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Abstract. In this note we give sufficient conditions on two dyadic systems

on a space of homogeneous type in order to obtain the equivalence of corre-

sponding Haar systems on Lebesgue spaces. The main tool is the vector valued
Fefferman-Stein inequality for the Hardy-Littlewood maximal operator.

1. Introduction

The usual orthonormal Haar system H in L2(R) given by hjk(x) = 2j/2h(2j −k),
j, k ∈ Z, where h(x) = χ[0,1/2)(x) − χ[1/2,1)(x), is only the best known of a large
family of Haar type bases in one dimension. Of course the family of dyadic intervals
Ijk = [k2−j , (k + 1)2−j), k ∈ Z, j ∈ Z is the natural dyadic family associated to H
in the sense that Ijk is the set where hjk does not vanish. Moreover each hjk is
constant on the two subintervals Ij+1

2k and Ij+1
2k+1 of Ijk. Notice that H is not the

only system satisfying all the above properties. Moreover, any system of the form
H̃ = {ψjk = wjkh

j
k : k ∈ Z, j ∈ Z} with wjk = ±1 is an orthonormal basis in L2(R),

each function ψjk has Ijk as its essential support and each ψjk is constant on each
member of the offspring of Ijk.

We are interested in the equivalence of different Haar bases built on different
dyadic systems on spaces of homogeneous type. It is easy to construct simple
perturbations of the dyadic intervals in R, or of the dyadic cubes in Rn, as images
through bi-Lipschitz functions of the standard dyadic intervals. Precisely, is F is an
one to one mapping from Rn onto Rn, andQj~k =

∏n
i=1 I

j
ki

, with ~k = (k1, ..., kn) ∈ Zn

and j ∈ Z, the family {F (Qj~k) : j ∈ Z,~k ∈ Zn} satisfies the basic properties
of the usual dyadic cubes. Moreover, if F is bi-Lipschitz; that is, c1|x − y| ≤
|F (x) − F (y)| ≤ c2|x − y| for two positive constant c1 and c2 and every x, y in
Rn, then the metric control for the new “cubes” F (Qj~k) is preserved. In fact,
for some fixed constants α1 and α2, that depend only on n and F , we have that
B(F (y), α12−j) ⊆ F (Qj~k) ⊆ B(F (y), α22−j) for some y ∈ Qj~k, every j ∈ Z and every
~k ∈ Zn. It seems somehow natural to expect that in some sense a Haar system in
L2(Rn) supported by the family {F (Qj~k) : j ∈ Z,~k ∈ Zn} should be equivalent to a

Haar system supported by the family {Qj~k : j ∈ Z,~k ∈ Zn}. A much more general
setting is provided by the remarkable construction given by M. Christ in [3], which
we shall describe with some detail in Section 5.
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Dyadic type families of subsets in metric or quasi-metric measure spaces can be
constructed by elementary disjunction of balls. When only the covering and nesting
properties of dyadic sets are relevant such a procedure could be enough. Dyadic type
families on a measure space (X,µ) are the basic examples of increasing sequences
of σ-algebras on which orthonormal bases for L2(X,µ) can be constructed (see
[7]). Nevertheless, to our purpose, which makes use of some deep facts of harmonic
analysis such as vector valued Fefferman-Stein inequality for the Hardy-Littlewood
maximal operator, some inner and outer metric control of the sizes of the dyadic
sets is important. A construction of this type on a space of homogeneous type, X,
is given by M.Christ in [3]. The first step in Christ’s construction is to introduce a
tree structure on an index set A that is closely related to the metric structure on X.
In other words, M.Christ defines a partial order on A satisfying some tree properties
controlled by the distance. For details see Section 5. The second step in [3] is the
construction of a dyadic family, D, based in the partial order defined on A. In the
definition of partial order the choice of ancestors in the tree is not unique at all.
This diversity translates into a corresponding diversity of different families D. We
shall use D for denote all these dyadic families. The next step in the construction
of wavelet bases in the general context of space of homogeneous type is given by H.
Aimar in [1] (see also [2]). Starting with dyadic cubes of a Christ’s family D, in [1]
a structure of generalized multiresolution analysis and a Haar system H controlled
by the quasi distance d are constructed. This construction provides also a variety of
different Haar systems H associated to the same family D. We shall useH(D) to
denote all these Haar systems H. Hence, it seems to us that a natural problem is to
see whether or not all these systems H in

⋃
D∈DH(D) are equivalent on Lebesgue

spaces, in the usual sense of equivalence of Schauder bases of Banach spaces given
by [13] or [9]. This problem is considered in an even more general situation in
Section 3. More precisely we shall deal with a quite general notion of equivalence of
dyadic families which allow us to prove equivalence of Haar systems built on them.
We would like to point out that the main tool in the proof of our result, given
in Section 4, is the vector valued Fefferman-Stein maximal inequality on spaces of
homogeneous type.

2. Dyadic systems and associated Haar systems on spaces of
homogeneous type

Let us recall the basic concepts of the general theory of space of homogeneous
type. Assume that X is a set, a nonnegative symmetric function d on X × X is
called a quasi-distance if there exists a constant K such that

(2.1) d(x, y) ≤ K[d(x, z) + d(z, y)],

for every x, y, z ∈ X , and d(x, y) = 0 if and only if x = y.
We shall say that (X, d, µ) is a space of homogeneous type if d is a quasi-distance

on X, µ is a positive Borel measure defined on a σ-algebra of subsets of X which
contains the balls, and there exists a constant A such that

0 < µ(B(x, 2r)) ≤ A µ(B(x, r)) < ∞

holds for every x ∈ X and every r > 0.
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The sets {(x, y) ∈ X ×X : d(x, y) < 1/n} define a basis of a metrizable uniform
structure on X. The balls B(x, r) = {y : d(x, y) < r} form a basis of neighborhoods
of x for the topology induced by the uniform structure. A basic caveat comes from
the fact that the d-balls are generally not open sets. Moreover, it is not difficult to
give examples of quasi-distances for which some balls are not even Borel measurable
subsets of X. Nevertheless in [10], R. Macias and C. Segovia prove that if d is a
quasi-distance on X, then there exist a distance ρ and a number α ≥ 1 such that
d is equivalent to ρα. Hence except for some simple changes of scales we can keep
working with ρ instead of ρα. So that we shall assume along this paper that d is
actually a distance on X, in other words that K = 1 in (2.1).

We shall say that a subset E of X is ε-disperse for ε > 0 if d(x, y) ≥ ε for every
x, y in E with x 6= y.

Given a set E in X we shall write diam(E) to denote its diameter. In other
words, diam(E) = sup{d(x, y) : x ∈ E, y ∈ E}. On the other hand given an open
and bounded set E in X we define its eccentricity by ε(E) = ri(E)

ro(E) , where ri(E) =
sup{r : B(x, r) ⊆ E for some x ∈ E} and ro(E) = inf{r : E ⊆ B(x, r) for some x ∈
X}.

In order to be able to apply Lebesgue Differentiation Theorem we shall also
assume that continuous functions are dense in L1(X,µ). Under the assumption of
completeness for (X, d) and regularity of the measure µ this density can be achieved
(see [11] and [12]).

Even when the basic example of dyadic cubes and Haar functions is provided
by the Euclidean space with its standard dyadic cubes and Haar functions, the
geometric structure of the underlying space may also be quite different than that
of Rn. To illustrate these differences let us start by some special but representative
examples concerning the basic set on which we can build Haar type bases. The
first example is the restriction of the standard Haar system to [0, 1). The second
example corresponds to a purely atomic space defined by the counting measure
on Z. A mixed situation is given in the third example where we consider a quite
heterogeneous space of homogeneous type. The fourth could help to understand
a somehow subtle definition of the relevant subfamily D̃, given in section 3, of a
dyadic system given D. Let us point out that each one of the spaces contained in
these examples is a metric space of homogeneous type with the given measure and
the standard Euclidean distance inherited from R.

Example 1. Set X1 = [0, 1). In order to obtain a Haar type basis for L2(X1),
with respect to Lebesgue measure, we only have to add to the subsystem H1 =
{hjk ∈ H : j ∈ N, k ∈ Kj = {0, ..., 2j − 1}} the constant function χ[0,1) . In terms of
the multirresolution analysis structure ([8]), H is associated to the decomposition
L2(R) =

⊕
j∈Z Wj , H1 instead is related to L2([0, 1)) = V 1

0 ⊕ (
⊕

j∈Z W
1
j ), where

V 1
0 is the one dimensional space generated by the constant function χ[0,1) and W 1

j

is the 2j-dimensional space generated by {hjk : k ∈ Kj}.

Example 2. Set X2 = Z be the set of all integers. The space L2(Z) with the
counting measure is nothing but l2(Z), the set of all square summable sequences
indexed on Z. Notice that l2(Z) is isomorphic in the Hilbert sense to the subspace
of L2(R) of those function which are constant between two consecutive integers.
Hence if hjk : Z −→ R, j < 0, k ∈ Z, is given by hjk(m) = hjk(m) where hjk ∈ H is
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the standard Haar function, we see that H2 = {hjk : j < 0, k ∈ Z} is an orthonormal
basis for l2(Z). Now l2(Z) =

⊕j=−1
−∞ W 2

j . In other words V 2
0 = V 2

1 = V 2
2 = ..., since

we have no further resolution for the scales 2−j , j > 0, because locally the space
reduce to points.

Example 3. Let X3 = Z ∪ [0, 1/2) be equipped with the usual distance and the
measure which counts on Z \ {0} and is twice the length on the interval [0,1/2).
Precisely, if E is a Borel set in X3, µ(E) = #(E∩(Z\{0}))+2m(E∩ [0, 1/2)) where
# is the cardinal and m is the one dimensional Lebesgue measure. Now some regions
of the space have unlimited resolution, some other reduce to points. In fact, dyadic
sets in X3 can be obtained by intersection of the standard dyadic intervals in R with
X3. If Ijk = [ k2j ,

k+1
2j ), the dyadic cubes in X3 are the sets Qjk = Ijk∩X3, j ∈ Z, k ∈ Z.

Notice that if Dj denotes the family {Qjk : k ∈ Z} of all dyadic cubes of j-th level,
then D0 = D1. On the other hand, Dj 6= Dj+1 for j 6= 0. Hence if Vj is the
subspace of those function in L2(X3, µ) which are constant on each Qjk, k ∈ Z, we
certainly have that ... V 3

−2 ⊂ V 3
−1 ⊂ V 3

0 = V 3
1 ⊂ V 3

2 ⊂...; so that the corresponding
sequence of wavelet spaces W 3

j such that W 3
j

⊕
V 3
j = V 3

j+1 satisfies that W 3
0 = {0}.

Nevertheless no other W 3
j , j 6= 0 is trivial. Still a Haar type basis for L2(X3, µ)

can be obtained from H. In fact, since W 3
0 = {0} there is no wavelet for the scale

20 = 1. When j ≥ 1 the only region of the space showing resolution at the scale 2−j

is the interval [0, 1/2). Hence we take all the standard Haar functions supported in
[0, 1/2). In other words, A = {hjk : j ≥ 1, k = 0, 1, ..., 2j−1−1}. For j ≤ −1 we may
use for k 6= 0 the functions inH2. In other words B = {hjk ∈ H2 : j < 0, k 6= 0}. We
only have to take special care of k = 0 when j ≤ −1. If this is the case we consider
the function defined by gj0(x) = hj0(m) if x = m ∈ Z \ {0} and gj0(x) = hj0(0) if
x ∈ [0, 1/2). It is no difficult to show that H3 = A ∪ B ∪ {gj0 : j ≤ −1} is an
orthonormal system for L2(X3, µ).

Example 4. Let X4 =
⋃
l∈Z[l, l + 2−10) be equipped with the usual distance and

the measure dµ = 210dx. Let us consider the restriction to X4 of the usual dyadic
intervals of R. For any nonpositive integer j this space at the scale 2j looks quite
similar to the one considered in Example 2. In particular no dyadic cube of the jth

generation has any offspring when j = 0, 1, ..., 9. Hence, as a set, the “dyadic cube”
[0, 2−10) belong to each generation Dj , for j = 0, 1, ..., 9, but only as a member
of the 10th generation it has some “non-trivial” offspring. This behavior is also
reflected in the fact that in this space X4 there are not Haar type wavelets at the
scales 2j with j = 0, 1, ..., 9, but for all the other values of j ∈ Z there exists exactly
one wavelet supported at each dyadic cube. We shall denote with H4 this Haar
system.

The actual success of Christ’s construction (see Section 5 for details) is the proof
of existence of dyadic families with a precise metric control on the eccentricity of the
dyadic objets, on spaces of homogeneous type. Nevertheless our results hold true
for general families of dyadic sets controled by the distance. Let us start by giving
a definition of dyadic families on the metric space of homogeneous type (X, d, µ).
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Definition 2.1. The class D(δ) of all dyadic families. We say that D =⋃
j∈ZDj is a dyadic family on X with parameter δ ∈ (0, 1), briefly that D belong

D(δ), if each Dj is a family of open subsets Q of X, such that

(d.1) For every j ∈ Z the cubes in Dj are pairwise disjoints.
(d.2) For every j ∈ Z the family Dj covers almost all X in the sense that µ(X −⋃

Q∈DjQ) = 0.
(d.3) If Q ∈ Dj and i < j, then there exists a unique Q̃ ∈ Di such that Q ⊆ Q̃.
(d.4) If Q ∈ Dj and Q̃ ∈ Di with i ≤ j, then either Q ⊆ Q̃ or Q ∩ Q̃ = ∅.
(d.5) There exists a positive integer N depending only on A such that for every

j ∈ Z and all Q ∈ Dj the inequalities 1 ≤ #({Q′ ∈ Dj+1 : Q
′ ⊆ Q}) ≤ N

hold.
(d.6) There exist three constants a1, a2 and a3 such that for each Q ∈ Dj we

have that a1δ
j ≤ diam(Q) ≤ a2δ

j and the uniform lower bound for the
eccentricity ε(Q) ≥ a3.

Examples 3 and 4 show that in some regions or at some scales the space may
keep dividing in pieces that become smaller and smaller. But it could also happen
that at some regions, refining scales does not involve an actual refinement of the
space. We are interested in the identification of those scales and places of partition
which shall give rise to the Haar functions. Properties (d.1) to (d.6) allow us to
obtain two properties which shall be crucial in the proof of our main result.

(d.7) The families D̃j = {Q ∈ Dj : #({Q′ ∈ Dj+1 : Q
′ ⊆ Q}) > 1}, j ∈ Z are

pairwise disjoints.

In fact, given a cube Q ∈ D̃j , from (d.1) we have that Q /∈ Dj+1. Moreover,
Q /∈ Dj+n for any positive integer n and hence Q /∈ D̃j+n.

(d.8) Set D̃ =
⋃
j∈ZD̃j. The function J : D̃ −→ Z given by Q 7→ J (Q) if

Q ∈ D̃J (Q) is well defined.

In the sequel we shall make use of the following notation. Let L be the function
defined on D̃ taking values in the family of subsets of D, given by L(Q) = {Q′ ∈
Dj+1 : Q

′ ⊆ Q} for Q ∈ D̃j and j ∈ Z. We shall say that the cube Q is the
first-ancestor of Q

′
if Q

′ ∈ L(Q). Notice that from (d.5), 1 ≤ #(L(Q)) ≤ N .
Since we are interested in proving the equivalence of all Haar bases regardless

its construction, we define in general what we mean by a Haar system associated
to a dyadic family.

Definition 2.2. Haar system associated to D ∈ D(δ). Let D be a dyadic
family on (X, d, µ) such that D ∈D(δ). A system H of functions h on X is a Haar
system associated to D if it satisfies

(h.0) Each h ∈ H is a simple Borel measurable real function on X.
(h.1) For each h ∈ H there exists a unique j ∈ Z and a cube Q = Q(h) ∈ D̃j

such that {x ∈ X : h(x) 6= 0} ⊆ Q, and this property does not hold for any
cube in Dj+1.

(h.2) For every Q ∈ D̃ there exist exactly MQ = #(L(Q)) − 1 ≥ 1 functions
h ∈ H such that (h.1) holds. We shall write HQ to denote the set of all
these functions h.

(h.3) For each h ∈ H we have that
∫
X
hdµ = 0.
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(h.4) For each Q ∈ D̃ let VQ denote the vector space of all functions on Q which
are constant on each Q

′ ∈ L(Q). Then the system { χ
Q

(µ(Q))1/2 }
⋃
HQ is an

orthonormal basis for VQ.

It is easy to show, following the proof in [1] (see also [2]), that, given D in D(δ),
it is allways possible to construct Haar systems supported on the elements Q of D̃.
This means that there exist systems H of functions h on X satisfying (h.0) to (h.4).
This construction is by no way unique. In fact it depends on the orthonormalization
procedure and even on the order given to the indicator functions of the offspring of
a fixed cube.

In the sequel, we shall use the notation ‖f‖p for the norm
(∫
X
|f |pdµ

)1/p in
Lp(X,µ), 1 < p <∞. The L∞-norm of the function f , ‖f‖∞, is defined, as usual,
as the µ-essential least upper bound of f .

From Definition 2.2, we obtain the following two properties of the elements h in
any Haar system H which shall be useful.

(h.5) For each h ∈ H there exist two d-balls B∗(h) ⊆ B∗(h) with comparable
radii such that χ

B∗(h)(x) ≤ |h(x)|‖h‖∞ ≤ χB∗(h)(x) for every x ∈ X.
(h.6) For each h ∈ H there exists Q∗ ∈ L(Q(h)) such that

1√
Nµ(Q∗)

χ
Q∗ (x) ≤ |h(x)| ≤

∑
Q′∈L(Q(h))

1√
µ(Q′)

χ
Q
′ (x).

In fact, it easy to see that (h.5) immediately follows from (d.6) and (h.4).
To prove (h.6) notice that from (h.2) and (h.4) we have on one hand that h =∑
Q′∈L(Q(h))aQ′χQ

′ with aQ′ ∈ R and on the other, that ‖h‖22 = 1. Hence for each

Q
′ ∈ L(Q(h)) we have

|aQ′ |
2µ(Q

′
) ≤

∑
Q′′∈L(Q(h))

|aQ′′ |
2µ(Q

′′
) = 1.

So that, from the first inequality, each |aQ′ | is bounded above by µ(Q
′
)−1/2 which

proves the upper bound in (h.6). Since
∑
Q′′∈L(Q(h))|aQ′′ |2µ(Q

′′
) = 1, from (d.5)

we get, for at least one Q∗ ∈ L(Q(h)), that |aQ∗ |2µ(Q∗) ≥ 1/N .

3. Equivalence of dyadic systems and of Haar bases. The main result

Our purpose is to give sufficient conditions on two dyadic systems in such a
way that all Haar systems defined on each one of them are equivalent in a way
that we shall specify later. In the sequel two dyadic families D1 =

⋃
j∈ZD

j
1 and

D2 =
⋃
j∈ZD

j
2 in D(δ) on X are given. We shall denote by Q the elements of D1,

by R those in D2, and by Ji the function in (d.8) for Di, i = 1, 2. The situation
described in Examples 3 and 4 in Section 2 shows that it could happen that no
wavelet occurs for some levels of resolution. Therefore, the conditions over the
families D1 and D2 are given on the subfamilies D̃1 and D̃2. This lead us to the
following definition of equivalent dyadic families.
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Definition 3.1. Equivalent dyadic families.We say that the two dyadic families
D1 and D2 in D(δ) are equivalent, briefly D1 ∼ D2, if there exist a constant c > 0
and a relation R ⊆ D̃1 × D̃2 such that

(i) for each Q ∈ D̃1 there exists R ∈ D̃2 such that (Q,R) ∈ R;
(ii) for each R ∈ D̃2 there exists Q ∈ D̃1 such that (Q,R) ∈ R;

(iii) |J1(Q)− J2(R)| ≤ c for all (Q,R) ∈ R and
(iv) d(Q,R) = inf{d(x, y) : x ∈ Q, y ∈ R} ≤ cδJ1(Q) for all (Q,R) ∈ R.

Properties (i) and (ii) mean that the domain and the image of the relation R
are D̃1 and D̃2 respectively. Notice that even when the inequality in (iv) looks
non-symetric because its right hand side contain only J1(Q), from (iii) we see that
δJ1(Q) ∼ δJ2(R). Thus, (iv) holds with J2(R) instead of J1(Q), perhaps with a
different constant c. Hence, since R−1 satisfies (i) to (iv), we see that ∼ is an
equivalence relation on D(δ). Let us point out the geometrical meaning of this
notion of equivalence of dyadic families. Since the parameter j is a measure of the
scale, the relation R is giving a connection between the two descriptions provided
by D1 and D2 of similar regions in the space X at similar scales. In Section 5 we
shall prove that all dyadic families built with Christ’s method, corresponding to a
given sequence of δj-nets for a given δ > 0, are equivalent in the above sense. The
following proposition leads us to think that the relation R looks somehow like an
“invertible function”.

Proposition 3.2. Let D1 and D2 be two dyadic families in D(δ). Let R ⊆ D̃1×D̃2

be a relation such that (iii) and (iv) hold with some constant c. Then, there exists
a constant Ñ such that #({R ∈ D̃2 : (Q,R) ∈ R}) ≤ Ñ and #({Q ∈ D̃1 : (Q,R) ∈
R}) ≤ Ñ , for all cube Q ∈ D̃1 and all cube R ∈ D̃2 respectively.

Proof. The symmetry in our hypotheses allows us to prove only one of the
two estimates. Let us show the first one. Let Q be a given cube in D̃1. We
shall consider the elements of D̃2 which are neighbors of Q in a specific sense. Set
V(Q, j) = {R ∈ D̃2 : (Q,R) ∈ R and J2(R) = j}, for any j ∈ Z. Notice that
{R ∈ D̃2 : (Q,R) ∈ R} =

⋃
j∈ZV(Q, j) and that, from (iii), if |j−J1(Q)| > c, then

V(Q, j) = ∅. Hence we only have to show that for |j − J1(Q)| ≤ c, #(V(Q, j)) is
bounded by an absolute constant. But for eachQ ∈ D̃1 andR ∈ D̃2 there exist, from
(d.6), points xQ and xR in X such that B(xQ, cδJ1(Q)) ⊆ Q and B(xR, cδJ2(R)) ⊆ R
for some constant c. Thus, it is easy to see that there is a constant β < 1 such
that the set {xR : R ∈ V(Q, j)} is βδJ1(Q)-disperse and is contained in a ball
B(xQ, γδJ1(Q)) for some constant γ. It is well known, see [4], that such a set in
a space of homogeneous type has to be bounded above by some purely geometric
constant. �

Let H1 = {h} and H2 = {ψ} be two Haar systems associated to D1 and D2

respectively, with D1 ∼ D2. Let Q(h) and R(ψ) be the dyadic cubes in (h.1) for
h ∈ H1 and ψ ∈ H2 respectively. We shall say that Ψ is a selection function
in H2 associated to R if Ψ : H1 −→ H2 and for every h ∈ H1 we have that
(Q(h), R(Ψ(h))) ∈ R. Notice that from the properties of R all these selection
functions are connecting wavelets in one system to wavelets in the other with similar
supports in scale and location. We shall denote by S1,2 the set of all such selection
functions. We shall say that h ∈ H1 and ψ ∈ H2 are S1,2-related if there exists
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Ψ ∈ S1,2 such that Ψ(h) = ψ. Symmetrically we say that a function h : H2 −→ H1

is a selection function in H1 associated to R−1 if (Q(h(ψ)), R(ψ)) ∈ R. With S2,1

we denote the set of all such selection functions.
The next theorem is the main result for the Lebesgue spaces Lp(X,µ), 1 < p <

∞. It shall be an immediate consequence of Theorem 3.5.

Theorem 3.3. Let D1 and D2 be two dyadic families on (X, d, µ) such that D1 ∼
D2. Let H1 and H2 be two Haar system associated to D1 and D2 respectively. Then,
for each R ⊆ D̃1 × D̃2 as in Definition 3.1, there exists a positive constant C such
that the inequalities

(3.1)

∥∥∥∥∥∑
h∈F

λhh

∥∥∥∥∥
p

≤ C

∥∥∥∥∥∑
h∈F

λhΨ(h)

∥∥∥∥∥
p

and

(3.2)

∥∥∥∥∥∥
∑
ψ∈G

νψψ

∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥∥
∑
ψ∈G

νψh(ψ)

∥∥∥∥∥∥
p

hold for every finite subsets F of H1 and G of H2, every choice of sequences (λh :
h ∈ H1) and (νψ : ψ ∈ H2) of real numbers and every couple of selection functions
Ψ ∈ S1,2 and h ∈ S2,1 associated to R.

Notice that if there exists Ψ ∈ S1,2 such that Ψ is one to one and onto, using
(3.2) with h = Ψ−1 we obtain the result contained in the next statement.

Corollary 3.4. Let H1 and H2 be as in Theorem 3.3. Assume that in S1,2 there
exists a one to one and onto selection function Ψ, then there exist two positive
constants C1 and C2 such that

C1

∥∥∥∥∥∑
h∈F

λhh

∥∥∥∥∥
p

≤

∥∥∥∥∥∑
h∈F

λhΨ(h)

∥∥∥∥∥
p

≤ C2

∥∥∥∥∥∑
h∈F

λhh

∥∥∥∥∥
p

hold for every finite subset F of H1 and every sequence (λh : h ∈ H1) of real
numbers.

The situation described in the above corollary applies to the case for different
systems of Haar wavelets built on the standard dyadic cubes in Euclidean spaces.
Moreover as we shall see in Section 5, this holds for two Haar systems built on two
different, but equivalent, Christ’s dyadic systems with the same δj−nets.

Let us describe the result contained in Corollary 3.4 in terms of the standard
notion of equivalence of vectors in a Banach space as given in [13] and [9]. Let B1

be any sequence containing once each element of H1, in other words, B1 = (hk :
k ∈ Z+) with hk 6= hj if k 6= j and H1 = {hk : k ∈ Z+}. Once the sequence B1 is
chosen, with B2 = (ψk = Ψ(hk) : k ∈ Z+), we have that H2 = {ψk : k ∈ Z+}, that
ψk 6= ψj if k 6= j and that B1 and B2 are equivalent in the sense of [9]. In other
words

C1

∥∥∥∥∥∑
k∈F

λkhk

∥∥∥∥∥
p

≤

∥∥∥∥∥∑
k∈F

λkψk

∥∥∥∥∥
p

≤ C2

∥∥∥∥∥∑
k∈F

λkhk

∥∥∥∥∥
p

for every finite subset F of Z+ and any scalar sequence (λk : k ∈ Z+).
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The role played by properties (iii) and (iv) is crucial. In fact, it is known (see
[9]) that a particular permutation of the Haar sequence is not equivalent to the
Haar sequence itself.

Actually, since our basic tool, the vector valued Fefferman-Stein inequality for
the Hardy-Littlewood maximal operator holds on weighted Lebesgue spaces and
since the characterization of weighted Lebesgue spaces with Muckenhoupt weights
also holds, we can obtain a weighted extension of Theorem 3.3.

Let us recall that a non-negative, measurable and locally integrable function w
defined on the space of homogeneous type (X, d, µ), is said to be a Muckenhoupt
weight of class Ap, 1 < p <∞ if the inequality(

1
µ(B)

∫
B

w(x)dµ(x)
)(

1
µ(B)

∫
B

w(x)
−1

p−1 dµ(x)
)p−1

≤ C

holds for some constant C and every ball B. With ‖f‖p,w we shall denote the
weighted Lebesgue norm of the function f , that is, ‖f‖p,w = (

∫
|f |pwdµ)1/p.

Theorem 3.5. Let D1 and D2 be two dyadic families on (X, d, µ) such that D1 ∼
D2. Let H1 and H2 two Haar system associated to D1 and D2 respectively. Let w
be a Muckenhoupt weight of class Ap, 1 < p <∞. Then, for each R ⊆ D̃1× D̃2 as
in Definition 3.1, there exists a positive constant C such that the inequalities

(3.3)

∥∥∥∥∥∑
h∈F

λhh

∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥∑
h∈F

λhΨ(h)

∥∥∥∥∥
p,w

and

(3.4)

∥∥∥∥∥∥
∑
ψ∈G

νψψ

∥∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥∥
∑
ψ∈G

νψh(ψ)

∥∥∥∥∥∥
p,w

hold for every finite subsets F of H1 and G of H2, every choice of sequences (λh :
h ∈ H1) and (νψ : ψ ∈ H2) of real numbers and every couple of selection functions
Ψ ∈ S1,2 and h ∈ S2,1 associated to R.

Notice finally that Theorem 3.3 follows from Theorem 3.5 with w ≡ 1.

4. Proof of Theorem 3.5

The following theorem, which is a weighted extension of Fefferman-Stein inequal-
ity ([5]) to space of homogeneous type (see [6]), is one of the basic tools for the proof
of Theorem 3.5. This result is a vector valued inequality for the Hardy-Litllewood
maximal operator on (X, d, µ),

Mf(x) = sup
x∈B

1
µ(B)

∫
B

|f(y)|dµ(y),

where the supremum is taken over the family of all d−balls in X containing x. The
result is contained in Theorem 6.6.2 in [6].

Theorem 4.1. Let (X, d, µ) be a metric space of homogeneous type such that con-
tinuous functions are dense in L1(X,µ) and let w be a Muckenhoupt weight of class
Ap, 1 < p < ∞. Then for each 1 < r < ∞ and for each 1 < p < ∞ there exists
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a constant Cr,p depending only on r, p, A and the Ap constant of w such that the
inequality ∥∥∥∥∥∥

( ∞∑
k=1

|M(fk)|r
)1/r

∥∥∥∥∥∥
p,w

≤ Cr,p

∥∥∥∥∥∥
( ∞∑
k=1

|fk|r
)1/r

∥∥∥∥∥∥
p,w

holds for every sequence {fk : k ∈ N} of real valued Borel measurable functions
defined on X.

The second basic tool, which can be proved as in [2], is the following characteri-
zation of weighted Lebesgue spaces via Haar coefficients. We point out that we are
stating the result in the precise form in which we shall use it in the proof of Theo-
rem 3.5. In this way we avoid the somehow subtle distinction of cases according to
the finiteness or not of the measure of the whole space X. In fact we shall use the
next result only when f is a linear combination of Haar wavelets.

Theorem 4.2. Let H be any Haar system associated to D ∈ D(δ). Let w be a
Muckenhoupt weight of class Ap, 1 < p < ∞. Then the system H is an uncon-
ditional basis of each Lp(X,µ) , 1 < p < ∞. Moreover there exist two positive
constants C1 and C2 such that for all f ∈ Lp(X,µ) with bounded support and
vanishing integral

C1‖f‖p,w ≤

∥∥∥∥∥∥
(∑
h∈H

| < f, h > |2|h|2
)1/2

∥∥∥∥∥∥
p,w

≤ C2‖f‖p,w.

We shall also use the following two technical lemmas. The first one provides a
comparison of the maximum values of two related Haar functions corresponding
to two equivalent dyadic systems. The second contains an elementary geometric
consequence of the doubling property written in terms of the Hardy-Litllewood
maximal operator.

Lemma 4.3. Let D1 and D2 be two dyadic families on (X, d, µ) such that D1 ∼ D2.
Let H1 and H2 two Haar system associated to D1 and D2 respectively. Then, for
each R ⊆ D̃1 × D̃2 as in Definition 3.1 there exists two positive constants c and C
such that

(4.1) c ≤ ‖h‖∞
‖ψ‖∞

≤ C,

for every h ∈ H1 and every ψ ∈ H2 with (Q(h), R(ψ)) ∈ R.

Lemma 4.4. For every choice of positive constants α1, α2, α3 with α1 ≤ α2 there
exists another constant β ≥ 1, depending only on αi, i = 1, 2, 3 and A such that the
inequality

χ
B(y,r)(x) ≤ β M(χ

B(z,R))(x)

holds for every x ∈ X, every r and R with α1 ≤ R
r ≤ α2 and every y, z ∈ X with

d(y, z) < α3r.

We shall prove the above lemmas at the end of this section.

Proof of Theorem 3.5 Let us observe that it is enough to prove any one of
the desired inequalities. We shall prove (3.3). First notice that since both dyadic
families D1 and D2 belong to D(δ) and (iii) and (iv) hold, property (h.5) for the
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two Haar functions h and Ψ(h) corresponding to H1 and H2, respectively, with
Ψ ∈ S1,2, involves balls which are all in the conditions of Lemma 4.4. In other
words the four balls B∗(h), B∗(h), B∗(Ψ(h)), B∗(Ψ(h)), have comparable radii and
the distance from one center to another is bounded by a constant times any one of
those radii.

Let F ⊂ H finite, Ψ ∈ S1,2 and (λh) a sequence of scalars. To avoid interruption
in the next chain of seven inequalities involved in the proof of (3.3), we proceed
to describe the arguments used in each one of them. In the first we apply the
lower bound in Theorem 4.2 with f =

∑
h∈Fλhh. For the second we use the upper

bound in (h.5). The third comes from the upper bound for (4.1) in Lemma 4.3. The
fourth is based in Lemma 4.4 and the positive homogeneity of the Hardy-Littlewood
maximal operator. The fifth one is nothing but Fefferman-Stein inequality with
r = 2. The sixth is the lower bound in (h.5). The last one is the lower bound in
Theorem 4.2 for f =

∑
h∈F

λhΨ(h).

∥∥∥∥∥∑
h∈F

λh h

∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥∥
(∑
h∈F

λ2
h |h|2

)1/2
∥∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥∥
(∑
h∈F

λ2
h ‖h‖2∞χB∗(h)

)1/2
∥∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥∥
(∑
h∈F

λ2
h ‖Ψ(h)‖2∞χB∗(h)

)1/2
∥∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥∥
(∑
h∈F

[
M
(
λh ‖Ψ(h)‖∞χB∗(Ψ(h))

)] 2

)1/2
∥∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥∥
(∑
h∈F

λ2
h ‖Ψ(h)‖2∞χB∗(Ψ(h))

)1/2
∥∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥∥
(∑
h∈F

λ2
h |Ψ(h)|2

)1/2
∥∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥∑
h∈F

λk Ψ(h)

∥∥∥∥∥
p,w

.

The constants in the above inequalities may differ from one line to another. �

Now we prove Lemmas 4.3 and 4.4.

Proof of Lemma 4.3. From (h.6) applied to the system H1 we observe that
the L∞-norm of the Haar function h is equivalent to µ(Q(h))−1/2. For H2 instead,
‖ψ‖∞ is of the order of µ(R(ψ))−1/2. Since all the constants in these equivalences
depend only on the geometric constants and the two systems D1 and D2 are related
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by R, we get the desired equivalence of ‖h‖∞ and ‖ψ‖∞ when (Q(h), R(ψ)) ∈ R,
with constants independent of h and ψ. �

Proof of Lemma 4.4. Notice first that there is nothing to prove when x 6∈
B(y, r) since the left hand side in the desired inequality vanishes. Assuming that
x ∈ B(y, r) we have B(z,R) ⊆ B(x, γr) with γ = α2+α3+1. In fact, if u ∈ B(z,R)
then

d(u, x) ≤ d(u, z) + d(z, y) + d(y, x)
≤ R+ α3r + r ≤ γr.

Therefore

M(χ
B(z,R))(x) ≥ µ(B(x, γr) ∩B(z,R))

µ(B(x, γr))
=

µ(B(z,R))
µ(B(x, γr))

.

Since B(x, γr) ⊆ B(z, γ+1+α3
α1

R), the doubling property for µ finishes the proof
of the Lemma. �

5. Christ’s dyadic systems

The aim of this section is to show that different dyadic families of M. Christ
with the same basic nets of points but different orders are equivalent. Thus, as
a consequence, we shall obtain that Haar bases built on such dyadic families are
equivalent.

First we shall sketch the construction (see [3]) of the dyadic sets in the context
of metric spaces of homogeneous type. We shall say that, for ε > 0, N is an ε-net
in X if N is a maximal ε-disperse subset of X. That is, d(x, x′) ≥ ε for every
x, x′ ∈ N with x 6= x′ and if E is any other subset of X strictly containing N then
there exists y, y′ ∈ E with y 6= y′ such that d(y, y′) < ε. It is easy to show that
since (X, d) supports the doubling measure µ, then any ε-disperse subset N of X
is countable. Moreover N is finite if and only if X is bounded. In the sequel we
shall use the notation N = {xk : k ∈ K(ε)} to denote the elements of the ε-net
N , where K(ε) is an initial interval of positive integers, which could be the whole
set Z+ of positive integers. From the above remark K(ε) = Z+ if and only if X
is unbounded. For a fixed positive δ, the above construction with ε = δj , j ∈ Z,
gives rise to a sequence of δj-nets Nj = {xjk : k ∈ Kj}, where Kj = K(δj). The
set A = {(j, k) : j ∈ Z and k ∈ Kj} plays a central role in Christ’s construction.
From the properties of dispersion and maximality of each net Nj the two following
statements are easy to check for each (j, k) ∈ A.

(α) There exists at most one l0 ∈ Kj−1 such that d(xjk, x
j−1
l0

) < δj−1

2 ; and
(β) there exists at least one l ∈ Kj−1 such that d(xjk, x

j−1
l ) < δj−1.

These properties allow to define partial orders � on A, induced by the metric d
and the given sequence of δj−nets in the following way:

I) take (j, k) ∈ A
(a) if there exist l0 ∈ Kj−1 such that d(xjk, x

j−1
l0

) < δj−1

2 then we decree that
(j, k) � (j − 1, l0),



13

(b) if there is not such an l0 ∈ Kj−1, we select any l ∈ Kj−1 for which
d(xjk, x

j−1
l ) < δj−1, and decree that (j, k) � (j − 1, l),

II) decree that (j, k) is not related to any other (j − 1, s), s ∈ Kj−1,
III) extend � by transitivity.

For a given sequence of δj-nets, Nj , δ > 0, we shall say that such order belongs
to the class C, briefly, � ∈ C. We would like to emphasize at this point that since
the l provided by (β) is far from being unique the selection in case (b) of the
construction of � translates into a great diversity of possible orders satisfying all
the desired properties. On the other hand, the case (a) in I) is giving the only
rigidity of � that is reflected in the following property of the family C.

(γ) For each (j, k) ∈ A there exists al least one u ∈ Kj+1 such that (j+ 1, u) �
(j, k) for every order � ∈ C.

In fact, since δ < 1/2, from the maximality of Nj+1, for each (j, k) ∈ A there
exists xj+1

u ∈ Nj+1 such that d(xj+1
u , xjk) < δj+1 < δj

2 . From the construction of �
we obtain that (j + 1, u) � (j, k) for every order �.

Since the index u ∈ Kj+1 in (γ) may not be unique, we shall select one of them,
say u = b(j, k). We shall say that xj+1

b(j,k) is the first-born from xjk.

For a given �∈ C, the Christ dyadic cube at the level j located at k ∈ Kj is
defined by

Qjk =
⋃

(i,l)�(j,k)

B(xil, aδ
i),

which for some small values of the positive constant a satisfy (d.1) to (d.8). The
set Qjk shall be called the dyadic cube associated to xjk ∈ Nj . The family D�
of all those Qjk shall be called the Christ cubes associated to the family {Nj :
j ∈ Z} of nets and the order �. Notice that different orders satisfying all the
desired properties produce different shapes for the sets Qjk corresponding to the
level-position parameters (j, k) ∈ A.

Given Di = D�i , where �i ∈ C, we shall denote by D̃i the family in (d.7) for Di,
by Q the elements Qjk of D1, by R those cubes Rjk in D2, and by Ji the function in
(d.8) for Di.

The main result in this section is contained in the next statement.

Theorem 5.1. Let �1 and �2 be two partial orders in C with 0 < δ < 1/2. Then
D1 ∼ D2, where Di = D�i

, i = 1, 2.

Its proof is an easy consequence of the following result.

Lemma 5.2. For every Q ∈ D̃1 there exist R ∈ D̃2 such that

(5.1) J1(Q) = J2(R) and d(Q,R) ≤ 2δJ1(Q).

Proof. Let Q ∈ D̃1 and j = J1(Q). Thus, there exists k ∈ Kj such that
Q = Qjk. If Rjk ∈ D̃2 then, since xjk ∈ Q

j
k ∩ R

j
k, we obtain that (5.1) holds with

R = Rjk. Suppose now that Rjk /∈ D̃2. Set O1 = {xj+1
l ∈ Nj+1 : (j + 1, l) �1

(j, k)} and O2 = {xj+1
l ∈ Nj+1 : (j + 1, l) �2 (j, k)} to denote the offspring

of xjk in each order �i. From the construction of the cubes and since Rjk /∈ D̃2
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we obtain that #(O1) > 1 and #(O2) = 1. Hence, O1 \ O2 6= ∅. Otherwise
1 = #(O2) ≥ #(O1) > 1. Let us write xj+1

s to denote any element in O1 \ O2.
Thus, since A is a tree, there exist (j, u) ∈ A such that (j + 1, s) �2 (j, u). Let
xj+1

b(j,u) be the first-born associated to (j, u) ∈ A. From (γ), (j + 1, s) �1 (j, k) and

we obtain that xj+1
s 6= xj+1

b(j,u). Therefore #(O2) > 1. Hence, Rju ∈ D̃2. Moreover,

d(Qjk, R
j
u) ≤ d(xjk, x

j+1
s ) + d(xj+1

s , xju) ≤ 2δj and (5.1) holds with R = Rju. �

Proof of Theorem 5.1. The proof is an immediate consequence of the pre-
ceding lemma. In fact, let R be the subset of D̃1 × D̃2 defined as the set of all
couples (Q,R) satisfying (5.1). Properties (iii) and (iv) in Definition 3.1 are con-
tained in (5.1). Property (i) follows from the above lemma and property (ii) from
the analogous to Lemma 5.2 changing the roles of D̃1 and D̃2. �

In the sequel �1 and �2 are two partial orders in C as in Theorem 5.1. Let H1 =
{h} and H2 = {ψ} be two Haar systems associated with D1 and D2 respectively.
Thus, from Theorem 3.5 we obtain that there exists a positive constant C such that
the inequalities

(5.2)

∥∥∥∥∥∑
h∈F

λhh

∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥∑
h∈F

λhΨ(h)

∥∥∥∥∥
p,w

and

(5.3)

∥∥∥∥∥∥
∑
ψ∈G

νψψ

∥∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥∥
∑
ψ∈G

νψh(ψ)

∥∥∥∥∥∥
p,w

hold for every finite subsets F of H1 and G of H2, every choice of sequences (λh :
h ∈ H1) and (νψ : ψ ∈ H2) of real numbers, every couple of selection functions
Ψ ∈ S1,2 and h ∈ S2,1 associated to the relation R given in the proof of Theorem
5.1 and every w ∈ Ap.

Moreover, we shall prove that there exists at least one function Ψ : H1 −→ H2,
one to one and onto that closely preserves scales and positions of the supports of
the wavelets and therefore, we obtain that these Haar systems are equivalent bases
on weighted Lebesgue spaces when these bases are related via Ψ. More precisely,
we obtain the following result.

Proposition 5.3. There exists a one to one and onto function Ψ : H1 −→ H2

such that for every h ∈ H1

d(Q(h), R(Ψ(h))) = 0 and J1(Q(h)) = J2(R(Ψ(h))),

where, as before, Q(h) is the cube in (h.1) for h ∈ H1 and R(ψ) is the cube in (h.1)
for ψ ∈ H2.

Proof. We shall first describe a special index set for the elements of H1 and H2.
For each (j, k) ∈ A set L0(Qjk) to denote the family of all cubes Qj+1

l ∈ Dj1 such
that Qj+1

l ⊆ Qjk and Qj+1
l 6= Qj+1

b(j,k). Analogously, set L0(Rjk) to denote the family

of all cubes Rj+1
l ∈ Dj2 such that Rj+1

l ⊆ Rjk and Rj+1
l 6= Rj+1

b(j,k). We define the

families D′1 =
⋃

(j,k)∈AL0(Qjk) and D′2 =
⋃

(j,k)∈AL0(Rjk). From (h.1) and (h.2) for
the system H1, we see that we can use L0(Qjk) as an index set for the family of



15

all the elements of H1 essentially supported on Qjk. Analogously, from (h.1) and
(h.2) for the system H2, we can use L0(Rjk) as an index set for the family of all
the elements of H2 essentially supported on Rjk. Thus, H1 = {hQ′ : Q

′ ∈ D′1}
and H2 = {ψR′ : R

′ ∈ D′2}. Notice that since from (γ) the function b(j, k) does
not depend on the partial order in C, we have that if Q

′
= Qlm is any element in

D′1, then Rlm =: R
′

belongs to D′2. Hence Ψ : H1 −→ H2 given by Ψ(hQ′ ) = ψR′

is well defined and one to one. On the other hand if R
′

= Rlm is any element in
D′2, then Qlm =: Q

′
belongs to D′1. So that Ψ is onto H2. To finish the proof we

check that d(Q(hQ′ ), R(Ψ(hQ′ ))) = 0 and J1(Q(hQ′ )) = J2(R(Ψ(hQ′ ))). In fact,
since Q(hQ′ ) is the first ancestor of Q

′
= Qlm and R(Ψ(hQ′ )) = R(ψR′ ) is the

first ancestor of R
′

= Rlm and xlm ∈ Qlm ∩ Rlm ⊆ Q(hQ′ ) ∩ R(ψR′ ) we obtain that
d(Q(hQ′ ), R(Ψ(hQ′ ))) = 0. On the other hand, both Q(hQ′ ) and R(ψR′ ) belong
to the same scale δl−1, in other words Q(hQ′ ) ∈ D

l−1
1 and R(ψR′ ) ∈ D

l−1
2 . Hence

J1(Q(hQ′ )) = J2(R(Ψ(hQ′ ))). �

Theorem 5.4. Let Ψ : H1 −→ H2 be as in Proposition 5.3. Let w be a Muck-
enhoupt weight of class Ap, 1 < p < ∞. Then the bases B1 = (h : h ∈ H1) and
B2 = (ψh = Ψ(h) : h ∈ H1) are equivalent in weighted Lebesgue spaces. That is,
there exist two positive constants C1 and C2 such that

C1

∥∥∥∥∥∑
h∈F

λhh

∥∥∥∥∥
p,w

≤

∥∥∥∥∥∑
h∈F

λhΨ(h)

∥∥∥∥∥
p,w

≤ C2

∥∥∥∥∥∑
h∈F

λhh

∥∥∥∥∥
p,w

hold for every finite subset F of H1 and every sequence (λh : h ∈ H1) of real
numbers.

Proof. In fact, notice that since Ψ satisfies that (Q(h), R(Ψ(h))) ∈ R as defined
in the proof of Theorem 5.1, if follows that Ψ ∈ S1,2. The result follows applying a
weighted version of Corollary 3.4. �
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