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ABSTRACT  

Aim: To determine the protective capacity against Salmonella infection in mice of the cell-

free fraction (postbiotic) of fermented milk, produced at laboratory and industrial level.  

 

Methods and Results: The proteolytic activity (PA) of five commercial cultures and eleven 

autochthonous Lactobacillus strains was evaluated. The DSM-100H culture displayed the 

highest PA and it was selected for further studies. The capacity of the postbiotics produced by 

pH-controlled fermentation to stimulate the production of secretory-IgA in faeces and to 

protect mice against Salmonella infection was evaluated. A significant increase of S-IgA in 

faeces of mice fed 14 days the postbiotic obtained at the laboratory (F36) was detected 

compared to control animals. A significantly higher survival was observed in mice fed the 

F36 and the FiSD (industrial product) compared to controls.  

 

Conclusion: The postbiotics obtained showed immunomodulatory and protective capacity 

against Salmonella infection in mice.  

 

Significance and Impact of the Study: The pH-controlled milk fermentation by the 

proteolytic DSM-100H culture could be a suitable strategy to obtain a food ingredient to be 

added to a given food matrix, not adequate to host viable cells of probiotics, to confer it 

enhanced functionality and thus expand the functional food market. 

 

 

Keywords: functional food ingredient, fermented milk, postbiotics, proteolytic activity, 

Salmonella. 
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Introduction 

The increasing perception about the relationship between diet and health led 

consumers to be more interested in preventing diseases and improving wellness through the 

intake of functional foods (Hafeez et al. 2014, Lorenzo et al. 2018). Probiotics are defined as 

“live microorganisms that, when administered in adequate amounts, confer a health benefit 

on the host” (Hill et al. 2014) Fermented milks containing probiotic bacteria lead the market 

of functional foods. The beneficial effects on health of these products containing live 

microorganisms are supported by scientific data (Lollo et al. 2013; 2015; Baray and Ozcan 

2017; Shafi et al. 2018). In the last years, many studies have investigated the role of food 

ingredients such as food-derived peptides on health (Hannu 2006; Hayes et al. 2007). Dietary 

proteins could be a source of physiologically active sequences (Haque et al. 2009). Bioactive 

peptides have been defined as specific protein fragments that have a positive impact on body 

functions or conditions and may ultimately positively influence health (Kitts and Weiler 

2003). Nowadays, milk proteins are considered one of the most important sources of 

bioactive peptides (Korhonen 2009; Mohanty et al. 2016a, Zanutto-Elgui et al. 2019). 

Beyond peptides, other components produced during milk fermentation (exopolysaccharides, 

bacteriocins, organic acids), present in the cell-free supernatant or cell-free fraction, can also 

have healthy effects such as positive immune modulation, antimicrobial activity, among 

others (Aloglu and Öner 2011; Lorenzo et al. 2018). New terms, which do not imply bacterial 

viability, such as paraprobiotic (non-viable or inactivated probiotics) and postbiotic 

[metabiotics, biogenics, or simply metabolites/CFS (cell-free supernatants); refers to soluble 

factors (products or metabolic byproducts) secreted by live bacteria or released after bacterial 

lysis] have currently emerged (Tsilingiri and Rescigno 2013; Almada et al. 2016; Aguilar-

Toalá et al. 2018). Postbiotic administration increased the levels of gut IgA in the small and 

large intestine lamina propria of mice that lead to the diminution of the severity of enteric 
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infections caused by pathogens such as Salmonella enteritidis serovar Typhimurium or 

Escherichia coli in mice (Maldonado Galdeano et al. 2007; Medici et al. 2005). The possible 

use in food of postbiotics instead of viable microorganisms such as probiotics might have 

some technological advantages as functionality does not rely on cell viability. The use of this 

kind of functional ingredients would allow achieving a longer shelf-life, easier storage, 

handling and transportation and reduced requirements for refrigerated storage (Vinderola 

2008). One way to produce postbiotics from milk is through the fermentation with proteolytic 

starter cultures, where maintenance of pH at values close to neutrality enhances peptide 

release from milk proteins (Vinderola et al. 2007b). This work aimed at comparing the 

capacity of postbiotics produced by pH-controlled fermentation of milk, manufactured at 

laboratory and industrial levels, to stimulate the production of secretory-IgA in the gut and to 

protect mice against Salmonella Typhimurium infection. 

 

Materials and Methods 

Strains, commercial cultures, culture media and conditions 

Five frozen or freeze-dried commercial cultures of thermophilic lactobacilli and 

eleven autochthonous Lactobacillus strains were used. The commercial cultures used were: 

Delvo-Add 100-H DSF (DSM, Delft, The Netherlands); LH-B02 (Chr. Hansen, Hoersholm, 

Denmark), Lb-12 (Chr. Hansen, Denmark), Cheestart H 2085 (Biochemical, Buenos Aires, 

Argentina), Cheestart H 2087 (Biochemical, Buenos Aires, Argentina). The autochthonous 

strains were: Lactobacillus helveticus (Lh 05, Lh 06, Lh 07, and Lh 08), Lactobacillus 

delbrueckii subsp. bulgaricus (Lb 03, Lb 09, Lb 10, Lb 11, Lb 12) and Lactobacillus 

delbrueckii subsp. lactis (Ll 210, Ll 133). Autochthonous lactobacilli strains, isolated from 

natural whey starters in previous works (Reinheimer et al. 1996), belong to the INLAIN 

collection. Overnight cultures of the strains were obtained in MRS broth (Biokar, Beauvais, 
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France) or 10% (w/v) reconstituted skim milk (San Regim, Sunchales, Argentina) (43ºC, 

aerobiosis). When required, cell counts (surface agar plating) were performed on MRS agar 

(48 h, 43ºC, aerobiosis). 

 

Screening of the proteolytic activity and growth capacity in milk 

The proteolytic activity (PA) of the strains and the commercial cultures was 

determined by the O-Phthaldialdehyde (P1378, Sigma Aldrich, Buenos Aires, Argentina) 

spectrophotometric assay (OPA Test) (Church et al. 1983). Strains were transferred three 

times in 10% (w/v) skim milk at 43ºC and were inoculated (2% v/v) in the same substrate (10 

mL). Commercial cultures were used according to the manufacturer’s instructions. Inoculated 

milk samples were incubated overnight (43°C, aerobiosis) without pH control. After 

incubation, pH values were measured (pH meter Orion, model SA 720, Beverly, MA, USA) 

and PA (mean of three independent assays) was expressed as the difference in absorbance (A 

340nm) between fermented and unfermented samples.  

 

Production of postbiotics at laboratory scale 

The strains/commercial cultures with the highest proteolytic activity were used to 

ferment milk with and without pH control. For pH-controlled milk fermentation, a 2 L stirred 

tank bioreactor (Sartorius Biostat A Plus) was used. Reconstituted (10 or 20%, w/v) skim 

milk was inoculated (2% v/v) with an overnight culture of the strain or the corresponding 

dilution of the commercial starter (according to the manufacturer’s instructions). An 

inoculated sample was removed from the bioreactor for simultaneous incubation without pH 

control (43ºC) or stirring. The bioreactor was maintained at 43ºC with an agitation rate of 200 

rpm and CO2 sparring (0.2 L min
-1

). The pH was maintained at a value of 6.0 throughout the 

fermentation period (20 h) by automatic addition (peristaltic pump) of 2 mol L
-1

 Ca(OH)2. PA 
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measurements and cell counts (agar plating on MRS, 43ºC, 48 h, aerobiosis) were performed 

at time 0, 16, 18 and 20 h of culture. The pH-controlled fermented milk was centrifuged 

(4000 g, 8°C, 30 min) and the supernatant was recovered and stored at -70°C. Milk 

fermentation was replicated at least twice. The product selected for further analysis was 

named F36 (pH-controlled milk fermentation using the commercial culture DSM-100H).  

 

Production of postbiotics at industrial scale and spray-drying 

According to the previous results obtained in the laboratory, the DSM-100H (Delvo-

Add 100-H DSF, DSM) culture was selected for the scaling up. The industrial production of 

the cell-free supernatant was carried out at the industrial plant of the company Biochemical 

S.A. (Buenos Aires, Argentina) whereas spray-drying was conducted in the dairy plant of the 

company SanCor C.U.L. (Sunchales, Santa Fe, Argentina). A 1000 L stainless steel fermenter 

(La Metalúrgica Industrial - Lampe, Lutz & Cia., Buenos Aires, Argentina) was used. 950 L 

of 10% (w/v) skim milk were inoculated with the DSM-100H culture according to the 

manufacturer instructions. 50% (v/v) NH4OH was used for pH control (pH = 6). No gas 

sparring was used. Fermentation was carried out at 43ºC for 20 h. The cell-free supernatant 

was recovered using a continuous centrifuge (Alfa Laval, MB PX 810) (5000 rpm, 5ºC) and 

transported under refrigeration to SanCor C.U.L. To allow spray-drying, the total solids of 

the cell-free supernatant were raised from 5.93% (w/v) to 41.00% (w/v) using whole milk 

concentrate (produced by SanCor C.U.L.). 145 L of the whole milk enriched-cell free 

supernatant were spray-dried in a Niro Mobile Minor 
TM

 spray drier under the following 

conditions: inlet air temperature: 160ºC, outlet air temperature: 90ºC, product feeding 

temperature: 60ºC and product feeding rate: 14 L h
-1

. The product obtained under these 

conditions was named FiSD. 
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Peptide profiles of the postbiotics  

The peptide profiles of the cell-free supernatants (postbiotics) of milks fermented with 

the culture DSM-100H were analyzed by means of reverse phase-high performance liquid 

chromatography (RP-HPLC). 

 

In order to evaluate the impact of different conditions and scale of fermentation on the 

peptide profiles, several samples were analyzed. Postbiotics produced at laboratory level 

derived from the fermentation of: 1) 10% (w/v) skim milk without pH control; 2) 20% (w/v) 

skim milk without pH control; 3) 10% (w/v) skim milk pH-controlled with Ca(OH)2; 4) 20% 

(w/v) skim milk pH-controlled with Ca(OH)2; and 5) 10% (w/v) skim milk pH-controlled 

with NH4OH. Postbiotics produced at industrial scale were obtained: 1) before spray-drying 

and 2) spray-dried and reconstituted (FiSD). An unfermented milk supernatant was used as a 

control. This sample was obtained from reconstituted milk, acidified to pH 3.60 with 85% 

(v/v) of L-lactic acid syrup (L1250, Sigma Aldrich, Buenos Aires, Argentina) and centrifuged 

(4000 g, 4°C, 15 min). All the cell-free supernatants were stored at -70°C for further analysis. 

Spray-dried powder was reconstituted in milk before the analysis.  

 

For HPLC analysis, samples (diluted 1/10 in distilled water) were filtered through 0.45-

μm membranes (Millex, Millipore, Sao Paulo, Brazil), and 60 μL portion of each one was 

injected into the HPLC chromatograph (Series 200 and Flexar, Perkin Elmer, Norwalk, CT). 

The HPLC equipment consisted of a quaternary pump, an on-line degasser, a column oven 

and a UV-visible detector (Series 200 and Flexar). Data were collected and processed on a 

computer with the software Chromera® (Perkin Elmer). Separation was achieved on an 

Aquapore OD-300 C18 (220 mm × 4.6 mm) analytical column (Perkin Elmer, Norwalk, 

USA), at 30ºC, and a flow rate of 0.9 mL min
-1

. The column was equilibrated initially with 
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100% of solvent A [(0.1% (v/v) trifluoroacetic acid (TFA) in water)]. After 5 min of 

injection, a gradient was generated by increasing the concentration of solvent B [(0.1% (v/v) 

TFA in acetonitrile)] from 0 to 60% during 25 min and next maintaining 5 min in this 

condition; then, the column was returned to starting conditions (100% of solvent A) over 10 

min, and these conditions were maintained for 10 min. 

 

In vivo trials 

Animals 

Eighty-one six-week old male BALB/c mice weighing 20-22 g were obtained from 

the random inbred colony of the Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral, 

UNL-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral 

(Esperanza, Santa Fe, Argentina). Animals were kept at the INLAIN animal facility for a 

week before starting the feeding procedures. Each experimental group (depending on the 

assay) consisted of 7-10-15 mice housed in groups (3, 4 or 5) in plastic cages and kept in a 

controlled environment (21 ± 1°C and 55 ± 2 % humidity), with a 12 h light/dark cycle. 

 

All animals received, simultaneously and ad libitum, tap water and a sterile 

conventional balanced diet containing proteins, 230 g kg
-1

; raw fibre, 60 g kg
-1

; total 

minerals, 100 g kg
-1

; Ca, 13 g kg
-1

; P, 8 g kg
-1

; water, 120 g kg
-1

; and vitamins (Cooperación, 

Buenos Aires, Argentina). 

Mice were maintained and treated according to the guidelines of the Guide for the Care 

and Use of Laboratory Animals, Institute of Laboratory Animal Resources, National 

Research Council. The animal assay was approved by the Ethical Committee for Animal 

Experimentation of the Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral 

(Esperanza, Santa Fe, Argentina). The 3 R’s principle was considered when using animals. 
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Secretory IgA (S-IgA) quantification in faeces 

The following groups (7 animals/group) were set: a) control group (C): mice that 

received the unfermented milk supernatant; b) F36 group (F36): mice that received the cell-

free supernatant obtained by DSM-100H fermentation in 10% (w/v) skim milk produced in 

the laboratory and c) F36D group (F36D): mice that received the product F36 diluted 1/10 in 

tap water. Animals received, by gavage, 300 µl/day/mouse of each product for 35 

consecutive days.  Faeces samples (approx. 50 mg/mouse) were collected once a week and 

diluted (1:10) with 500 µL PBS buffer. The samples were processed (UltraturraxT-50® 

Homogenizer), centrifuged (8000 g, 4ºC, 15 min) and the supernatant was collected to 

determine the concentration of S-IgA by ELISA. 

 

Salmonella Typhimurium survival assays 

A strain of Salmonella enterica serovar. Typhimurium was obtained from the 

Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbrán 

(Buenos Aires, Argentina). A stock culture of the Salmonella strain was inoculated in 5 mL 

of TS broth (Tryptone Soy, Britania S.A, Buenos Aires, Argentina) for 16 h at 37ºC in 

aerobiosis.  

 

The capacity of the supernatants (obtained at laboratory and industrial scale) to 

prevent enteric infection with Salmonella enterica was evaluated. In the first assay 

(evaluation of the product F36), the following groups (10 animals/group) were set: a) control 

group (C): mice that received the unfermented milk supernatant; b) F36 group (F36): mice 

that received the cell-free supernatant obtained by DSM-100H fermentation in 10% (w/v) 

skim milk produced in the laboratory and c) F36D group (F36D): mice that received the 

product F36 diluted 1/10 in tap water. Animals received, by gavage, 300 µl/day/mouse of 
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each product for ten consecutive days. After the feeding period, animals were challenged 

with a single infective dose of 6.30 log10 CFU of Salmonella/mouse. Survival to infection 

was monitored daily for 20 days after challenge. The cumulative mortality during the post-

infection period was plotted against time, and the results were expressed as survival (%) to 

infection [% = (Nnot-dead mice/Ntotal mice)*100]. 

 

In a second assay (product FiSD), the following groups (15 animals/group) were set: a) 

control group (C): mice that received reconstituted milk (30% w/v) and b) FiSD group 

(FiSD): mice that received the cell-free supernatant obtained by DSM-100H fermentation in 

10% (w/v) skim milk at industrial level, spray-dried and reconstituted (30% w/v). Animals 

received, by gavage, 300 µl/day/mouse of each product for ten consecutive days. After the 

feeding period, animals were challenged with a single infective dose of 6.48 log10 CFU of 

Salmonella/mouse and survival was monitored for 20 days after challenge. The cumulative 

mortality during the post-infection period was plotted against time, and the results were 

expressed as survival (%) to infection [% = (Nnot-dead mice/Ntotal mice)*100]. 

 

Statistical analysis 

For the mortality assays, the survival (%) was evaluated with the Log Rank test. The 

data of the rest of the trials were analysed using one-way ANOVA (SPSS software, SPSS 

Inc., Chicago, IL, USA). The differences between means were detected by the Duncan’s 

Multiple Range Test (IBM SPSS Statistics, 2013). Data were considered significantly 

different when P < 0.05. 
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Results  

Screening of the proteolytic activity and potential growth in milk 

The fermentative capacity of the strains/commercial cultures under study in milk was 

assessed by measuring the pH and the proteolytic activity (PA) after 20 h of incubation at 

43ºC in 10% (w/v) skim milk without pH control (Table 1). Three L. helveticus strains (Lh 

05, Lh 07 and Lh 08) and L. bulgaricus Lb 09 were not able to grow in milk, whereas the 

commercial cultures DSM-100H and Lb-12 Chr. Hansen and the strains L. helveticus Lh 06, 

L. bulgaricus Lb 12 and L. bulgaricus Lb 03 presented the highest proteolytic activities 

(absorbance between 0.7 and 1.08), and then they were chosen for further studies. The final 

pH ranged from 3.86 and 3.35 in all cases. In previous studies in our laboratory (data not 

published), the culture DSM-100H presented higher immunostimulatory capacity (increase in 

intestinal secretory IgA) when fed to mice than Lb-12 Chr. Hansen, that is why the former 

was selected.  

 

Production of postbiotics at laboratory scale (F36) 

The fermentation at laboratory level was performed using the most proteolytic 

strains/commercial culture in reconstituted skim milk (10 and 20% w/v). Cells counts (log10 

CFU mL
-1

) of pH-controlled (time = 0, 16 h, 18 h and 20 h) and uncontrolled fermentations 

(time = 0 and 20 h) are shown in Table 2. Results of the proteolytic activities after 16 h and 

18 h of fermentation at pH = 6 are shown in Table 3, and the final PA (20 h) of free and 

controlled-pH fermentations is shown in Figure 1.  

 

Regarding cell growth, it was observed that the highest cell counts were found after 

16 h of fermentation (Table 2). For L. bulgaricus Lb 12, a significant loss of viability was 

evidenced after 20 h of fermentation using 10% or 20% (w/v) skim milk (P < 0.05). 
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Moreover, when fermentations with and without pH control were compared, the counts after 

20 h of incubation for L. bulgaricus Lb 12 were significantly higher when pH was not 

controlled using 10% (P = 0.039) or 20% (w/v) (P = 0.001) skim milk, compared to pH-

controlled fermentation.  

 

The proteolytic activity of the commercial culture DSM-100H was significantly 

higher than that obtained for the three autochthonous Lactobacillus strains (Table 3 and 

Figure 1) so it was selected for its use at industrial level and for the in vivo trials. After 16 h 

and 18 h of pH-controlled fermentations with the culture DSM-100H, no significant 

differences in PA were observed when using 10 or 20% (w/v) skim milk (Table 3). After 20 h 

of fermentation, the PA of the DSM-100H culture was significantly higher when the 

fermentation was carried out at pH = 6, than when it was performed without pH control, 

using 10% and 20% (w/v) skim milk (Figure 1). However, no differences were found 

between pH-controlled fermentations when using 10% or 20% (w/v) skim milk. On the 

contrary, a higher milk concentration led to significantly higher PA values for free-pH 

fermentations (Figure 1).  

 

Production of postbiotics at industrial scale and spray-drying (FiSD) 

According to the results obtained at the laboratory, the scaling-up was performed with 

the DSM-100H culture in 10% (w/v) skim milk. The cell-free supernatant was spray-dried in 

order to confer stability and easiness of transportation to the product produced at the industry. 

The global composition of the powder obtained at industrial level after spray drying was: 

2.71% (w/v) moisture, 24% (w/v) fat, 29.79% (w/v) protein, 37.4% (w/v) carbohydrates and 

6.1% (w/v) ashes. 
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Peptide profiles of the cell-free supernatants  

Cell-free supernatants derived from milk fermentation with the DSM-100H culture 

were analyzed in order to study the proteolysis of milk proteins and release of peptide 

fractions to the medium in different conditions and scale of fermentation (Figures 2 and 3). 

An unfermented milk supernatant was used as a control. 

 

The profiles of unfermented milk supernatant and the cell-free supernatants of milk 

(10 or 20% w/v) fermented with and without pH control are shown in Figure 2. An increase 

in the number and height of peaks, above all for those eluted between 14 to 20 min of 

retention time, was observed in fermented milks due to the proteolytic activity of the culture. 

This activity was higher when the fermentation was carried out at controlled pH in 

comparison with samples without pH control. The use of 10 or 20% (w/v) skim milk did not 

influence on the peptide profiles of pH-controlled fermentations, but in the case of the 

fermentation without pH control, there was a higher production of peptides at higher milk 

concentration. All these results are consistent with those of PA, previously described. 

 

In Figure 3, peptides profiles of five samples are compared: unfermented milk supernatant 

(a), the cell-free supernatants of milk 10% (w/v) fermented at controlled pH with Ca(OH)2 

(b) or NH4OH (c) at laboratory scale, and the cell-free supernatants produced at industrial 

scale before spray-drying (d), and spray-dried and reconstituted (e). Peptides profiles of all 

these fermented samples showed a notable increase of peaks with a retention time between 14 

to 20 min.  Also, some differences in the height and number of peaks were detected between 

different samples. In this way, the use of NH4OH to control the pH during fermentation at 

laboratory scale produced an increase of peaks in the initial part of the chromatogram, and 

between 20 to 25 min of retention time, in comparison with the employment of Ca(OH)2. 
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These results suggest an influence of the pH-controlling agent in the proteolytic activity of 

the strain. The profiles of the postbiotics produced at laboratory or industrial scale (using the 

same pH-controlling agent) were very similar reflecting a good reproducibility of the 

fermentation process in the scaling. Regarding the sample produced at industrial scale and 

spray-dried, some differences were observed. In this profile, a lower height of the 

characteristics peaks was detected, and additional peaks were found. This fact is probably 

related to the preparation of the sample for the spray-drying. In effect, the total solids of the 

cell-free supernatants were increased from 5.93% (w/v) to 41.00% (w/v) with whole milk 

concentrate, which probably contributed with some peptides to the profiles.  However, these 

changes did not worsen the protective capacity against Salmonella infection of this sample, as 

described below.  

  

Secretory IgA (S-IgA) quantification in faeces 

The capacity of the postbiotics obtained at laboratory scale (F36 and F36D), to 

stimulate the secretion of S-IgA in the gut was determined monitoring this parameter in 

faeces in mice fed these products (Figure 4). A significant increase in the secretion of S-IgA 

was detected after 14 days of feeding in mice that received the F36 supernatant, compared to 

the control group; however, no differences were observed when the supernatant was 

administered diluted (1/10) (F36D group). Considering the dose-response concept, one may 

assume that the higher the proteolytic activity, the higher the immunostimulation achieved.  

 

Salmonella Typhimurium survival assays 

The capacity of postbiotics produced to protect mice against Salmonella infection was 

assessed. The survival of mice fed the F36 and F36D supernatants during 20 days after 

infection is shown in Figure 5. Survival of mice that received the cell-free supernatant 
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obtained by the fermentation of 10% (w/v) skim milk with the commercial culture DSM-

100H (F36) was significantly higher (survival > 60%, P = 0.015), compared to the control 

group. On the contrary, no differences in survival were observed when the 1/10 dilution of 

the F36 product was used. After 8 days of the challenge, the survival of the control group was 

only 25%, and all mice died after 15 days of infection. Mice that received the product F36D 

survived 25% till the end of the assay. The highest levels of S-IgA observed after 14 days of 

feeding in mice that received the F36 supernatant (Figure 4) could, at least partially, explain 

the highest protective capacity of the F36 product against Salmonella infection. 

 

A second assay was performed to evaluate the protective capacity of the spray-dried 

cell-free supernatant obtained at industrial scale (Figure 6). A significant (P= 0.017) 

protective effect was observed in mice treated with this product, compared to the control 

group. The FiSD group, showed a survival of 85% from day 9 onwards, while the control 

group had a survival of 80% after 11 days and less than 50% at the end of the assay.  

 

Discussion 

As diet is a key factor for health promotion and disease prevention, in the last decades, 

the food and pharma industries experienced a growing interest in the development of 

functional foods and supplements that provide health benefits beyond basic nutrition, such as 

those based on probiotics, prebiotics and the use of dairy hydrolysates containing bioactive 

peptides (Hernández-Ledesma et al. 2014). Fermented dairy products carrying probiotic 

bacteria are functional food market leaders (Figueroa-González et al. 2011), however certain 

characteristics of probiotics in general (sensitivity to lactic acidity or osmotic pressure, need 

of low storage temperature) have confined them mainly to dairy products (yoghurt, cheese), 

limiting the development of other kinds of food products (Burns et al. 2010; Peteán et al. 
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2014). Milk proteins are considered one of the most important sources of bioactive peptides 

(Hafeez et al. 2014; Wada and Lönnerdal 2014; Pihlanto 2016). The use of bioactive peptides 

as a functional component instead of viable microorganisms presents technological 

advantages such as a longer shelf-life, easier storage, handling, transportation and reduced 

requirement for refrigerated storage (Vinderola 2008). As a result, several technologies have 

been developed to produce these bioactive peptides (Hafeez et al. 2014). One of the 

alternatives is through the fermentation of dairy products with proteolytic acid lactic bacteria 

(LAB) and posterior recovering of the cell-free supernatant. The proteolytic system of LAB 

during milk fermentation plays a key role in enabling these bacteria to grow in milk, thereby 

ensuring successful fermentation (Savijoki et al. 2006). LAB proteases have an optimum pH 

of activity between 5.5 and 7.5 (Sadat-Mekmene et al. 2011). This fact could explain the 

increased PA of pH 6-controlled fermentation compared to uncontrolled ones found for the 

tested strains and commercial cultures. These results are consistent with previous works 

(Vinderola et al. 2007a; Burns et al. 2010; Peteán et al. 2011). On the other hand, the 

proteolytic activity values corresponded to the peptide profiles of the supernatants obtained 

by HPLC. Batista et al. (2018) reported proteolytic activities of about 0.7 in probiotic yogurt 

with the addition of glucose oxidase. Moreover, Cruz et al. (2013) proved that yogurts 

packaged in plastic containers with lower oxygen permeability rates showed a higher 

proteolysis (0.542–0.777) during the refrigerated storage. 

 

Several studies have demonstrated the role of bioactive peptides in the promotion of 

the immune function (Vinderola et al. 2007a; Hernández-Ledesma et al. 2014). 

Immunomodulatory peptides can enhance immune cell functions, such as antibody synthesis 

and cytokine regulation, lymphocyte proliferation and natural killer cell activity (Pihlanto 

2016). In this sense, different authors have reported that functional foods containing 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

probiotics and/or bioactive peptides induced the proliferation of IgA-producing cells in the 

gut (Vinderola 2008; Galdeano et al. 2009). The main function of IgA, the most abundant 

defense in the mucosa-associated immune system (MALT), is to exert the immune exclusion 

of pathogenic bacteria or viruses (Dongarrà et al. 2013).  

 

The postbiotic (F36) produce at the laboratory stimulate the immune system by 

increasing the secretion of S-IgA in mice. Peteán et al. (2014) reported that the administration 

of the cell-free supernatant of 10 or 20% (w/v) buttermilk, fermented using NaOH or 

Ca(OH)2 as pH-controlling agents, significantly enhanced the number of IgA producing cells 

in the lamina propria of the small intestine, compared to control mice. In previous work we 

demonstrated that buttermilk was a suitable substrate for the fermentation with L. helveticus 

209, and that the spray-dried cell-free supernatant obtained was able to modulate the gut 

mucosa in vivo (Burns et al. 2010). Otani et al. (2003) found that faecal and intestinal anti-

LPS secretory IgA and total IgA in mice fed a Casein PhosphoPeptide (CPP-III)-added diet 

were significantly higher than in mice fed the control diet. 

 

When peptides are part of the native protein, they are inactive but the action of enzymes 

during food processing or gastrointestinal digestion releases and turns them active (Toldrá et 

al. 2018). Literature data report that milk-derived bioactive peptides are effective against 

several gram-positive and gram-negative bacteria (Mohanty et al. 2016b; Zanutto-Elgui et al. 

2019). 

 

Salmonella infection in mice is considered a heterogeneous and dynamic process 

dependent on multiple variables that underlie the complex processes that occurred in the host. 

Even if the dose of Salmonella used should induce a mild infection in mice (50 % death in the 
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control group), this fact is conditioned by several factors involving the pathogen and mice 

(Zacarías et al. 2014). The susceptibility to Salmonella infection of control mice was 

different between the two in vivo experiments. It was likely that mouse vendor and batch to 

batch-dependent variation in gut microbiota composition determines susceptibility to 

Salmonella infection (Ericsson et al. 2015). 

 

Both postbiotics produce at laboratory (F36) and industrial level (FiSD) were effective 

in protecting mice against Salmonella infection. These results suggest that the production at 

different scales and the spray drying process would not interfere with the protective effect. 

Vinderola (2008) reported that the application of spray-drying to the cell-free fraction of 

fermented milk allows nutritional and sensorial qualities to be retained, together with an 

extreme reduction in weight for transportation and an extended shelf-life. A protective effect 

of the non-bacterial fraction (NBF) of milk fermented with L. helveticus R839 against 

Salmonella Typhimurium infection was previously reported by Vinderola et al. (2007b). 

Authors found that mice fed the NBF showed lower levels of liver colonization on day 7 

post-challenge, higher luminal contents of specific anti-Salmonella S-IgA, and lower 

numbers of MIP-1α+ cells in the lamina propria.  

 

 In the present study, it was demonstrated that the pH-controlled milk fermentation 

using the proteolytic DSM-100H culture could be a suitable strategy to obtain a cell-free 

supernatant with immunomodulatory and protective capacity against Salmonella infection in 

mice. These postbiotics may be an attractive alternative as ingredients to produce functional 

foods especially when the characteristics of the food matrix are not favourable to host viable 

cells of probiotic microorganisms. 
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Tables 

Table 1. Final pH and proteolytic activity (A340nm) of the different strains/commercial 

cultures grown in 10% (w/v) skim milk after 20 h of incubation at 43ºC without pH control. 

Commercial cultures/Strains pH* Proteolytic Activity (A340)* 

DSM-100H DSF 3.37 ± 0.01 1.03± 0.04 

Lb-12 Chr. Hansen 3.58 ± 0.02 1.08± 0.09 

LH-B02 Chr. Hansen 3.35 ± 0.03 0.49± 0.01 

Biochemical H 2085 3.85 ± 0.37 0.48± 0.09 

Biochemical H 2087 3.82 ± 0.27 0.49± 0.07 

L. helveticus Lh 05 Slow strain** 

L. helveticus Lh 07 Slow strain** 

L. helveticus Lh 08 Slow strain** 

L. helveticus Lh 06 3.50 ± 0.14 0.70± 0.05 

L. bulgaricus Lb 03 3.84 ± 0.11 0.83± 0.04 

L. bulgaricus Lb 12 3.44 ± 0.13 0.73± 0.04 

L. bulgaricus Lb 09 Slow strain** 

L. bulgaricus Lb 10 3.46 ± 0.02 0.43± 0.06 

L. bulgaricus Lb 11 3.36 ± 0.09 0.30± 0.10 

L. lactis Ll 210 3.60 ± 0.10 0.47± 0.04 

L. lactis Ll 133 3.86 ± 0.06 0.24± 0.09 

*Values are the mean of three determinations ± SD. **Not able to grow in milk. 
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Table 2. Cell counts (log10 CFU mL
-1

) of the selected strains/commercial culture grown in 10% and 20% (w/v) skim milk (SM) at different 

times with and without pH control. 

Commercial culture/strains 

Cell counts (log10 CFU mL
-1

) 

10% SM 20% SM 

pH = 6 Free pH pH=6 Free pH 

initial 16 h 18 h 20 h 20 h initial 16 h 18 h 20 h 20 h 

DSM-100H 6.28±0.12 8.37±0.43 7.63±0.58 7.60±0.54 7.61±0.88 6.28±0.09 8.22±0.25 7.85±1.43 7.66±0.92 8.74±0.51 

L. bulgaricus Lb 03 5.60±0.22 8.32±0.18 7.43±0.55 7.33±0.22 7.48±1.34 5.69±0.36 8.23±0.12 8.56±0.23 8.21±0.35 7.97±0.23 

L. bulgaricus Lb 12 6.25±0.78 8.22±0.72 8.18±0.73 7.17±0.61
*a

 8.86±0.31
b
 6.81±0.55 8.22±0.27 7.83±0.28 7.26±0.54

*c 
8.99±0.27

d 

L. helveticus Lh 06 6.71±0.21 8.84±0.42 8.94±0.52 9.08±0.47 8.76±0.30 5.49±0.15 8.28±0.66 8.29±0.45 8.48±0.36 8.60±0.30 

* For each condition (10 or 20% SM), values significantly different compared to that at 16 h (P < 0.05). 
a,b

 For 10% SM, values significantly different (P = 0.039).  
c,d

 For 

20% SM, values significantly different (P = 0.001). Values are the mean of three determinations ± SD. 
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Table 3. Proteolytic activity (A340nm) of the selected strains/commercial culture grown in 

10% and 20% (w/v) skim milk (SM) after 16 h and 18 h of fermentation at pH = 6. 

Commercial culture/strains 

Proteolytic Activity (A340)
#
 

10% SM 20% SM 

16 h 18 h 16 h 18 h 

DSM-100H 0.97 ± 0.37
b
 1.47 ± 0.06

b
 1.78 ± 1.00

b
 1.85 ± 0.80

b
 

L. bulgaricus Lb 03 0.27 ± 0.13
a
 0.43 ± 0.04

a
 0.53 ± 0.06

a
 0.57 ± 0.05

a
 

L. bulgaricus Lb 12 0.25 ± 0.26
a
 0.29 ± 0.22

a
 0.40 ± 0.20

a
 0.54 ± 0.30

a
 

L. helveticus Lh 06 0.24 ± 0.15
a
 0.27 ± 0.16

a
 0.41 ± 0.40

a
 0.42 ± 0.30

a
 

a, b
 For each column, values with different superscript letters are significantly different (P < 0.05). 

#
 Values are 

the mean of three determinations ± SD. 
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