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Abstract−− The dynamics of production and puri-

fication of ethanol from sorghum lignocellulosic ma-

terials by a three stages process was modeled and op-

timized in this work. The process involves a first stage 

for hydrolyzing sweet sorghum bagasse; a second 

stage for fermenting the generated sugars and a third 

stage for the separation of ethanol. Kinetic and distil-

lation equations were embedded into macroscopic 

balances in order to derive a mathematical model 

used to solve a three-stage optimal control problem. 

The aim was to maximize the process productivity by 

optimally managing the controlled flows between 

units and by optimally fixing switching times between 

the process stages. 

Keywords− multi-stage optimal control; sorghum 

bagasse; hydrolysis; fermentation; distillation. 

I. INTRODUCTION 

Bioethanol is the most widely used biofuel and the most 

promising alternative to fossil fuels. It is also considered 

clean because of its inherent characteristics of low pollu-

tant (Andrianantenaina and Ramamonjisoa, 2016). Most 

bioethanol is produced from sucrose containing or starch-

based feedstocks. Crop-based bioethanol imposes an ad-

verse effect on global food supply and a sustainable al-

ternative feedstock which can be used for non-crop bio-

ethanol is lignocellulosic biomass such as rice straw, 

wheat straw, corn stover, switchgrass, sugarcane bagasse 

and sorghum bagasse. Lignocellulose mainly consists of 

cellulose, hemicellulose and lignocellulose. Lignocellu-

losic bioethanol has not yet been produced on a commer-

cial scale due to lack of cost-effectiveness. Nevertheless, 

the use of lignocellulosic feedstock is considered renew-

able, since the carbon released to the environment is cap-

tured again by the growth of new crops. Comprehensive 

efforts are required to reduce costs and maximize the 

profit throughout the whole process. In general, the 

productivity of growth-associated products in a chemo-

stat is higher than in a batch reactor but this is not always 

the case with ethanol production (Shuler and Kargi, 

2002). Chemostats outperform batch fermenters in etha-

nol production from glucose alone as cells grow rela-

tively fast but ethanol productivity from mixed sugars in 

batch cultures is about two to three times higher than in 

continuous cultures (Song et al., 2012). The productivity 

of batch fermenters can be further improved by feeding 

media leading to the use of fed batch fermenters. Also, 

the separation of lignocellulosic bioethanol from the cul-

ture may strongly affect the process productivity. In-

creasing the productivity of the whole process should be 

a preferred target over optimizing individual stages. 

Modelling is a nontrivial part of optimization aimed at 

increasing the productivity of a process. This is because 

a representation adequately predicting the response of the 

process to all admissible discrete decisions and continu-

ous controls is necessary to optimize it. The optimization 

of a whole biochemical process would include a multi-

stage optimal control problem involving change of dy-

namics and control variables on several stages because 

batch and semi-continuous process may involve no-

smooth, switched optimal control problems. These prob-

lems were mainly researched for aerospace applications 

but examples from chemical engineering started to ap-

pear during the last decade. See for example De Prada et 

al. (2009) and Ni et al. (2015). They can be described as 

follows: given a set of 𝑃 stages 𝑝 ∈ [1, . . . , 𝑃], minimize 

the cost functional defined by: 

 𝐽 = ∑ 𝐺(𝑥𝑝(𝑡𝑓), 𝑥𝑝(𝑡0))𝑃
𝑝=1 + 

 ∑ ∫ 𝐹(𝑥𝑝(𝑡), 𝑥𝑝(𝑡))𝑑𝑡
𝑡𝑓

0
,𝑃

𝑝=1  (1) 

subject to the dynamic constraints: 

 
𝑑𝑥

𝑑𝑡
= 𝑓𝑝 (𝑥𝑝(𝑡), 𝑢𝑝(𝑡)) , ∀𝑝 = 1, ⋯ , 𝑃 (2) 

inequality path constraints: 

 𝐶𝑃
𝑀𝑖𝑛(𝑡) ≤ 𝐶 (𝑥𝑝(𝑡), 𝑢𝑝(𝑡)) ≤ 𝐶𝑃

𝑀𝑎𝑥(𝑡), ∀𝑝 = 1, . , 𝑃 (3) 

boundary conditions: 

𝜙𝑃
𝑀𝑖𝑛(𝑡) ≤ 𝜙 (𝑥𝑝(𝑡), 𝑢𝑝(𝑡)) ≤ 𝜙𝑃

𝑀𝑎𝑥(𝑡), ∀𝑝 = 1, , 𝑃 (4) 

and the linkage constraints: 

 𝐿𝑠
𝑀𝑖𝑛 ≤ 𝐿𝑠(𝑥𝑝

𝑙𝑠(𝑡), 𝑝𝑝
𝑙𝑠 , 𝑡𝑝

𝑙𝑠; 𝑥𝑝
𝑟𝑠(𝑡), 𝑝𝑝

𝑟𝑠, 𝑡𝑝
𝑟𝑠) ≤ 𝐿𝑠

𝑀𝑎𝑥  (5) 

where 𝑥𝑝(𝑡), 𝑢𝑝(𝑡) and 𝑡 are respectively the state 

variables, the control variables and the time in stages 
𝑝 =  1, … , 𝑃; 𝐿 is the number of pair of stages to link 
and 𝑠 =  1, … , 𝐿 are the “left” and “right” stage-num-
bers respectively (Betts, 2001). 

This work is concerned with the numerical derivation 

of optimal time-profiles for the control variables of a se-

quential production and separation process for ethanol 

production from sorghum bagasse and the optimal 

switching times between hydrolysis, fermentation and 

distillation stages. 

II. MODELS OF THE PROCESS’ STAGES 

Several ways to generate ethanol from lignocellulosic 

residues of sweet sorghum are possible but we restrict 

this numerical study to the enzymatic hydrolysis of 
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grinded sorghum bagasse with cellulase enzyme; the pos-

terior fermentation of generated sugars by Saccharomy-

ces cerevisiae and a final semi-batch distillation stage. 

The sequential process involves a hydrolysis reactor 

linked to a separated fermentor as shown in Fig. 1. The 

feed added to the later reactor contains glucose and some 

other fermentable sugars arising from the hydrolysis of 

sorghum bagasse in the former reactor. Afterwards, fil-

tering is performed to feed the aqueous ethanol-solution 

to the boiler of a distillation column. Since this work pre-

sents the numerical application of multi-stage optimal 

control, materials and methods used to derive experi-

mental information are just referenced. 

A. Hydrolysis kinetics 

Lignin is a recalcitrant source of carbon compounds that 

may be decomposed via pretreatment and hydrolysis into 

a spectrum of sugars in which glucose and xylose are the 

first and second most dominant (Song et al., 2012). Joris 

(2015) and Duarte (2018) researched alternatives for 

identifying high yield and high conversion-rates hydro-

lytic enzymes to hydrolyze sweet sorghum bagasse. From 

these studies we took kinetic data for hydrolyzing the ba-

gasse by cellulase enzyme (FibreZyme® G4, Dyadic’s, 

USA) and performed a least-squares regression in order 

to determine parameter values listed in Table 1. Kinetic 

equations used to characterize this hydrolysis are the fol-

lowing: 

 𝑟𝑀
ℎ = −𝑌𝑆/𝑀𝛾

𝑀

𝑀+𝑘1
𝑀 (6) 

 𝑟𝑆
ℎ = 𝛾

𝑀

𝑀+𝑘1
𝑀 (7) 

where 𝑟𝑀
ℎ  is the rate of depletion of lignocellulosic mate-

rials, 𝑟𝑀
ℎ  is the glucose production rate, 𝑀 is a variable 

representing an non-dimensional concentration of hydro-

lysable sugars into lignocellulosic solids, γ the maximum 

specific hydrolysis rate, 𝑘1 is the saturation constant and 

𝑌𝑆/𝑀  is the observable yield of glucose on the lignocellu-

losic material. 

B. Fermentation kinetics 

Sugars generated in the above stage are converted to bi-

oethanol by fermentation. An industrial strain of Saccha-

romyces cerevisiae LFF-S04 available on Laboratorio de 

Fermentaciones, Facultad de Bioquímica y Ciencias Bi-

ológica, Universidad Nacional del Litoral (FBCB - 

UNL), was used by Duarte (2018) to characterize the fer-

mentation of the hydrolysate generated during the previ-

ous stage. Although several fermentable sugars are pre-

sent in the hydrolysate, glucose is the main product and 

also the limiting substrate for the biomass growth rate. 

Kinetic rates are characterized by the following equa-

tions: 

 𝑟𝑋 = 𝜇𝑚𝑎𝑥
𝑆𝑓

𝑘𝑆+𝑆𝑓
(1 −

𝑃

𝑘𝑃
) 𝑋 (8) 

 𝑟𝑃 = 𝑎𝜇𝑚𝑎𝑥
𝑆𝑓

𝑘𝑆+𝑆𝑓
𝑋 (9) 

 𝑟𝑆 = −
1

𝑌
𝜇𝑚𝑎𝑥

𝑆𝑓

𝑘𝑆+𝑆𝑓
𝑋 (10) 

Rates 𝑟𝑋, 𝑟𝑃 and 𝑟𝑆 are respectively the biomass growth 

rate; the ethanol production rate and the glucose con- 
 

 
Fig. 1: Schematics of th train 

sumption rate.  In kinetic Eqs. (8)-(10), 𝑆 is the glucose 

concentration, 𝑋 is the biomass concentration and 𝑃 is the 

ethanol concentration; 𝜇𝑚𝑎𝑥 is the maximum specific bi-

omass growth rate; 𝑘𝑆 is the Monod constant on glucose; 

𝑘𝑖 is an inhibition constant considering the braking effect 

of ethanol on the biomass growth rate; 𝑎 is the growth-

associated Luedeking-Piret specific production rate and 

𝑌 is an observed lumped yield of products (biomass and 

ethanol) on glucose. Also, a least squares regression was 

performed to determine parameter values listed in Table 

1. 

C. Distillation dynamics 

Although other options are feasible, ethanol from aque-

ous solutions, like fermentation cultures, is usually sepa-

rated by standard techniques like filtering and distillation. 

There are quite standardized mathematical representa-

tions for these separation techniques. We utilize the 

model by Logsdon and Biegler (1993) for a trays column 

which considers the following assumptions:  feeding an 

aqueous mixture at saturation temperature to the boiler; 

non-ideal vapor-liquid relationships; negligible vapor 

holdup in each tray and in the boiler; constant vapor flow 

and constant liquid holdup in trays and in the condenser; 

theoretical trays; constant operation pressure; adiabatic 

(i.e. energy balances neglected) column with n stages of 

equilibrium; and total condensation of the distillate. 

III. ASSEMBLING MODELS  

The train illustrated on Fig. 1 comprises the hydrolysis 

reactor, the fermentor and the distillation column and has 

three main stages. The first stage begins on the hydrolysis 

reactor and its aim is to generate glucose and several 

other fermentable sugars. When the hydrolizable solids 

are depleted at an unknown time 𝑡𝑓
(1)

, the culture is feed 

to the fermentor starting the biomass growth and the eth-

anol production. The fermentation finalizes at an un-

known time 𝑡𝑓
(2)

 when fermentable sugars have been 

practically exhausted. Then, the feeding of the distillation 

column starts and the separation proceeds until an un-

known time 𝑡𝑓
(3)

. Filtering of depleted solids and filtering 

of biomass are respectively performed to feed the fer-

mentor and boiler. To model the train, kinetic equations 

linked by yield parameters must be embedded into mac-

roscopic balances equations for both reactors. Further-

more, the dynamics of the distillation column considers 

that the boiler is feed with the filtered culture. The prob-

lem involves three stages; a batch hydrolysis (𝑝1); fed-
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batch fermentation (𝑝2); and a semi-continuous distilla-

tion (𝑝3); and three control variables: the flow of filtered 

hydrolysate solution toward the fermentor (𝑢1); the flow 

of the filtered culture toward the column boiler (𝑢2); and 

the distillate flow (𝑢3) out of the condenser. 

A. Dynamic equations 

The dynamics of the whole train is represented by Eqs. 

(11) to (22). Equations (11)-(12) respectively state the 

dynamics of sugars-depletion from solids and the glucose 

production in the hydrolysis rector. Equations (13) and 

(14) state the dynamics of the reaction volumes, 𝑉ℎ and 

𝑉𝑓, in the hydrolysis reactor and the fermentor respec-

tively. The dynamics of the biomass concentration, 𝑋, 

ethanol, 𝑃, and glucose, 𝑆𝑓, in the fermentor are given by 

Eqs. (15), (16) and (17), respectively. Equation (18) de-

fines the dynamics of the molar fraction of ethanol, 𝑥𝑖, in 

each tray 𝑖. The dynamics of the volume of solution avail-

able in the boiler, 𝐵, is given by Eq. (19). The molar frac-

tions of ethanol in the condenser, 𝑥𝑐, and in the boiler, 

𝑥𝑏, are respectively defined by Eqs. (20) and (21). Equa-

tion (22) gives the dynamics of the condensed distillate, 

𝐷. In this model, binary parameters 𝑝1, 𝑝2  and 𝑝3 take 

value 1 whenever their respective stages are active and 0 

otherwise; i.e. when hydrolysable solids are depleted 

then 𝑝1=0, 𝑝2 = 1, 𝑝3 = 0 and when fermentation ends 

then 𝑝1=0, 𝑝2 = 0, 𝑝3 = 1. Switch-times are determined 

by the problem solution. Variables 𝑦𝑖 , 𝑦𝑐  and 𝑦𝑏  respec-

tively state the molar fraction of ethanol in the vapor 

phase on tray 𝑖, on the condenser and on the boiler. The 

liquid flow 𝐿 in the column is computed as the difference 

between the vapor flow 𝑉 and the distillate flow 𝑢3. 

 
𝑑𝑀ℎ

𝑑𝑡
= 𝑟𝑀

ℎ 𝑝1 (11) 

 
𝑑𝑆ℎ

𝑑𝑡
= 𝑟𝑆

ℎ𝑝1 (12) 

 
𝑑𝑉ℎ

𝑑𝑡
= −𝑢1𝑝2 (13) 

 
𝑑𝑉𝑓

𝑑𝑡
= 𝑢1

𝑓
𝑝2 − 𝑢2𝑝3 (14) 

 
𝑑𝑋

𝑑𝑡
= (𝑟𝑥 − 𝑢1

𝑓 𝑋

𝑉𝑓
) 𝑝2 (15) 

 
𝑑𝑃

𝑑𝑡
= (𝑟𝑃 − 𝑢1

𝑓 𝑃

𝑉𝑓
) 𝑝2 (16) 

 
𝑑𝑆𝑓

𝑑𝑡
= (𝑟𝑆

𝑓
− 𝑢1

𝑓 (𝑆ℎ
´ −𝑆𝑓)

𝑉𝑓
) 𝑝2 (17) 

 
𝑑𝑥𝑖

𝑑𝑡
= (

𝐿(𝑥𝑖−1−𝑥𝑖)+𝑉(𝑦𝑖+1−𝑦𝑖)

𝑀ℎ
) 𝑝3, 𝑖 = 1, . . , 𝑛𝑡𝑟𝑎𝑦𝑠 (18) 

 
𝑑𝐵

𝑑𝑡
= (𝑢2

𝑓
+ 𝐿 − 𝑢1

𝑓
)𝑝3 (19) 

 
𝑑𝑥𝑐

𝑑𝑡
= (

𝑉

𝑀ℎ𝑐
(𝑦1 − 𝑦𝑐)) 𝑝3 (20) 

 
𝑑𝑥𝑏

𝑑𝑡
=

1

𝐵
(𝑢2

𝑓
(𝑥𝑓 − 𝑥𝑏) + 𝐿(𝑥ℎ − 𝑥𝑏) − 𝑉(𝑦𝑏 − 𝑥𝑏)) 𝑝3 (21) 

 
𝑑𝐷

𝑑𝑡
= 𝑢3𝑝3 (22) 

Feeding flows 𝑢1
𝑓
 and 𝑢2

𝑓
 are respectively related to 

𝑢1 and 𝑢2 by algebraic equations to be next defined. 

B. Algebraic equations 

Vapor-liquid equilibrium data are computed by interpo-

lation between points provided by a table expressed as: 

 𝑦𝑖 = 𝑦(𝑥𝑖) (23) 

The filtering factor 𝑐1 given by the volume of filtered 

solids-free solution feed to the fermentor per liter of non-

filtered hydrolysate is computed by: 

 𝑐1 =
1000−0.79𝑀ℎ(𝑡0

(1)
)

1000
𝑦(𝑥𝑖) (24) 

where 𝑀ℎ(𝑡0
(1)

) is the initial mass of hydrolizable mate-

rial per liter in the hydrolysis reactor. The filtering of sol-

ids from the hydrolysate implies that the glucose concen-

tration on the solids-free solution 𝐺1
𝑓
 and the flow to the 

fermenter 𝑢1
𝑓
 are respectively given by: 

 𝑆ℎ
´ = 𝑆ℎ/𝑐1 (25) 

 𝑢1
𝑓

= 𝑐1𝑢1 (26) 

The second filtering operation is performed to sepa-

rate biomass from the culture fed to the boiler. So, the 

filtering factor c2 given by the volume of biomass-free 

solution per liter of non-filtered culture is computed by: 

 𝑐2 =
1000−𝑋(𝑡𝑓

(2)
)

1000
 (27) 

This implies that ethanol concentration in the bio-

mass-free solution 𝑃𝑓 would be given by: 

 𝑃𝑓 = 𝑃/𝑐2. (28) 

Since vapor-liquid equilibrium data are expressed in 

molar fractions, the following expressions must be com-

puted to calculate the molar fraction of ethanol and the 

molar feeding flow to the boiler:  

 𝑥𝑓 =
𝑃𝑓

46⁄

𝑃𝑓
46⁄ +

(1000−𝑋−𝑃𝑓)
18

⁄
. (29) 

 𝑢2
𝑓

= 1𝑒−3 (
𝑃𝑓

46
⁄ +

(1000 − 𝑋 − 𝑃𝑓)
18

⁄ ) 𝑢2. (30) 

Sugars concentration in this flow is assumed negligi-

ble because they have been exhausted in the fermentor. 

C. Path, state control and end constraints 

Optimal control of batch distillations usually involves the 

maximization of the quantity of distillate subject to purity 

constraints. The inequality imposing a minimum molar 

fraction of ethanol in the distillate is:  

 𝑥𝑐
𝑚𝑖𝑛(𝑡(3)) ≥ 𝑥𝑐. (31) 

Also, a depletion constraint is imposed to the molar 

fraction of ethanol in the solution on the boiler at the final 

distillation time: 

 𝑥𝑏(𝑡𝑓
(3)

) ≤ 𝑥𝑏
𝑚𝑖𝑛 . (32) 

Both constraints are applied just to the stage p3 of the 

problem. Also, limits to the achievable values of some 

states must be imposed. Here the following constraints 

must be considered: 

 0 ≤ 𝑉ℎ(𝑡(2)) (33) 

 0 ≤ 𝑉𝑓(𝑡(2)) ≤ 𝑉𝑓
𝑚𝑎𝑥 (34) 

 0 ≤ 𝐵(𝑡(3)) ≤ 𝐵𝑚𝑎𝑥  (35) 

Equation (33) set the lower bound to the hydrolysis 

reactor. Equation (34) states that the culture volume in 

the fermentor is a nonnegative variable which must not 

exceed the reactor-vessel capacity and Eq. (35) imposes 

the dome capacity as the upper bound to the volume of 

filtered culture in the boiler. Flows are constrained by 

Eqs. (36) to (38). Bounds 𝑢1
𝑚𝑎𝑥 and 𝑢2

𝑚𝑎𝑥  are technical 
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constraints stating the maximum flow between units. 

Since the vapor flow in the column is considered con-

stant, it imposes an upper bound to the distillate flow. The 

liquid flow is the difference between the vapor flow and 

control variable 𝑢2(𝑡(3)). 

 0 ≤ 𝑢1(𝑡(2)) ≤ 𝑢1
𝑚𝑎𝑥 (36) 

 0 ≤ 𝑢2(𝑡(3)) ≤ 𝑢2
𝑚𝑎𝑥 (37) 

 0 ≤ 𝑢3(𝑡(3)) = 𝑉𝑓 − 𝐿𝑓(𝑡(3)) ≤ 𝑉𝑓 (38) 

D. Objective function 

As the hydrolysis is an autonomous process, no objective 

function is considered for this stage and as increasing the 

productivity of the whole process is the target, the fol-

lowing objectives are stated for the following stages: 

1. Stage 2: Maximum ethanol productivity in the fer-

mentor: 

 max 𝐽(2) =
𝑃(𝑡𝑓

(2)
)𝑉(𝑡𝑓

(2)
)

𝑡
𝑓
(2)  (39) 

2. Stage 3: Maximum distillate productivity:  

 max 𝐽(3) =
𝐷(𝑡𝑓

(3)
)

𝑡
𝑓
(3)  (40) 

The problem is a free final-time one defined by the 

sum of three free-time subproblems. The hydrolytic reac-

tion autonomously evolves until time 𝑡𝑓
(1)

  when the feed-

ing of the fermentor starts. The fermentor is then feed 

with the hydrolysate in optimal fashion until time 𝑡𝑓
(2)

. 

Then, the feeding of the boiler starts and the distillation 

proceed until the final process time 𝑡𝑓
(3)

. The global 

productivity is defined as the sum of 𝐽(2) and 𝐽(3) (in 

gP/h). 

IV. MULTI-STAGE OPTIMAL CONTROL OF 

THE TRAIN 

GPOPS was developed in response to a demand for soft-

ware able to solve complex multi-stage optimal control 

problems. Its freeware 5.2 version implementing the 

Radau pseudospectral collocation method (Rao et al., 

2012) was employed in this work. Pseudo-spectral meth-

ods are a special class of orthogonal collocation methods 

discretizing both control and states variables. A detailed 

description of the algorithm implemented by GPOPS can 

be found in Rao et al. (2014). A nominal problem defined 

by parameters summarized in Table 1 was solved in a 2.0 

GHz 16 GB RAM PC. Kinetic and yield parameters for 

the hydrolytic production of glucose and isomers from 

Sorghum bagasse with cellulase enzyme and for ethanol 

production on this hydrolysate with S. cerevisiae were 

derived from experimental information obtained in the 

Laboratorio de Fermentaciones (FBCB – UNL). Summa-

rized details about materials and methods are reported in 

Joris et al. (2017). Non-ideal vapor-liquid water-ethanol 

equilibrium data were gentle provided by Dr. José Espi-

noza and coworkers from INGAR (Universidad Tecno-

lógica Nacional – CONICET). The value 𝑥𝑐
𝑚𝑖𝑛(𝑡(3)) was 

considered constant along the last stage. A higher purity 

value was not considered because of the energetic ineffi-

ciency inducted by high reflux ratios necessary to reach 

such values. Usually, the obtained distillate is subject to 

a subsequent purification stage in another smaller distil-

lation column. The output generated for this nominal 

problem states that the optimal quantity of distillate is 

𝐷(𝑡𝑓
(3)

)  =  2.256 kmol (104.7 kg). Optimal switch time 

between the hydrolysis stage and the fermentation stage 

is 𝑡𝑓
(1)

= 10.02 h while the optimal switch time between 

the fermentation stage and the distillation stage is   
 

Table 1. Parameter values for the nominal problem. 

Parameter type Parameter Value 

Yields 𝑌𝑆/𝑀   (g S/g M) 6.550 

 𝑌 (g X/g S) 1.126 

Kinetics 𝛾 (h-1) 0.039 

 𝑘1 (g M) 0.010 

 𝜇𝑚𝑎𝑥 (h-1) 0.259 

 𝑘𝑆 (g S) 10.00 

 𝑘𝑃 (g P) 51.37 

 𝑘𝐼 (g M) 5.000 

 𝑎 (g P/106 cells X) 0.655 

Distillation 𝑉𝑓  (kmol/h) 0.600 

 𝑀ℎ  (kmol) 0.30 

 𝑀ℎ𝑐 (kmol) 0.90 

 𝑛 4 

 𝑥𝑐
𝑚𝑖𝑛 0.50 

State bounds 𝑉𝑀𝑎𝑥 (1) 1000 

 𝐵𝑀𝑎𝑥  ∞ 

Control bounds 𝑢2
𝑀𝑎𝑥 (l/h) 250 

 𝑢2
𝑀𝑎𝑥 (l/h) 100 

 𝑢3
𝑀𝑎𝑥 (kmol/h) 0.6 

End constraint Xb
min 0.002 

Initial conditions     

(𝑝 =  1) (𝑝 =  2) (𝑝 =  3) 

𝑀 (g/l) 280 𝑋 (g/l) 0.4 𝑥𝑏 0.012 

𝑆ℎ (g/l) 0 𝑃 (g/l) 0.0 𝑥𝑖  (1,…4) equilib  

  𝑠𝐹 (g/l) 10 𝑥𝑐 w.boiler 

  𝑉 (l) 100 𝐵 (kmol) 0.807 

    𝐷 (kmol) 0.0 

 
Fig. 2.a: Optimal trajectories for flows 𝑢1(𝑡) and u2(t). 

 
Fig. 2.b: Optimal distillate flow 𝑢2(𝑡). 
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Fig 3.a: Dynamics of 𝑀ℎ(𝑡) and 𝑆ℎ(𝑡).  

 
Fig. 3.b: Dynamics of reaction volumes 𝑉ℎ(𝑡) and 𝑉𝑓(𝑡). 

 
Fig. 3.c: Dynamics of 𝑆𝑓(𝑡), 𝑋(𝑡) and 𝑃(𝑡). 

 
Fig. 3.d: Dynamics of the distillate 𝐷(𝑡). 

 
Fig. 3.e: Dynamics of the boiler’ volume 𝐵(𝑡). 

𝑡𝑓
(2)

= 53.28 h and the final process time is 𝑡𝑓
(3)

= 72.54. 

Optimal trajectories for control variables are summa-

rized in Figs. 2. Evolution of states according the optimal  
 

 
Fig. 3.f: Dynamics of 𝑥𝑖(𝑡) and, 𝑥𝑐(𝑡). 

 
Fig. 3.g: Dynamics of molar fraction 𝑥𝑏(𝑡). 

Table 2 Switching times, objective functions and distillate vol-

ume for the nominal and perturbed problems. 

Nominal problem (𝛾 =0.039 h-1; µ𝑚𝑎𝑥 =0.259 h-1; 𝑎 = 0.655) 

 𝑡𝑓
(1)

 𝑡𝑓
(2)

 𝑡𝑓
(3)

 𝐽(2) 𝐽(3) 𝐷(𝑡𝑓
(3)

) 

 10.02 53.28 71.67 551.44 1.458 104.7 

Sensibility to variations on 𝛾 

𝛾 𝑡𝑓
(1)

 𝑡𝑓
(2)

 𝑡𝑓
(3)

 𝐽(2) 𝐽(3) 𝐷(𝑡𝑓
(3)

) 

0.03 

0.05 

11.89 

8.28 

55.22 

51.49 

74.15 

73.91 

524.96 

577.65 

1.610 

1.440 

104.0 

106.4 

Sensibility to variations on µ𝑚𝑎𝑥 

µ𝑚𝑎𝑥 𝑡𝑓
(1)

 𝑡𝑓
(2)

 𝑡𝑓
(3)

 𝐽(2) 𝐽(3) 𝐷(𝑡𝑓
(3)

) 

0.20 

0.30 

10.79 

9.59 

66.75 

46.98 

85.81 

66.64 

445.48 

620.60 

1.224 

1.555 

105.1 

103.5 

Sensibility to variations on 𝑎 

𝑎 𝑡𝑓
(1)

 𝑡𝑓
(2)

 𝑡𝑓
(3)

 𝐽(2) 𝐽(3) 𝐷(𝑡𝑓
(3)

) 

0.50 

0.80 

10.34 

9.37 

51.67 

54.31 

70.27 

76.68 

445.30 

628.75 

1.316 

1.518 

92.3 

116.3 

 

switching times and control trajectories are depicted in 

Figs. 3. 

Note that some numerical instability in the optimal 

distillate flow can be observed. This is a quite common 

phenomena observed in optimal control of batch distilla-

tions, as noted by Logsdon and Biegler (1993), which 

seems not to considerably distort the evolution of the 

quantity of distillate depicted in Fig. 3.d. 

Optimal control has been used mostly in fields where 

process models are well known and, but it has had fewer 

acceptances in biotechnology, where model uncertainties 

can be significant. In order to study the effect of varia-

tions on parameters 𝛾, µ𝑚𝑎𝑥  and 𝑎, we performed a brief 

sensitivity study by varying these parameters. Results are 

summarized in Table 2. 

From data summarized in Table 2, the following con-

clusions can be stated: (i) Although stage 1 evolves spon-

taneously, the final stage time 𝑡𝑓
(1)

  may change according 
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the dynamics of subsequent stages. (ii) Stage 2 time-

length (𝑡𝑓
(2)

-𝑡𝑓
(1)

) depends mainly the on specific biomass 

growth rate but its impact on the distillate value 𝐷(𝑡𝑓
(3)

) 

is almost negligible. (iii) The distillate value 𝐷(𝑡𝑓
(3)

) is 

strongly impacted by variations in the Luedeking-Piret 

specific production rate but its impact on the final process 

time is rather minor. (iv) Variation on the specific hydrol-

ysis rate γ affect in the duration of the hydrolysis stage 

but the impact in remaining performance parameters is 

almost negligible. 

 

V. CONCLUSIONS 

A three-stage model for optimizing a train of a hydrolysis 

reactor, a fermentor and a distillation column was used to 

optimize units’ control variables and switching times be-

tween stages. The model involves experimental infor-

mation for the hydrolytic production of glucose and iso-

mers from Sorghum bagasse with cellulase and the kinet-

ics of ethanol production from generated sugars by S. 

cerevisiae; and bibliographic information for distillation 

parameters. Kinetic equations and distillation dynamics 

equations were introduced into macroscopic balances for 

modeling a train involving three control variables: the 

flow of hydrolysate toward the fermentor, the flow of the 

filtered culture from the fermentor toward the boiler of 

the distillation column and the distillate flow.  Since this 

multi-stage (bio)chemical process involve switching dy-

namics and change of control variables along the time, 

stages time-lengths should not be independently fixed. 

So, control variables were optimally profiled and time-

scheduled by using GPOPS 5.2.  As a consequence, opti-

mal flow profiles and switching times were computed. A 

brief sensitivity research on the effect of the variation of 

main kinetic parameters was also performed. A more 

compressive sensitivity research based on stochastic pro-

gramming should be performed but this is out of the 

scope of this work. Multi-stage process involving switch-

ing dynamics and change of control variables are com-

mon in (bio)chemical engineering but optimization of 

such processes arise recently. In this regard, the optimi-

zation of the whole train aimed at maximizing the overall 

productivity shows that separately optimizing independ-

ent units is not a good option. The results show that now-

adays there are no big obstacles in optimizing mathemat-

ical representations of multi-stages process because mod-

ern optimal control tools can handle multi-stage mathe-

matical models.  
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