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1. Update to Adobe Reader XI
The screen images in this document were captured on a Windows PC running Adobe Reader XI. Editing of DJS proofs 
requires the use of Acrobat or Reader XI or higher. At the time of this writing, Adobe Reader XI is freely available and can be 
downloaded from http://get.adobe.com/reader/

2. What are eProofs?
eProof fi les are self-contained PDF documents for viewing on-screen and for printing. They contain all appropriate formatting 
and fonts to ensure correct rendering on-screen and when printing hardcopy. DJS sends eProofs that can be viewed, anno-
tated, and printed using the free version of Acrobat Reader XI (or higher). 

3. Comment & Markup toolbar functionality

A. Show the Comment & Markup toolbar
The Comment & Markup toolbar doesn’t appear by default. Do one of 

 the following:
  • Select View > Comment > Annotations.
  • Click the Comment button in the Task toolbar.

Note: If you’ve tried these steps and the Annotation Tools do not appear,
 make sure you have updated to version XI or higher. 

B. Select a commenting or markup tool from the Annotations window.
Note: After an initial comment is made, the tool changes back to the Select tool 

 so that the comment can be moved, resized, or edited. (The Pencil, Highlight 
 Text, and Line tools stay selected.)

C. Keep a commenting tool selected
 Multiple comments can be added without reselecting the tool.
 Select the tool to use (but don’t use it yet). 
  • Right Click on the tool. 
  • Select Keep Tool Selected.
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4. Using the comment and markup tools
To insert, delete, or replace text, use the corresponding tool. Select the tool, 
then select the text with the cursor (or simply position it) and begin typing. 
A pop-up note will appear based upon the modifi cation (e.g., inserted text, 
replacement text, etc.). Use the Properties bar to format text in pop-up 
notes. A pop-up note can be minimized by selecting the  button inside it. 
A color-coded  symbol will remain behind to indicate where your comment 
was inserted, and the comment will be visible in the Comments List.

5. The Properties bar
The Properties bar can be used to add formatting such as bold or italics to 
the text in your comments.
To view the Properties bar, do one of the following:
 • Right-click the toolbar area; choose Properties Bar.
 • Press [Ctrl-E]
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A. Insert Text tool
B. Replace Text tool
C. Delete Text tool
D. Sticky Note tool
E. Text Correction Markup tool
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8. Summary of main functions
A. Insert text - Use Insert Text tool (position cursor and begin typing)
B. Replace text - Use Replace Text tool (select text and begin typing)
C. Delete text - Use Strikethrough Text tool (select text and press delete key)

Note: The Text Correction Markup tool combines the functions of all three tools. 
D. Sticky Note - Use Sticky Note tool to add comments not related to text correction. 

9. Reviewing changes
To review all changes, do the following: 
 • Click the Comments button to reveal the comment tools
 • Click the triangle next to Comments List (if not already visible)

Note: Selecting a correction in the list will highlight the corresponding item in the document, and vice versa.

10. Still have questions?
Try viewing our brief training video at https://authorcenter.dartmouthjournals.com/Article/PdfAnnotation

6. Inserting symbols or special characters
An ‘insert symbol’ feature is not available for annotations, and copying/pasting symbols or non-keyboard characters from 
Microsoft Word does not always work. Use angle brackets < > to indicate these special characters (e.g., <alpha>, <beta>).

7. Editing near watermarks and hyperlinked text
eProof documents often contain watermarks and/or hyperlinked text. Selecting characters near these items can be diffi cult us-
ing the mouse alone. To edit an eProof which contains text in these areas, do the following: 
  • Without selecting the watermark or hyperlink, place the cursor near the area for editing.
  • Use the arrow keys to move the cursor beside the text to be edited.
  • Hold down the shift key while simultaneously using arrow keys to select the block of text, if necessary.
  • Insert, replace, or delete text, as needed.
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NK CellsQ:1; 2; 3 Restrain Spontaneous Antitumor CD8+ T Cell
PrimingQ:4; 5; 6 through PD-1/PD-L1 Interactions with Dendritic
CellsQ:7; 8; 9

Ximena L. Raffo Iraolagoitia,* Raul G. Spallanzani,* Nicolás I. Torres,* Romina E. Araya,*

Andrea Ziblat,* Carolina I. Domaica,* Jessica M. Sierra,* Sol Y. Nuñez,*

Florencia Secchiari,* Thomas F. Gajewski,†,‡ Norberto W. Zwirner,*,‡,x and

Mercedes B. Fuertes*,{

Despite the classical function of NK cells in the elimination of tumor and of virus-infected cells, evidence for a regulatory role for NK

cells has been emerging in different models of autoimmunity, transplantation, and viral infections. However, this role has not been

fully explored in the context of a growing tumor. In this article, we show that NK cells can limit spontaneous cross-priming of tumor

Ag-specific CD8+ T cells, leading to reduced memory responses. After challenge with MC57 cells transduced to express the model

Ag SIY (MC57.SIY), NK cell–depleted mice exhibited a significantly higher frequency of SIY-specific CD8+ T cells, with enhanced

IFN-g production and cytotoxic capability. Depletion of NK cells resulted in a CD8+ T cell population skewed toward an effector

memory T phenotype that was associated with enhanced recall responses and delayed tumor growth after a secondary tumor

challenge with B16.SIY cells. Dendritic cells (DCs) from NK cell–depleted tumor-bearing mice exhibited a more mature pheno-

type. Interestingly, tumor-infiltrating and tumor-draining lymph node NK cells displayed an upregulated expression of the

inhibitory molecule programmed death ligand 1 that, through interaction with programmed death-1 expressed on DCs, limited

DC activation, explaining their reduced ability to induce tumor-specific CD8+ T cell priming. Our results suggest that NK cells

can, in certain contexts, have an inhibitory effect on antitumor immunity, a finding with implications for immunotherapy in the

clinicQ:10 . The Journal of Immunology, 2016, 197: 000–000.

N
atural killer cells are important mediators of the innate
immune response against intracellular pathogens and
tumors (1, 2). The recognition of target cells is mediated

by a complex repertoire of activating and inhibitory receptors

allowing for the discrimination between normal and infected/
transformed cells. An extra level of regulation of NK cell acti-
vation is provided by diverse cytokines (3, 4) and the recognition
of pathogen-associated molecular patterns through TLRs (5). NK
cell activation results not only in a cytotoxic response toward
target cells, but also in the secretion of IFN-g and other cytokines
and chemokines (6–8), rendering NK cells capable of modulating
the activity of other cells of the immune system and the outcome
of the immune response (9–11).
Although it has been widely demonstrated in various model

systems that NK cells can play a positive role during immune
responses against tumors and infected cells, evidence of an in-
hibitory role for NK cells is beginning to emerge in diverse models
of viral infection (12–15), transplantation (16), and autoimmunity
(17). It has been reported that NK cells regulate T cell responses
through multiple direct and indirect mechanisms, including NK
cell–mediated killing of activated CD8+ T cells (14, 15, 18–21),
CD4+ T cells (18, 19, 22, 23), and also of dendritic cells (DCs)
(12, 24, 25). However, little is known about a possible NK cell–
mediated inhibitory/regulatory role during antitumor immune re-
sponses.
In many instances, spontaneous priming of tumor Ag-specific

CD8+ T cells can occur in both human cancer patients and in
murine models, through DC-mediated cross-presentation. More-
over, a growing body of evidence suggests that an inflamed tumor
microenvironment that includes the presence of tumor-infiltrating
CD8+ T cells has a positive prognostic role in multiple cancer
types (26). However, multiple regulatory mechanisms that blunt
T cell function within the tumor microenvironment arise in tumors
(27). Programmed death ligand 1 (PD-L1), an inhibitory molecule
frequently upregulated on tumor cells, is one of the major im-
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munological checkpoints contributing to tumor-immune escape
(28) through the inhibition of T cell activation and promotion of
apoptosis of DCs (29) and CD8+ T cells (30). In several clinical
trials, blockade of programmed death-1 (PD-1) or PD-L1 resulted
in enhanced T cell function and improved immune-mediated tu-
mor control (31). PD-L1 is expressed not only by tumor cells but
also by tumor-infiltrating immune cells (32), and it has been
shown that some patients with PD-L12 tumors can also respond to
treatment (33). These and other related data have increased the
motivation to identify additional regulatory mechanisms that re-
strain the priming or effector function of tumor-specific T cells.
In this study, we examined the functional role of NK cells during

a spontaneous antitumor immune response. We show that NK cells
inhibit the expansion of functional tumor-specific CD8+ T cells
during the priming phase and control the frequency of effector
memory T cells (TEMs) CD8

+ cells, leading to a diminished recall
response and reduced tumor control after a secondary tumor
challenge with B16.SIY cells. The underlying mechanism in-
volved the regulation of DC maturation, through PD-L1hi NK cells
that emerged during tumor growth. Accordingly, NK cell–depleted
mice showed an increased frequency of PD-1+ DCs. Our results
are consistent with a model in which the presence of a growing
tumor results in upregulated expression of PD-L1 on NK cells
leading to a direct regulation of DC maturation, compromising CD8+

T cell priming and recall responses against tumor-derived Ags.

Materials and Methods
Mice

C57BL/6 mice (8–12 wk) were obtained from the animal facility of the
School of Veterinary, University of La Plata (Argentina) and housed at the
local animal facility according to National Institutes of Health guidelines.
Studies have been approved by the institutional review committee.

Tumor cell lines

Mouse cell lines MC57, B16.F10 (henceforth referred to as B16), and YAC1
were obtained from American Type Culture Collection and transduced to
express the model antigenic peptide SIYRYYGL (SIY) that is cross-
presented to CD8+ T cells through H2-Kb (34). Human cell lines (ECC-
1, MDA-MB-453, PC3, Caco2, K562, and HeLa) were obtained from
American Type Culture Collection. Tumor cell lines were cultured by
standard procedures.

Tumor challenge experiments

Mice were s.c. injected on the flank with 23 106 tumor cells or PBS (naive
mice). After 6 or 11 d, animals were euthanized and peripheral blood
(lysed with ACK buffer), spleens, lymph nodes (LNs), and tumors (dis-
rupted with 1 mg/ml collagenase IV [Sigma-Aldrich] in complete DMEM
for 30 min at 37˚C) were collected. For NK cell transfer experiments,
sorted NK cells from naive spleens were inoculated intratumorally 3 d after
mice were challenged with MC57.SIY cells, and analyses were performed
6 d after tumor challenge. For recall experiments, on day 110 after primary
tumor challenge, mice were s.c. injected with 5 3 106 B16.SIY cells and,
the day before and 4 d later, peripheral blood samples were collected. For
IFN-g, CD107a, and tetramer staining, and for the identification/pheno-
typicationQ:11 of memory T cells, regulatory T cells (Tregs; CD25+FoxP3+

CD4Q:12
+), myeloid-derived suppressor cells (MDSCs; CD11b+Gr-1+), DCs

(CD11c+CD32NKp462), and NK cells (NKp46+CD32), samples were
collected at the indicated time points, and cell suspensions were prepared
and analyzed by flow cytometry. For quantitative PCR (qPCR), tumor-
draining LNs (TDLNs) and tumors were analyzed 6 d after tumor chal-
lenge. For tumor growth experiments, the longest (l) and shortest (d) di-
ameters were measured three times per week, and the tumor volume was
calculated as: (l 3 d2)/2.

Cell depletion

For NK cell depletion, mice were injected i.p. with 100 mg of anti-NK1.1
(PK136; BioXCell) or isotype control (IC; C1.18.4; BioXCell) 1 d before
and every 3 d after tumor challenge. For CD8+ T cell depletion, 200 mg of
anti-CD8 (YTS 169.4, in-house produced) was injected 1 d before tumor

challenge and once per week thereafter. Depletion was confirmed by flow
cytometry in blood and tumor samples.

Flow cytometry and cell sorting

Nonspecific staining was blocked with anti-CD16/32 mAb (2.4G2) for
mouse samples or with 10% normal mouse serum for human samples. Cells
were labeled according to the experiment with the following fluorochrome-
coupled Abs: CD3ε (17A.2; UCHT1), CD4 (RM4-5), NKp46 (29A1.4),
CD49b (DX5), CD56 (N901), CD8 (53-6.7), CD11b (M1/70), CD11c
(N418), Gr-1 (RB6.8C5), CD45R (B220, RA3-6B2), CD86 (GL-1), CD44
(IM7), CD127 (A7R34), PD-1 (29F.1A12), PD-L1 (10F.9G2; 29E.2A3),
CD25 (PC61), NKG2D (CX5), KLRG1 (2F1), Ly6C (HK1.4),CD27
(LG.3A10) c-Kit (ACK2), CTLA-4 (UC10-4F10-11), CCR7 (4B12),
FoxP3 (FJK-16s), and CD107a (ID4B) from Biolegend, Tonbo Biosci-
ences, eBioscience, Beckman Coulter, or Immunotools. For tetramer
staining, cells were labeled following the manufacturer’s instructions with
PE-MHC class I dexamers (Immudex) consisting of murine H-2Kb com-
plexed to SIY peptide and analyzed in the CD8+CD42B2202 population.
In some experiments, 5000 beads (Spherotech) were added for quantifi-
cation purposes. Cell viability was determined with Zombie Green (Bio-
legend). Samples were acquired in a FACSCanto II-plus flow cytometer
(BD Biosciences), and data analysis was conducted with FlowJo software
(Tree Star). For cell sorting, spleen cells from naive mice and tumor cells
were stained with lineage-specific mAbs for NK cells (CD32CD49b+

cells), DCs (CD32CD49b2CD11c+B2202 cells), or CD8+ T cells (CD3+

CD8+ cells) and sorted in a FACSAria II-plus cell sorter (BD Biosciences).

CD8+ T cell–mediated IFN-g production

Six days after tumor challenge, 23 105 cells were cultured overnight at 37˚
C in the presence or absence of the SIY peptide (10 mM). During the last 6
h, Golgi-Plug/Golgi-Stop reagents were added; cells were harvested and
stained with anti-CD8, anti-CD4, and anti-B220 mAbs, fixed with 1%
paraformaldehyde, permeabilized with Perm Buffer II (BD), stained with
anti–IFN-g mAb, and analyzed by flow cytometry.

CD8+ T cell–mediated degranulation

Eleven days after tumor challenge, 105 cells were cultured for 6 h with anti-
CD107a mAb and Golgi-Plug/Golgi-Stop reagents (BD), in the absence or
in the presence of 105 MC57.SIY cells. Cells were then harvested, stained
with anti-CD8, anti-CD4, and anti-B220 mAbs, and analyzed by flow
cytometry.

In vitro PD-L1 expression

A total of 13 106 splenocytes from naive mice was cultured for 48 h in the
absence or in the presence of IL-12 (10 ng/ml; Peprotech), IL-15 (1 ng/ml;
Peprotech), and IL-18 (10 ng/ml; MBL), or 1 3 105 MC57 cells, in the
presence of blocking mAbs against NKG2D (2.5 mg/ml, 191004; R&D
Systems) or IFN-g (10 mg/ml, XMG1.2; Tonbo) or IC (LTF-2; Tonbo).
Cells were harvested, stained with anti-CD3, anti-NKp46, and anti–PD-L1
mAbs, and analyzed by flow cytometry.

PBMCs were isolated from healthy human volunteers (provided by the
Service of Transfusion Medicine of the Hospital ChurrucaVisca, Buenos
Aires, Argentina) by Ficoll-Paque Plus (GE Life Sciences) gradient cen-
trifugation, and cultured (5 3 105 cells/well) with the different human cell
lines (2 3 105 cells/well) for 48 h. Cells were then harvested and stained
with anti-CD3, anti-CD56, and anti–PD-L1 mAbs. Studies have been ap-
proved by the institutional review committee of the Instituto de Biologı́a y
Medicina Experimental.

Quantitative real-time RT-PCR

Total RNAwas obtained and cDNAwas synthesized as described previously
(35). For qPCR, the SYBR Green PCR Master Mix (Applied Biosystems)
was used with the CFX96 Real-Time PCR System (Bio-Rad). Primers
were as follows: IL-10 (forward: 59-TGCTAACCGACTCCTTAATG-
CAGGAC-39, reverse: 59-CCTTGATTTCTGGGCCATGCTTCTC-39),
TGF-b (forward: 59-AATTCCTGGCGTTACCTTGG-39, reverse: 59-
ATCGAAAGCCCTGTATTCCG-39), and GAPDH (forward: 59-CAGAA-
CATCATCCCTGCAT-39, reverse: 59-GTTCAGCTCTGGGATGACCTT-
39). For IFN-b, primer and probe sets from TaqMan Gene Expression
Assays (Applied Biosystems) and TaqMan-based quantification were used.
Results were expressed as 22DCt using GAPDH as endogenous control.

DC maturation assay

DC and NK cells from naive spleens and NK cells from tumors were sorted.
DCs (5 3 104 cells/well) were stimulated with LPS (25 ng/ml; Invivogen)
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and R848 (10 mM; Invivogen) in the absence or in the presence of 5 3 104

naive NK cells or tumor-infiltrating NK (TINK) cells treated or not with
anti–PD-L1 blocking mAb (10F.9G2, 10 mg/ml). After 18 h beads were
added and cells were harvested, stained with Zombie Green and for
CD11c, CD86, and NKp46, and analyzed by flow cytometry.

T cell proliferation assay

NK cells from naive spleens and from tumors were sorted. T cells isolated
from naive spleens by magnetic cell sorting with CD90.2 microbeads
(Miltenyi Biotec) were stained with cell proliferation dye eFluor 670 (2.5
mM; eBioscience). T cells (1 3 105 cells/well) were stimulated with plate-
bound anti-CD3 (145-2C11; 2 mg/ml; BD Pharmingen) and soluble anti-
CD28 (37.51, 1 mg/ml; BD Pharmingen) mAbs in the absence or in the
presence of 5 3 104 naive NK cells or TINK cells. After 72 h, cells were
harvested, stained with Zombie Green and for CD3, CD8, and NKp46, and
eFluor 670 dilution was analyzed by flow cytometry.

Cytotoxicity assay

CD8+ T cells (targets) and NK cells (effectors) from naive spleens and
tumors were sorted. Tumor-infiltrating CD8+ T cells (labeled with 0.25
mM eFluor 670) and naive CD8+ T cells (labeled with 2.5 mM eFluor 670)
were cocultured 1:1 in the absence or in the presence of naive NK cells or
TINK cells at different E:T ratios. After 6 h beads were added and cells
were harvested, stained with Zombie Green, and analyzed by flow
cytometry. Percent specific cytotoxicity was calculated as (100% Zombie
Greenlow cells in the presence of NK cells) 2 (100% Zombie Greenlow

cells in the absence of NK cells) for each condition.

Statistical methods

Differences between data sets were analyzed with the two-sided Student t
test, one-way and two-way ANOVA (Tukey or Sidak multiple comparison
tests) using GraphPad Prism Software.

Results
NK cells restrict tumor-induced CD8+ T cell priming

To assess the effect of NK cells on the spontaneous priming of
tumor Ag-specific CD8+ T cells, we analyzed the frequency and
effector responses of endogenous SIY-specific CD8+ T cells after
s.c. implantation of MC57.SIY cells in control or NK cell–de-
pleted mice. MC57.SIY cells naturally express the NKG2D ligand
Rae1 and can be recognized and lysed by NK cells (data not
shown); however, NK cell depletion did not affect the kinetics of
tumor growth (Fig. 1A F 1). In contrast, tumor rejection is completely
dependent on CD8+ T cells (Fig. 1B). We observed that 6 d after
tumor challenge it was possible to detect an expansion of SIY-
specific CD8+ T cells in control and NK cell–depleted mice.
However, by day 11, mice depleted of NK cells displayed a sta-
tistically significant increase in the frequency of SIY-specific
CD8+ T cells in blood (Fig. 1C, 1D) and spleens (data not
shown) compared with nondepleted mice. Such an increased fre-
quency mirrored a heightened ability of these CD8+ T cells to
degranulate in response to restimulation with MC57.SIY cells
(Fig. 1E) and was also accompanied by an increased percentage of
IFN-g–producing CD8+ T cells upon restimulation with the SIY
Ag (Fig. 1F). These findings were validated using the MHC class
I2 cell line YAC1.SIY where tumor-specific CD8+ T cell re-
sponses are entirely dependent on cross-priming and are rejected
in an NK cell–dependent manner. Similarly, we observed a sta-
tistically significant increase in frequency of SIY-specific CD8+

T cells 11 d after tumor challenge in NK cell–depleted versus
control-treated mice (Fig. 1G). As a complementary approach, NK

FIGURE 1. NK cell depletion enhances tumor-specific CD8+ T cell priming. (A) Control (IC) or NK cell–depleted (anti-NK1.1) mice and (B) control or

CD8+ T cell–depleted (anti-CD8) mice were inoculated s.c. with MC57.SIY cells on the flank, and tumor size was evaluated every 2–3 d. (C–F) IC or anti-

NK1.1–treated mice were inoculated with MC57.SIY cells or left unchallenged (no tumor), and blood was collected at the indicated time points after tumor

challenge. (C) Percentage of SIY+ CD8+ T cells assessed by flow cytometry using specific tetramers. (D) Representative dot plots of SIY-tetramer staining at

day 11. Numbers indicate percent of cells within the indicated gate. (E) Percentage of CD107a+ CD8+ T cells after ex vivo restimulation with MC57.SIY

cells or medium. (F) Percentage of IFN-g–producing CD8+ T cells after restimulation with soluble SIY peptide or medium. (G) Control or NK cell–depleted

mice were inoculated with YAC1.SIY cells and blood was collected 11 d later. Percentage of SIY-specific CD8+ T cells assessed as in (C). (H) Mice were

challenged with MC57.SIY cells and 3 d later they received either 7.5 3 104 NK cells intratumorally or PBS. Six days after tumor challenge, splenocytes

were harvested. Percentage (left panel) and absolute number of SIY-specific CD8+ T cells (right panel) assessed as in (C). Data represent mean6 SEM (n =

4) and correspond to three (C, E, and F) or two (A, B, G, and H) independent experiments. *p, 0.05, **p, 0.01, ***p, 0.001, two-sided Student t test (C,

G, and H) and two-way ANOVA and Tukey multiple comparison test (E and F)Q:15 .
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cells were adoptively transferred intratumorally, which resulted in
a reduction in the percentage and number of SIY-specific CD8+

T cells (Fig. 1H) and IFN-g–producing CD8+ T cells upon stim-
ulation with SIY peptide (data not shown). These results demon-
strate that NK cells can control the expansion of functional Ag-
specific CD8+ T cells during the priming phase of a spontaneous
antitumor immune response.

NK cells restrict the generation of TEM CD8+ cells and recall
responses to tumors

To further study the role of NK cells on the outcome of tumor-
specific CD8+ T cell compartment, we characterized the pheno-
type of effector CD8+ T cells primed in control or NK cell–de-
pleted mice based on the expression of CD44, KLRG1, and
CD127 markers (36). Mice primed in the absence of NK cells
show an augmented proportion of activated CD8+ T cells (CD44+)
including both short-lived effector cells (KLRG1+CD1272CD44+

CD8+) and memory precursor effector cells (KLRG12CD127+

CD44+CD8+) (Fig. 2A F 2). In turn, memory T cells can be divided
into two major subtypes: central memory T cells (TCMs) (CD44

+

CD62Lhi/CCR7hi) that have little or no effector function but
readily proliferate and differentiate to effector cells in response to
antigenic stimulation, and TEMs (CD44

+CD62Llo/CCR7lo) that are
widely distributed and display immediate effector functions (37).
Although we observed no difference in the TCM CD8+ cell pop-
ulation (Fig. 2B), we found a marked increase in the proportion of
TEM CD8+ subset in spleens and blood of NK cell–depleted mice
compared with control mice (Fig. 2C), whereas there was no
difference in TCMs and TEM CD4+ cells between both groups of
mice in blood, spleen, or TDLNs (data not shown). Using the
YAC1.SIY model, we recapitulated the results obtained with
MC57.SIY (Fig. 2D). These results indicate that NK cell depletion
generates a CD8+ T cell population skewed toward a TEM phe-
notype in tumor-bearing mice.
Given these differences, we examined whether the expanded

TEM CD8+ cell population generated in the absence of NK cells
can elicit enhanced recall responses. We challenged NK cell–de-
pleted or control mice with MC57.SIY cells as described earlier,
maintaining the NK cell–depleted mice only during the priming
phase, and 110 d later (when NK cell counts were normal and
tumors were rejected in both groups of mice), we rechallenged
mice with the unrelated and poorly immunogenic B16 melanoma,
also transduced to express the SIY Ag (B16.SIY) to monitor for
SIY-specific memory responses (Fig. 3A F 3). As control, a group of
naive mice (that had not been previously injected with MC57.SIY
cells) was also challenged with B16.SIY cells. One day before and
4 d after rechallenge we analyzed the frequency of SIY+CD8+

T cells in the blood of the three groups of mice. Mice that had
been primed in the absence of NK cells retained an expanded TEM

CD8+ cell population before the second challenge (Fig. 3B) and
showed an augmented proportion of Ag-specific CD8+ T cells
during the recall response (Fig. 3C) and an increased proportion
of IFN-g–producing CD8+ T cells when restimulated ex vivo with
the SIY Ag (Fig. 3D). Priming with MC57.SIY cells induced a
strong memory response in mice rechallenged with B16.SIY cells.
In addition, if priming occurred in the absence of NK cells, it
resulted in delayed tumor growth among mice that did not reject

FIGURE 2. NK cell depletion induces the expansion of the TEM CD8+

subset. (A–C) IC or anti-NK1.1–treated mice were inoculated with MC57.

SIY cells; blood, spleen, and LNs were collected. The percentage of

CD44+, short-lived effector cells and memory precursor effector cells in

the CD8+ T cell population was evaluated in blood (A), and the percentage

of TCMs (B) and TEMs (C) was evaluated by flow cytometry in the CD8+ T

cell population in blood, spleen, and LNs. (D) IC or anti-NK1.1–treated

mice were inoculated with YAC1.SIY cells, blood was collected 11 d later,

and the percentage of TEM CD8+ cells was evaluated by flow cytometry.

Data represent mean 6 SEM (n = 4) and correspond to two independent

experiments. *p , 0.05, **p , 0.01, ***p , 0.001, two-sided Student t

test. n.s., not significant.
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the tumor (Fig. 3E) and a trend toward enhanced protection
against secondary tumor formation (Fig. 3F, tumor development in
11.11% of anti-NK1.1–treated mice versus 31.25% of IC-treated
mice). These results indicate that the NK cell–dependent shaping
of the memory compartment during the first tumor challenge may
result in diminished recall responses and poor tumor control.

NK cells limit DC maturation without affecting other
regulatory populations

NK cells with regulatory functions, capable of dampening Ag-
specific T cell responses through the secretion of the immuno-
suppressive cytokines IL-10 and/or TGF-b, have been described
previously (38). However, when we compared the amounts of IL-
10 and TGF-b mRNA in tumors and TDLNs, we found no dif-
ferences between NK cell–depleted and control mice (Fig. 4A F 4,
4B). Although NK cells can recruit Tregs via secretion of the
chemokine CCL22, which may contribute to immune suppression
(39), we found no differences in the frequency of Tregs in tumor
or TDLNs between control and NK cell–depleted mice (Fig. 4C).
MDSCs constitute one of the major populations of immune cells

capable of regulating antitumor immune responses (40). In addi-

FIGURE 3. NK cell depletion during priming enhances antitumor recall

responses. IC or anti-NK1.1–treated mice were inoculated with MC57.SIY

cells (first challenge) or left unchallenged (no tumor). After 110 d, mice

were challenged with B16.SIY cells (second challenge); 1 d before (pre-

B16.SIY) and 4 d later (post-B16.SIY), blood was collected and analyzed.

(A) Experimental design. (B) Percentage of TEM CD8+ cells 109 d after

challenge with MC57SIY (pre-B16.SIY). (C) Percentage of SIY-specific

CD8+ T cells. (D) Percentage of IFN-g–producing CD8+ T cells after

restimulation with soluble SIY peptide. Data represent mean 6 SEM (n =

5) and correspond to two independent experiments. (E) Tumor size (in

mice that did not reject the tumor) after challenge with B16.SIY in the

three groups of mice and (F) percentage of tumor-free mice (n represents

the total number of mice analyzed for each group of mice). Data represent

mean 6 SEM. *p , 0.05 two-sided Student t test, **p , 0.01 two-way

ANOVA and Tukey multiple comparison test.

FIGURE 4. NK cell depletion augments DC maturation without af-

fecting other major regulatory populations. IC or anti-NK1.1–treated mice

were inoculated with MC57.SIY cells. (A and B) Six days later, TDLNs

and tumors were collected and the relative abundance of IL-10 (A) and

TGF-b (B) transcripts were evaluated by qPCR. (C and D) Eleven days

after tumor inoculation, TDLNs, spleens, and blood were collected and the

percentage of Tregs (C) and MDSCs (D) were evaluated by flow cytometry.

(E–G) Six days after tumor challenge, tumors and TDLNs were collected

and the expression of CD86 on DCs (defined as CD32NKp462 B2202

CD11c+) was evaluated by flow cytometry (E), the relative abundance of

IFN-b transcripts was evaluated by qPCR (F), and the frequency of DCs

was evaluated by flow cytometry. Data represent mean 6 SEM (n = 3) and

correspond to two independent experiments. *p , 0.05, ***p , 0.001,

two-sided Student t test. n.s., not significant.
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tion, it has recently been described that CD11b+CD27+ NK cells
could be converted into CD11b+Gr1+ MDSCs in tumor-bearing
mice (41). However, when we compared the proportion of MDSCs
in blood and spleens of NK cell–depleted or control mice, we
found no differences (Fig. 4D).
The striking difference for CD8+ T cell priming observed upon

NK cell depletion could point to a defect at the level of DC co-
stimulation and cross-priming of CD8+ T cells. Therefore, we
compared the maturation status of DCs in both groups of mice and
found an enhanced expression of CD86 on tumor-infiltrating and
TDLN DCs in mice lacking NK cells compared with control mice
(Fig. 4E). These observations suggest that NK cells can restrict
DC maturation. Considering that IFN-b produced by DCs early
during an antitumor immune response is critical for priming of
CD8+ T cells (42), expression of this cytokine also was examined.
In fact, tumors from NK cell–depleted mice showed a 2.33-fold
increase in the levels of IFN-b (Fig. 4F). Moreover, we found an
elevated frequency of DCs in TDLNs from NK cell–depleted mice
compared with control mice (Fig. 4G). Together, these results
suggest a regulatory function of NK cells at the level of DCs.

Tumor-experienced NK cells have an altered phenotype and
express PD-L1

In a search for possible phenotypic changes on NK cells during
antitumor immune responses that could account for their regulatory
ability, we assessed the expression of several stage-related and
activation/inhibitory markers on NK cells. We found that TINK
cells are mostly the terminally differentiated CD11b+CD272

subpopulation (43) (Supplemental Fig. 1A). Still, compared with

NK cells from naive LN, TINK cells showed an altered phenotype
that included upregulation of KLRG1 (capable of inhibiting NK
cell effector functions [44]), Ly6C (associated with an inert state
[45]), and CD25 (Supplemental Fig. 1B), the downregulation of
activating receptors NKG2D and NKp46 (Supplemental Fig. 1C),
and no change in the potentially inhibitory molecules PD-1,
CTLA-4 (46), and c-Kit (Supplemental Fig. 1D). The PD-1/PD-
L1 pathway is one of the most critical checkpoints responsible for
mediating tumor-induced immune suppression (33). Notably, 6 d
after tumor inoculation, we observed an expansion in the fre-
quency and numbers of PD-L1–expressing NK cells (PD-L1hi NK
cells), not only in tumors (Fig. 5A F 5) but also in TDLNs compared
with naive or nondraining LNs (NDLNs; Fig. 5B–D). To evaluate
whether this phenotypic change could be mediated by interaction
with tumor cells, we cocultured splenocytes with MC57 tumor
cells in vitro. Indeed, this resulted in a 2-fold expansion of PD-
L1hi NK cells (Fig. 5E). This effect was dependent on IFN-g, and
the activating NK cell receptor NKG2D as neutralization of IFN-g
or blockade of NKG2D during the coculture of splenocytes with
MC57 cells partially inhibited the upregulation of PD-L1 (Fig.
5E). In contrast with this tumor-induced phenotypic change, no
increase in PD-L1–expressing NK cells was observed upon
stimulation with the cytokines IL-12, IL-15, and IL-18 (Fig. 5F).
In addition, human NK cells also upregulated PD-L1 expression
after tumor recognition in vitro (Fig. 5G), indicating that certain
tumors can induce the upregulation of PD-L1 on both mouse and
human NK cells.

FIGURE 5. TumorsQ:16 induce PD-L1 expression on NK cells. (A–D) Mice were inoculated with MC57.SIY cells, and 3 and 6 d later, tumors, TDLNs,

NDLNs, and naive LNs were collected and the expression of PD-L1 was analyzed by flow cytometry on NK cells (defined as CD32NKp46+ cells). (A)

Percentage of PD-L1hi NK cells in naive LNs and tumors. (B) Percentage and (C) number of PD-L1hi NK cells in TDLNs on days 0, 3, and 6 after tumor

challenge. (D) Representative histograms of PD-L1 expression on NK cells in tumors, TDLNs, and NDLNs. The filled histogram corresponds to the IC. (A–

C) Data represent mean6 SEM (n = 4) and correspond to two independent experiments. (E and F) A total of 106 splenocytes were cultured with 105 MC57.

SIY in the presence of IC, anti–IFN-g neutralizing mAb, or anti-NKG2D blocking mAb (E), or in the presence of IL-12, IL-15, and IL-18 or 105 MC57.SIY

(F), and after 48 h, the percentage of PD-L1hi NK cells was analyzed by flow cytometry. (E and F) Data represent mean 6 SEM (n = 4) and correspond to

two independent experiments. (G) Human PBMCs were cultured with the indicated tumor cell lines, and 48 h later the percentage of PD-L1hi NK cells

(defined as CD32CD56+ cells) was evaluated by flow cytometry. Data represent mean 6 SEM (n = 4 donors). *p , 0.05, **p , 0.01, ***p , 0.001, two-

sided Student t test (A–C) and one-way ANOVA and Tukey multiple comparison test (E–G). MFI, mean fluorescence intensity.
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NK cells regulate DC maturation through PD-1/PD-L1
interactions

We wondered whether increased expression of PD-L1 on NK cells
might contribute to the diminished priming of CD8 T cells observed
in tumor-bearing mice, through targeting DCs and/or CD8+ T cells.
Therefore, we first analyzed whether NK cells might control DC
and CD8+ T cell numbers in a PD-1/PD-L1–dependent manner
in vivo. Mice depleted of NK cells exhibited a 1.6-fold increase in
the frequency of PD-1hi DCs (Fig. 6AF 6 ) but showed no difference
in PD-1–expressing CD8+ T cells (Fig. 6B) compared with control
mice. Accordingly, in vitro DC maturation with LPS and R848
was inhibited in the presence of TINK cells but not in the presence
of NK cells from a naive spleen, and this inhibition was partially
reverted by blockade of PD-L1 (Fig. 6C). To explore a potential
direct effect of PD-L1hi NK cells on CD8+ T cells, we analyzed
the proliferation and survival of activated CD8+ T cells in the
presence of TINK cells. We found that in vitro proliferation of
these CD8+ T cells (that uniformly expressed high levels of PD-1,
data not shown) was not altered in the presence of control (isolated
from naive spleens) or tumor-derived NK cells (Fig. 6D). In ad-
dition, naive and tumor-infiltrating CD8+ T cells were equally
resistant to NK cell–mediated lysis (Fig. 6E), either when we used
control NK cells or PD-L1hi TINK cells as effectors (Fig. 6F).
These results indicate that TINK cells were unable to directly
suppress CD8+ T cell proliferation or to preferentially kill tumor-
infiltrating CD8+ T cells, but that they can regulate the maturation

status of DCs, in part through PD-1/PD-L1 interactions, and in
such manner indirectly affect CD8+ T cell priming.

Discussion
Evidence supporting a regulatory role for NK cells in diverse
immunopathological conditions such as viral infections, autoim-
munity, and transplantation is emerging (12–17). However, little is
known about a possible regulatory activity during an antitumor
immune response. In this study, we took advantage of the SIY
model Ag to track the priming of endogenous tumor-specific
CD8+ T cells in vivo in the presence or in the absence of NK
cells. We show that NK cells can control the spontaneous priming
and memory responses of tumor Ag-specific CD8+ T cells, in part
through a mechanism involving regulation of DC maturation
through PD-1/PD-L1 interaction.
Despite the enhanced priming of tumor-specific CD8+ T cells in

NK cell–depleted mice, the primary tumor is equally rejected by
control mice. This is due to the high immunogenicity of MC57.
SIY cells, which induce substantial amounts of tumor-specific
CD8+ T cells, high enough to induce tumor rejection simulta-
neously or before the regulatory activity of NK cells becomes
apparent.
In vivo, the absence of NK cells resulted in enhanced priming of

antitumor CD8+ T cells and a memory response skewed toward a
TEM phenotype that led to a faster and more robust recall response
resulting in delayed tumor growth. These results may have im-
plications for the rational design of cancer immunotherapies given

FIGURE 6. NK cells negatively regulate DC maturation through PD-1/PD-L1 interactions. (A and B) IC or anti-NK1.1–treated mice were inoculated

with MC57.SIY cells, and 6 d later PD-1 expression was evaluated by flow cytometry in DCs (A) and CD8+ T cells (B) from TDLNs. (C) Sorted splenic DCs

were stimulated with LPS and R848 (control) in the absence or in the presence of control NK cells (isolated from spleen of naive mice) or TINK cells, in the

absence or in the presence of an anti–PD-L1 blocking mAb, and 18 h later the number of viable mature DCs (defined as CD11c+CD86+Zombie Green2

cells and depicted as percentage of the control) was evaluated by flow cytometry. (D) eFluor 670–labeled CD3+ T cells were stimulated with anti-CD3/anti-

CD28 and cultured in the absence or in the presence of control NK cells or TINK cells, and 72 h later the percentage of divided CD8+ T cells was evaluated

by flow cytometry. (E and F) eFluor 670–labeled naive (eFluor 670high) and tumor-infiltrating (TI; eFluor 670low) CD8+ T cells were cultured in the absence

or in the presence of control NK or TINK cells, and 6 h later the percentage of nonviable CD8+ T cells (100-Zombie Green2 cells) was evaluated by flow

cytometry and % specific cytotoxicity (E), and the viable TI/Naive CD8+ T cell ratio (F) was calculated (E:T = 4:1). Data represent mean6 SEM [(A and B)

n = 4; (C–F) n = 2)] and correspond to two independent experiments. *p , 0.05, two-sided Student t test (A and B), one-way ANOVA and Tukey (C, D, and

F), or Sidak (E) multiple comparison test. n.s., not significant.
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that the induction of durable antitumor T cell responses in cancer
patients is a major goal of therapeutic interventions (26).
The regulatory role described in this article for NK cells is in

sharp contrast with its well-known role in the control of tumor
growth and infectious agents. This apparent contradiction may
reflect the complex and yet incompletely understood biology of NK
cells, which when faced with different stimuli might generate
alternative outcomes at different stages of the immune response. In
the tumor context, Schreiber and colleagues (47) showed that,
although NK cells could play a critical role during the elimination
of tumor cells, during the equilibrium (dormancy phase) of an
antitumor immune response, NK cells seem to be expendable. In
our model, PD-L1hi NK cells become detectable in TDLNs 6 d
after tumor challenge, consistent with the idea that NK cells can
be functional and contribute to tumor control early after tumor
challenge and become suppressive later on.
Such a regulatory activity of NK cells at the level of the adaptive

immune response may have evolved as a mechanism to control the
extent of T cell activation in the context of chronic viral infections
and other immune pathological conditions, to limit damage that can
be associated with widespread T cell responses. Accordingly, some
patients with autoimmune disorders display reduced NK cell
numbers with impaired cytotoxicity (48).
PD-L1 is a powerful immune modulator differentially expressed

during tumor progression on tumor cells, stroma, or immune cells
that contributes to immune escape. Blocking agents targeting this
pathway are currently being tested with promising results in
clinical trials, including FDA approval in both melanoma and lung
cancer (49). In this article, we show that, consistent with a regu-
latory function of NK cells, PD-L1 was overexpressed by NK cells
from tumor-bearing mice, and that induction of PD-L1 expression
was dependent on NKG2D recognition. PD-L1 was also upregu-
lated on human NK cells upon coculture with some but not all of
the human cell lines tested. However, there was no correlation
between NKG2D ligand expression and PD-L1 upregulation,
suggesting that other activating/inhibiting receptors might be in-
volved. It has been shown that IFN-g is a positive regulator for
PD-L1 expression (50). Accordingly, we observed that blockade
of IFN-g prevented the generation of PD-L1hi NK cells. Although
we cannot rule out the possibility that NK cell–derived IFN-g
might also trigger PD-L1 upregulation on stroma or other immune
cells that may partially contribute to the regulation of the immune
response, we found no difference between NK cell–depleted and
control mice when analyzing PD-L1 expression on tumor cells
in vivo (data not shown).
The observed PD-L1 expression on NK cells has functional

consequences, because tumor-experienced NK cells controlled DC
maturation in vivo and in vitro, and PD-L1 blockade partially
restored the numbers of mature DCs recovered in vitro. Accord-
ingly, we found an expanded population of PD-1hi DCs in TDLNs
of NK cell–depleted mice compared with control mice. Con-
versely, PD-L1hi NK cells were unable to kill CD8+ T cells or to
directly suppress its proliferation in vitro. Moreover, in vivo, the
frequency of PD-1hi CD8+ T cells was unchanged in the presence
or in the absence of NK cells.
PD-L1 expression on c-Kit+CD11b2 NK cells during experi-

mental diabetes (17) and metastatic spread of cancer (51) has been
reported. However, in our experimental setting, we observed that
PD-L1+ NK cells showed no detectable expression of c-Kit and
were mostly terminally differentiated, expressing high levels of
CD11b.
PD-L1 expression on tumor cells is a suggestive, but inadequate,

predictive biomarker of response to immune-checkpoint blockade
(31), suggesting that PD-L1 expressed by other cells might also be

a relevant target for therapy with these agents. It is conceivable
that the blockade of PD-L1 on NK cells could be part of the
mechanism of action of these Abs, through disruption of the
regulatory interaction between NK cells and DCs, which could
contribute to the more robust and efficient antitumor CD8+ T cell
response seen with anti–PD-1.
In summary, our results suggest a model in which tumor-induced

PD-L1hi NK cells regulate DC activation resulting in a reduced
ability to support CD8+ T cell priming. The assessment of PD-L1
expression on NK cells should be investigated as a potential
biomarker for the presence of regulatory NK cells and also in
association with clinical outcomes with anti–PD-1 mAbs Q:13.
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