q^{t} A \in \mathbb{R}^{k \times n}$.

We proceed with three lemmas.
Lemma 7. Let $F=\mathbb{R}^{k}$, and let ρ be the Euclidean norm on \mathbb{R}^{m}. Then $E(Y, V)=\sum_{j=1}^{k} \lambda_{j}-\sum_{j=1}^{k} \lambda_{j}\left(B B^{t}\right)_{j j}$.

Proof. It is easy to see that $E(Y, V)=\sum_{j=1}^{m}\left(\left\|f_{j}\right\|^{2}-\sum_{i=1}^{n}\left(<f_{j}, v_{i}>\right)^{2}\right)$. Let $\Delta=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$. Since

$$
\sum_{j=1}^{m}\left\|f_{j}\right\|^{2}=\operatorname{trace}\left(G G^{t}\right)=\operatorname{trace}\left(G^{t} G\right)=\sum_{j=1}^{k} \lambda_{j}
$$

and

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{m}\left(<f_{j}, v_{i}>\right)^{2} & =\sum_{i=1}^{n} v_{i} G^{t} G v_{i}^{t}=\sum_{i=1}^{n} v_{i} Q \Delta Q^{t} v_{i}^{t}=\sum_{i=1}^{n} \sum_{j=1}^{k} \lambda_{j}\left(Q^{t} v_{i}^{t}\right)_{j}^{2} \\
& =\sum_{j=1}^{k} \lambda_{j}\left(\sum_{i=1}^{n}\left(Q^{t} v_{i}^{t}\right)_{j}^{2}\right)=\sum_{j=1}^{k} \lambda_{j}\left(B B^{t}\right)_{j j},
\end{aligned}
$$

we have $E(Y, V)=\sum_{j=1}^{k} \lambda_{j}-\sum_{j=1}^{k} \lambda_{j}\left(B B^{t}\right)_{j j}$.

Lemma 8. The following conditions are satisfied:

$$
\begin{equation*}
\operatorname{trace}\left(B B^{t}\right)=n \quad \text { and } \quad 0 \leq\left(B B^{t}\right)_{i i} \leq 1, \quad 1 \leq i \leq k \tag{18}
\end{equation*}
$$

Proof. Clearly, $\operatorname{trace}\left(B B^{t}\right)=\operatorname{trace}\left(B^{t} B\right)=\operatorname{trace}\left(A^{t} A\right)=n$.
As $B B^{t}=\left(B B^{t}\right)^{t} B B^{t}$, we get $0 \leq \sum_{j=1}^{k}\left(B B^{t}\right)_{i j}^{2}=\left(B B^{t}\right)_{i i}, 1 \leq i \leq k$.
Therefore

$$
\begin{equation*}
0=\sum_{j=1, j \neq i}^{k}\left(B B^{t}\right)_{i j}^{2}+\left(B B^{t}\right)_{i i}\left(\left(B B^{t}\right)_{i i}-1\right), \quad 1 \leq i \leq k \tag{19}
\end{equation*}
$$

Thus, $\left(B B^{t}\right)_{i i} \leq 1,1 \leq i \leq k$.

Lemma 9. Let $F=\mathbb{R}^{k}$, and let ρ be the Euclidean norm in \mathbb{R}^{m}. Suppose that V is n-optimal for Y. Then
a) If $p>0$, we have $\left(B B^{t}\right)_{i i}=1,1 \leq i \leq p$;
b) If $s<r$, we have $\left(B B^{t}\right)_{i i}=0, s+1 \leq i \leq r$.

Proof. From Lemma 7, we have $E(Y, V)=\sum_{j=1}^{k} \lambda_{j}-\sum_{j=1}^{k} \lambda_{j}\left(B B^{t}\right)_{j j}$. Then Theorem 4.5 in [1] implies $0=E(Y, V)-E(Y)=\sum_{i=1}^{n} \lambda_{i}-\sum_{i=1}^{k} \lambda_{i}\left(B B^{t}\right)_{i i}$, i.e., (20) $\sum_{i=1}^{p} \lambda_{i}\left(1-(B B)_{i i}^{t}\right)+\lambda_{n}\left((n-p)-\sum_{i=p+1}^{s}\left(B B^{t}\right)_{i i}\right)=\sum_{i=s+1}^{k} \lambda_{i}\left(B B^{t}\right)_{i i}$.
a) Suppose that there exists $j, 1 \leq j \leq p$, such that $0 \leq\left(B B^{t}\right)_{j j}<1$. Then $\lambda_{n}\left(1-\left(B B^{t}\right)_{j j}\right)<\lambda_{j}\left(1-\left(B B^{t}\right)_{j j}\right)$ and by (20) we have,

$$
\begin{aligned}
\lambda_{n}\left(n-\sum_{i=1}^{s}\left(B B^{t}\right)_{i i}\right) & =\lambda_{n} \sum_{i=1}^{p}\left(1-\left(B B^{t}\right)_{i i}\right)+\lambda_{n}\left((n-p)-\sum_{i=p+1}^{s}\left(B B^{t}\right)_{i i}\right) \\
& <\sum_{i=1}^{p} \lambda_{i}\left(1-\left(B B^{t}\right)_{i i}\right)+\lambda_{n}\left((n-p)-\sum_{i=p+1}^{s}\left(B B^{t}\right)_{i i}\right) \\
& =\sum_{i=s+1}^{k} \lambda_{i}\left(B B^{t}\right)_{i i} \leq \sum_{i=s+1}^{k} \lambda_{n}\left(B B^{t}\right)_{i i} .
\end{aligned}
$$

Hence, $n-\sum_{i=1}^{s}\left(B B^{t}\right)_{i i}<\sum_{i=s+1}^{k}\left(B B^{t}\right)_{i i}$, i.e., $n<\operatorname{trace}\left(B B^{t}\right)$, which contradicts (18). Therefore, $\left(B B^{t}\right)_{i i}=1,1 \leq i \leq p$.
b) If there exists $j, s+1 \leq j \leq r$, such that $0<\left(B B^{t}\right)_{j j} \leq 1$, then $\lambda_{j}\left(B B^{t}\right)_{j j}<\lambda_{n}\left(B B^{t}\right)_{j j}$, and by (20) we get,

$$
\begin{aligned}
\lambda_{n}\left(n-\sum_{i=1}^{s}\left(B B^{t}\right)_{i i}\right) & =\lambda_{n} \sum_{i=1}^{p}\left(1-\left(B B^{t}\right)_{i i}\right)+\lambda_{n}\left((n-p)-\sum_{i=p+1}^{s}\left(B B^{t}\right)_{i i}\right) \\
& \leq \sum_{i=1}^{p} \lambda_{i}\left(1-\left(B B^{t}\right)_{i i}\right)+\lambda_{n}\left((n-p)-\sum_{i=p+1}^{s}\left(B B^{t}\right)_{i i}\right) \\
& =\sum_{i=s+1}^{k} \lambda_{i}\left(B B^{t}\right)_{i i}<\lambda_{n} \sum_{i=s+1}^{k}\left(B B^{t}\right)_{i i} .
\end{aligned}
$$

Hence, $n-\sum_{i=1}^{s}\left(B B^{t}\right)_{i i}<\sum_{i=s+1}^{k}\left(B B^{t}\right)_{i i}$, i.e., $n<\operatorname{trace}\left(B B^{t}\right)$, which again contradicts (18). Thus $\left(B B^{t}\right)_{i i}=0, s+1 \leq i \leq r$.

For a matrix H, we denote by $R(H)$ the range of H.
The following theorem characterizes the n-optimal subspaces in \mathbb{R}^{k}.
Theorem 4. Let $F=\mathbb{R}^{k}$, and let ρ be the Euclidean norm on \mathbb{R}^{m}. Then V is n-optimal for Y if only if $V=\operatorname{span}\left\{q_{1}^{t}, \ldots, q_{p}^{t}\right\} \oplus W$, where W is any subspace of $\operatorname{span}\left\{q_{p+1}^{t}, \ldots, q_{s}^{t}\right\}, \operatorname{dim} W=n-p$, and q_{j} is the $j^{\text {th }}$ column of matrix Q.

Proof. When the set of indices satisfying certain condition is empty, we shall mean that this condition must be omitted. Suppose V is n-optimal for Y. Next, our goal is to show that

$$
\begin{equation*}
n-p=\sum_{i=p+1}^{s}\left(B B^{t}\right)_{i i} \quad \text { for } \quad p \geq 0 \tag{21}
\end{equation*}
$$

There are only four cases to be considered: $s<r, p>0 ; s=r, p>0 ; s<r$, $p=0$, and $s=r, p=0$. For the first three cases (21) is consequence of (20) and Lemma 9, while the last case directly follows from (20).

Next, we shall prove that

$$
\begin{equation*}
\left(B B^{t}\right)_{i i}=0, \quad s+1 \leq i \leq k \tag{22}
\end{equation*}
$$

If $p=0$, then using (21) and Lemma 8 we obtain (22). If $p>0$, Lemma 9 , (a) implies $\sum_{i=1}^{p}\left(B B^{t}\right)_{i i}=p$. From (21) it follows that $\sum_{i=1}^{s}\left(B B^{t}\right)_{i i}=n$. Now,
by Lemma 8 we again get (22).
From Lemma 9, (19) and (22), we get

$$
0=\sum_{j=1, j \neq i}^{k}\left(B B^{t}\right)_{i j}^{2}, \quad 1 \leq i \leq p \quad \text { or } \quad s+1 \leq i \leq k
$$

Since $B B^{t}$ is a symmetric matrix, $B B^{t}$ is the block matrix $\left[\begin{array}{ccc}I_{p} & 0 & 0 \\ 0 & \widetilde{B} & 0 \\ 0 & 0 & 0\end{array}\right]$, where I_{p} is the identity matrix of order p, and \widetilde{B} is certain square matrix of order $s-p$.
We put

$$
\left.Q=\left[\begin{array}{lll}
{\left[q_{1}\right.} & \ldots & q_{p}
\end{array}\right]\left[q_{p+1} \ldots q_{s}\right]\left[\begin{array}{lll}
q_{s+1} & \ldots & q_{k}
\end{array}\right]\right] \quad \text { and } \quad B=\left[\begin{array}{c}
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right]
$$

with $B_{1} \in \mathbb{R}^{p \times n}, B_{2} \in \mathbb{R}^{(s-p) \times n}$ and $B_{3} \in \mathbb{R}^{(k-s) \times n}$. Since $B B^{t} B=B$, we get $B_{3}=0$. As a consequence, $A=Q B=\left[\begin{array}{lll}q_{1} & \ldots & q_{p}\end{array}\right] B_{1}+\left[\begin{array}{lll}q_{p+1} & \ldots & q_{s}\end{array}\right] B_{2}$. Since $R\left(\left[\begin{array}{lll}q_{1} & \ldots & q_{p}\end{array}\right] B_{1}\right) \subset R\left(\left[\begin{array}{lll}q_{1} & \ldots & q_{p}\end{array}\right]\right), R\left(\left[\begin{array}{llll}q_{p+1} & \ldots & q_{s}\end{array}\right] B_{2}\right) \subset R\left(\left[\begin{array}{llll}q_{p+1} & \ldots & q_{s}\end{array}\right]\right)$, and $R\left(\left[\begin{array}{llll}q_{1} & \ldots & q_{p}\end{array}\right]\right) \cap R\left(\left[\begin{array}{lll}q_{p+1} & \ldots & q_{s}\end{array}\right]\right)=\emptyset$, we get

$$
R(A) \subset R\left(\left[\begin{array}{lll}
q_{1} & \ldots & q_{p}
\end{array}\right]\right) \oplus R\left(\left[\begin{array}{lll}
q_{p+1} & \ldots & q_{s}
\end{array}\right] B_{2}\right)
$$

As $B_{2} B_{2}^{t}=\widetilde{B}$ and $\operatorname{rank}\left(B B^{t}\right)=n$, we have $\operatorname{rank}\left(B_{2}\right)=\operatorname{rank}(\widetilde{B})=n-p$. Therefore, $\operatorname{rank}\left(\left[\begin{array}{lll}q_{p+1} & \ldots & q_{s}\end{array}\right] B_{2}\right)=n-p$, and thus,

$$
R(A)=R\left(\left[\begin{array}{lll}
q_{1} & \ldots & q_{p}
\end{array}\right]\right) \oplus R\left(\left[\begin{array}{lll}
q_{p+1} & \ldots & q_{s}
\end{array}\right] B_{2}\right)
$$

We conclude that $V=\operatorname{span}\left\{q_{1}^{t}, \ldots, q_{p}^{t}\right\} \oplus W$, where W is a subspace of $\operatorname{span}\left\{q_{p+1}^{t}, \ldots, q_{s}^{t}\right\}, \operatorname{dim} W=n-p$. This completes the proof of the necessity.

Conversely, if $V=\operatorname{span}\left\{q_{1}^{t}, \ldots, q_{p}^{t}\right\} \oplus W$, where W is any subspace of $\operatorname{span}\left\{q_{p+1}^{t}, \ldots, q_{s}^{t}\right\}, \operatorname{dim} W=n-p$, we have $E(Y, V)=\sum_{j=n+1}^{k} \lambda_{j}$. Then V is n-optimal for Y.

The following theorem is an immediate consequence of Theorems 11 and 4.

Theorem 5. Let F be a Hilbert space, $Y=\left\{f_{1}, \ldots, f_{m}\right\} \subset F$ and $X=$ $\operatorname{span}\left\{f_{1}, \ldots, f_{m}\right\}$. Let $k=\operatorname{dim} X$, and let $V \subset F, \operatorname{dim} V=n<k$. Let $\tau:(X, \rho) \rightarrow\left(\mathbb{R}^{k}\right.$, Euclidean norm $)$ be an isometric isomorphism, and let $Q \in$ $\mathbb{R}^{k \times k}$ be an orthogonal matrix such that

$$
\begin{equation*}
Q^{t}\left(\sum_{i=1}^{m} \tau\left(f_{i}\right)^{t} \tau\left(f_{i}\right)\right) Q=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right) \quad \text { and } \quad \lambda_{1} \geq \cdots \geq \lambda_{k} \geq 0 \tag{23}
\end{equation*}
$$

Define $p=\max \left\{j: 1 \leq j \leq n, \lambda_{j}>\lambda_{n}\right\}$ if $\lambda_{1}>\lambda_{n}$ or $p=0$, otherwise, and $s=\max \left\{j: 1 \leq j \leq k, \lambda_{j}=\lambda_{n}\right\}$. Then V is n-optimal for Y if only if $V=\operatorname{span}\left\{\tau^{-1}\left(q_{1}^{t}\right), \ldots, \tau^{-1}\left(q_{p}^{t}\right)\right\} \oplus W$, where W is any subspace of $\operatorname{span}\left\{\tau^{-1}\left(q_{p+1}^{t}\right), \ldots, \tau^{-1}\left(q_{s}^{t}\right)\right\}, \operatorname{dim} W=n-p$, and q_{j} is the $j^{\text {th }}$ column of matrix Q.

Corollary 1. Under the assumptions of Theorem 5, we have
a) There is a unique n-optimal subspace V for Y if and only if $\lambda_{n}>\lambda_{n+1}$. In this case, $V=\operatorname{span}\left\{q_{1}^{t}, \ldots, q_{n}^{t}\right\}$.
b) If $\lambda_{1}=\lambda_{k}$, then any subspace of dimension n is n-optimal for Y.

Remark 5. The sufficiency in Corollary 1, a) was established in [1].

Acknowledgements. The authors thank to the referee for his suggestions to improve this paper.

References

[1] A. Aldroubi, C. Cabrelli, D. Hardin, and U. Molter, Optimal shift invariant spaces and their parseval frame generators, Appl. Comput. Harmon. Anal. 23(2007), 273-283.
[2] A. Aldroubi, C. Cabrelli, and U. Molter, Optimal non-linear models for sparsity and sampling, J. Fourier Anal. Appl. 14, 5(2008), 793-812.
[3] A. L. Garkavi, On the best net and best section of a set in a normed space, Izv. Akad. Nauk SSSR 26, 1(1962), 87-106.
[4] A. N. Kolmogorov, On the best approximation of functions of a given class, Ann. of Math. 37(1936), 107-110.
[5] A. Pinkus, On L_{1} Approximation, Cambridge tracts in mathematics 93, Cambridge University Press, 1989.
[6] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, New York, Springer Verlag, 1970.
[7] I. Singer, Bases in Banach Spaces I, New York, Springer Verlag, 1970.
[8] V. M. Tikhomirov, Diameters of sets in function spaces and the theory of best approximation, Russian Math. Surveys 15(1960), 75-111.
H. H. Cuenya, F. E. Levis, M. D. Lorenzo, C. N. Rodriguez

Departamento de Matemática
Facultad de Ciencias Exactas Físico Químicas y Naturales
Universidad Nacional de Río Cuarto
Río Cuarto, 5800, ARGENTINA
E-mails: hcuenya@exa.unrc.edu.ar flevis@exa.unrc.edu.ar mlorenzo@exa.unrc.edu.ar crodriguez@exa.unrc.edu.ar

[^0]: *Totally supported by Universidad Nacional de Río Cuarto, CONICET and ANPCyT.

