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Abstract—

A new cache memory organization called “Shared-Way Set Associative” (SWSA) is described in this paper. It consists

of a modified two-way set associative scheme in which one way is larger than the other. We show how better use of

memory is obtained, without the costs that higher-associativities have. An expression for calculating the non-integer

degree of associativity of SWSA caches is given. Several replacement policies are discussed. Miss rate statistics for the

SPEC95 and additional benchmarks are presented for first and second level SWSA caches, together with a detailed

analysis of conflicts using the D3C classification of misses. For large caches the miss rates of SWSA caches are similar

to those 33% larger two-way set associative caches. The issue of hardware implementation is addressed, and we explain

why SWSA caches may have advantages, specially with configurations with very unbalanced ways which have miss rates

that are very similar to those of slightly smaller two-way caches. We conclude that shared-way set associativity shows

benefits compared to two-way set associativity, and may also be favorably compared with direct-mapping and even to

higher associativities depending on other architectural and technological issues.

Keywords— Cache memory, associativity, replacement policy.

I. INTRODUCTION

CPU caches reduce the average memory access time of computer systems by exploiting the temporal

and spatial locality present in most of real reference streams [13]. The property that is most relevant for

this work is temporal locality, which means that data that was recently used is very likely to be used again
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in the near future. One way to make use of temporal locality is to keep in the cache the references that

were most-recently used (MRU). Though this criterion is known to be inferior to the optimum unrealizable

criterion [2], it exploits temporal locality very well. A fully-associative placement policy is the only one

that guarantees that the least-recently used (LRU) block in the cache can be victimized when room for a

new block is needed during a cache miss, thus it is the one that complies best with the aforementioned

criterion. As we go from full-associativity through set-associativities of decreasing degree towards direct-

mapping we are moving further away from a criterion that exploits temporal locality very well, and this

explains why miss ratios increase correspondingly [14]. On the other hand, direct-mapping offers the best

access times [8]. Also [8] reports increasing access times with increasing associativities. Access time is an

important issue in the choice of the degree of associativity. For example, on-chip integration of the second

level cache reduces the complexity and access time penalty of higher associativities. Also there is more

need for the better miss rates offered by higher associativities because sizes must be reduced to fit in the

die. So, it is valuable to increase the associativity if second level caches are integrated on the CPU die. It

is reasonable to think that patterns like these may evolve with the advance of technology. For example,

higher transistor counts per chip will allow the use of larger second-level caches, though the reduction of

local miss rates produced by higher associativities diminish as size increases [4]. This may suggest the

use of lower associativities increasing then the importance of access time versus local miss rate. Another

possibility is the use of a third level of on-die cache, which would change the priorities of the second level.

Flynn shows reasons to believe that a third level on-die will show benefits with feature sizes of 0.1 �m

which will be the industry standard in a few years [3].

New architectures have been proposed to increase the cache performance. Skewed caches [17], improves

hit statistics of set-associative designs with minimum penalty in access time. A multi-bank n way set-

associative cache memory is built with n distinct memory banks. A block of data with base address A
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may be physically mapped on physical block f(A) in any of the distinct banks. This vision of a set-

associative cache fits with its physical implementation: n banks of static RAM memories. The skewed

caches propose a very slight modification in this design: different mapping functions are used for the

distinct cache banks i.e., a block of data with base address A may be mapped on physical line f0(A) in

cache bank 0 or in f1(A) in cache bank 1, etc. So data may cause conflict for a cache block on bank 0, but

not on bank 1 on a skewed-associative cache, improving the hit ratio. The hardware modification incurs

a over cost for implement the mapping functions and the necessary gates are placed in the critical path

lengthening the hit time. Column-associativity [1] and group-associativity [14] proposes modifications

to direct-mapped architectures to improve miss rates while maintaining advantageous access times. For

example column-associative caches reduce the conflicts that arise in direct-mapped caches by allowing

conflicting addresses to dynamically choose alternate hashing functions, so that some of the conflicting

data can reside in the cache. The critical hit access path is unchanged but hits may need more than one

cycle because the alternate hashing functions to search the cache are used once at a time. Also this scheme

add a rehash bit to each cache set which indicates whether that set stores data that is referenced by an

alternate hashing function and hardware to swap cache block content is needed. Stream buffers and victim

caches [9] are additions to direct-mapped caches that decrement their miss penalties. In the victim cache

the miss rate is the same of the direct-mapped cache but there are two kinds of misses, the normal ones

and faster ones served by a small fully-associative cache placed between the first and the second level

caches. Another proposed scheme is the difference-bit cache [10]. The difference-bit cache is a two-way

set-associative cache with an access time that can be smaller than that of a conventional cache (with the

actual value depending on the technology). This is achieved by noticing that the two tags for a set have

to differ at least by one bit and by using this bit to select the way. In contrast with other approaches that

predict the way and have two types of hits (primary of one cycle and secondary of two or more cycles), all
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hits of the difference-bit cache are of one cycle. The difference-bit cache has a miss rate that is equal to a

two-way set-associative cache. On the other hand, this proposal is only well suited for the two-way case.

Also this organization requires a cache with virtual addresses and tags, since the bits needed would not be

available in time if the addresses or tags have to be translated. Peir et al. present a summary of some of

these architectures in [15].

The scheme described in this paper is another alternative. It consists of a modified two-way scheme that

makes better use of memory without the additional costs that higher-associativities present. We will show

how it may lead to improvements depending on the implementation.

The paper is organized as follows. Section II explains the motivation for the new scheme and why we

suggest that it may lead to a more efficient use of memory than a 2-way set associative organization with

a comparable complexity. The architecture is described next, together with a detailed description of some

replacement policies. Miss rate statistics are presented and analyzed in Section III. Section IV discusses

issues related to access times and the implementation of the proposed scheme. In section V extensions of

the proposed scheme to higher associativities are given and finally in Section VI the conclusions are given.

II. SHARED-WAY SET ASSOCIATIVE (SWSA) CACHES

A. Motivation

Set-associative and direct-mapped caches usually retain only a subset of the N most recently used

(MRU) memory blocks, where N is the number of blocks in the cache [14]. Peir et al use the term “holes”

for the memory blocks that are kept by the cache but do not belong to this MRU subset and claim that

frames containing holes are underutilized [14]. They provide experimental data for the average percentage

of holes in caches of different associativities during the execution of TPC-C. On data caches the percentage

of holes is roughly 40%, 30% and 22% for direct-mapping, 2-way and 4-way associativities respectively.
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Instruction caches hold fewer holes: 36%, 25% and 17%. A fully-associative LRU-replacement cache

would keep no holes. These numbers illustrate what was discussed in the introduction.

For the purpose of making our point let’s suppose that, in a two-way set associative cache, the MRU

block of each set is kept in bank 1 (the first way) and the LRU in bank 2 (the second way). A replacement

policy that does this is called “swap” [9]. We have measured the percentage of holes in each of these banks

for a 16Kbytes data cache running the SPEC95 benchmarks. The results are shown in Fig. 1. The number

of holes for each bank is very unbalanced as bank 2 holds a considerably larger percentage. Results for

other cache sizes are similar to those shown in Fig. 1. Instruction caches under the SPECfp95 benchmarks

also show a considerable unbalance. For the SPECint95 benchmarks the number of holes in bank2 is

near 50%. Bank 2 is therefore less exploited than bank 1. This conclusion motivated us to evaluate the

performance of a scheme similar to a two-way set associative but with bank 2 smaller than bank 1. This

leads to a new cache memory organization for which new placement and replacement policies are required.

We call this new cache organization “Shared-Way Set Associative” (SWSA) [7].
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B. Definition of Shared Way Set Associative (SWSA) Caches

It is possible to think a two-way set associative cache of size C as the result of to cut a direct mapped

cache in two equal halves of size C=2. The sets are formed by creating a one to one association between

the lines of the two halves (see Fig. 2a). Bit-mapped indexing is usually used to access the sets. For

the different case in which the direct mapped cache is cut in two parts of different sizes C1 and C2, an

association between the lines of the two ways as shown in Fig. 2b can be used. For simplicity we assume

one memory bank for each way. More than one line in the first bank is associated to only one line in

the second bank. Thus different sets share one line in the second bank or second way. The “degree of

sharing” is defined as the number of blocks in the first bank that share the same block in the second bank.

The degree of sharing can be calculated as the ratio between the number of blocks in the first and second

banks. This organization is called “Shared Way Set Associative (SWSA) Cache.”

For SWSA caches the cache block selection is done by using an independent bit- mapped indexing for

each bank (we use banks with sizes which are powers of two). An index 1 is used to access the bank 1.

The number of bits for index 1, I1, is given by C1=L = 2I1 , where L is the line size. Similarly to access

bank 2 another index is used, index 2, with a number of bits given by C2=L = 2I2 . In figure 3 a block

diagram for a SWSA cache hit logic is given. The example in figure 3 is for a case where bank 1 is twice

larger than bank 2. So index 1 need one bit more than index 2 for access the bank 1 lines (i.e. the tags

used for bank 1 have one bit less than those used for bank 2). In figure 3, i bits of index plus b bits of byte

select are enough for the access of a data word in bank 2. For access bank 1, i+1 bits of index are needed.

Similarly, t bits are required for the tags used in bank 1 and t+ 1 for the tags used in bank 2. A tag match

(hit) in bank 1 or bank 2 will assert the MatchOut bit and the proper data word will be chosen with the

multiplexer and placed in DataOut.
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C. Degree of Associativity of SWSA Caches

The degree of associativity n for a standard n-way set associative cache is obtained as the quotient

between the total number of blocks (lines) in the cache B and the number of sets in the cache S:

n =
B

S
(1)

For a cache with a total cache size C and block size L, is B = C
L

and considered in (1) is

n =
C

LS
(2)

We also will use (2) to obtain an operational definition to calculate the degree of associativity of a SWSA

cache. The total cache size in a SWSA cache is C = C1 + C2, where C1 and C2 are the sizes of banks 1

and 2 respectively. In a SWSA cache organization, like in a standard set associative cache, the number of

sets in the cache coincide with the number of blocks in the first bank and then is S = C1=L. Then, from

(2) the associativity n for a SWSA cache is:

n =
C

LS
=

(C1 + C2)
LC1

L

=
(C1 + C2)

C1

= 1 +
C2

C1

(3)

Using (3), the degree of associativity for a SWSA cache can be easily calculated. For example if bank 1

has a size of 16Kbytes and bank 2 has a size 8kbytes then the SWSA cache has a total size of 24Kbytes and

from (3) its degree of associativity is n = 1:5. Standard two-way set associative and direct-mapped caches

are special cases of SWSA caches, and equation (3) reflect this observation. In a two-way set associative

cache is C1 = C2 =
C
2

(the ways in the second bank are not shared) and from (3) is n = 2. For the case of

a direct mapped cache bank 2 does not exist and thus is C2 = 0, and from (3) it results n = 1.
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D. Replacement Policies

With shared-way set associativity the structure of the sets is redefined so new replacement policies are

needed. This section describes three possibilities. For the first one, the criterion of holding the MRU

blocks that can be held is followed exactly. The other two policies are simplifications of the previous one.

The simulations presented in Section III were performed with these two simpler policies.

D.1 A LRU Replacement Policy with Reallocation

When a miss happens, there are only three blocks that may be victimized if we are to comply with the

shared-way set associativity:

1. The block that was indexed in the first bank (block 1).

2. The block that was indexed in the second bank (block 2).

3. The block that occupies the place that would be occupied by the block that was indexed in the second

bank if it was moved to the first (block 3).

For example, if blocks A and D were checked in Fig. 2b, and block D mapped to the place occupied

by block C, then the candidates for replacement would be A, D and C correspondingly. Note that the first

and third block could be the same, resulting in only two candidates. This would be the case for the last

example if block D mapped to the place occupied by block A. Our first replacement policy chooses the

LRU of these three candidates. To make this possible, blocks need to be moved from one bank to the other,

as well as storage and maintenance of information is needed to find out which block was LRU.

A policy that satisfies these requirements, which we name “LRU replacement policy with reallocation,”

is:

Hit: The requested item is in block 1 or block 2; only the temporal information is updated.
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Miss:

a) If the candidates for replacement are only block 1 and block 2 then the LRU of these two blocks is

replaced.

b) If not, then:

b1) If block 3 is the LRU then it is replaced with block 2 (reallocation) and the new incoming block

is placed in bank 2.

b2) If block 3 is not the LRU then replacement is done as in case a).

Temporal information is updated either for cases a) or b).

D.2 The Swap Replacement Policy

There are two requirements that complicate the previous replacement policy: movement of blocks within

banks and storage and maintenance of temporal information. We can partially drop the latter with an

expectable small degradation of performance if we use a swap replacement policy:

Hit: If the hit is in the first bank the contents of the cache do not change. If it is in the second bank then

block 1 and 2 are swapped, so as to maintain the LRU block within this pair always in the second bank.

Miss: Block 2 is victimized. Block 1 is moved to the second bank and the new block is placed in the

first bank. Again, the LRU of the two blocks is placed in the second bank.

This policy has the useful property of inclusion. All the references that hit on a direct-mapped cache

(DM) of size CDM = C1, also hit on a SWSA cache of size CSWSA = C1 + C2 if it uses the swap

replacement policy, because this policy guarantees that at any given time the DM cache and the C1 bank in

the SWSA cache have exactly the same contents, and thus, the second bank C2 in the SWSA cache gives

the possibility of additional hits for the SWSA cache. A similar analysis can be made when two SWSA

caches of different associativities (sizes) are compared. Consider two SWSA caches, SWSA and SWSA’,
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of size CSWSA = C1+C2 and C 0

SWSA = C1+C 0

2
respectively, with C 0

2
> C2. As with the previous example,

the C1 banks for the two caches have exactly the same contents. The references that cannot be contained

in the C1 banks are directed to the C2 and C 0

2
banks. From the C2 and C 0

2
banks point of view, they are

direct mapped caches of sizes C2 and C 0

2
that are receiving the same pattern of memory requests. Because

direct mapped caches have the property of inclusion, all the hits in the C2 bank are included in the C 0

2
bank

(C 0

2
> C2). So all the references that hit in the SWSA cache also hit in the SWSA’ cache. SWSA caches

with successively greater C2 banks (spanning from a DM cache of size C1 with C2 = 0, to a two-way set

associative cache of size 2C1 with C2 = C1) always have lower or equal miss rates as a consequence of

the property of inclusion.

D.3 A LRU Replacement Policy

A different simplification of the LRU with reallocation policy is made by dropping the first require-

ment of movement of blocks within banks. By doing so the second requirement is simplified because no

comparisons are needed between blocks in the first bank. One LRU bit for each block in the first bank

is enough to compare those blocks with the corresponding block in the second. This leads to an easy to

implement policy that we call “LRU replacement policy”:

Hit: If the requested item is in block 1 the corresponding LRU bit is set to one. If it is in block 2 all the

LRU bits associated to it are set to zero.

Miss: If the corresponding LRU bit is set to zero then block 1 is replaced and its LRU bit is set to one.

If it was set to one then block 2 is replaced and all the LRU bits associated to it are set to zero.

A final remark is that the three policies that were considered converge to the standard LRU replacement

policy for the particular case of two-way set associativity.
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III. HIT/MISS PERFORMANCE EVALUATION

A. Methodology

For the evaluation of SWSA L1 and L2 caches, the SPECint95 and SPECfp95 benchmarks were used

with trace driven simulations. All the eight integer benchmarks and ten floating point benchmarks were

simulated. With the integer benchmarks a mean of 700 million instructions by benchmark were simu-

lated, noting that the integer traces were collected after the execution of the first 500 million load/store

instructions. With the floating point benchmarks a mean of 1200 million instruction by benchmark were

simulated, this time starting from the beginning of the benchmarks. Traces were collected with the ATOM

tool [19]. A line size of 32 bytes and the swap replacement policy were used. Later in this section the

LRU replacement policy is also considered.

Mean miss rates obtained for instruction and data SWSA L1 caches (SW) are shown in Fig. 4. Each

graph has three small SW curves; these curves are formed with the points corresponding to associativities

equal to 1 1

32
; 1 1

16
; 11

8
; 11

4
and 11

2
in this order. For example, the first point with size greater than a power of

two has an associativity of 1 1

32
, the next one of 1 1

16
, and so on. Curves for direct-mapped (DM), two-way

set associative (2W), four-way set associative (4W) and fully-associative (FA) LRU caches are also plotted

for comparisons purposes.

B. Analysis of the Results

The addition of a small second bank of size C2 to a direct-mapped cache of size C1 results in a signif-

icant reduction of miss rates as it may be seen in Fig. 4 by comparing the points with associativities 1 1

32

to those of DM caches. As the size of the second bank C2 increases the miss rates diminish with a very

sharp tendency. It can be observed that the curves for SWSA caches intersect the 2W tendency curves near

the points corresponding to associativities of 1 1

16
and 11

8
, indicating that SWSA caches with those asso-
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ciativities roughly attain the level of performance of two-way set associative caches of comparable size.

The associativities of those caches are very low. Note that the degree of sharing is 16 and 8 respectively.

Points with associativities of 1 1

4
and 11

2
are generally under the two-way tendency curve. It is interesting

to observe that, for large sizes, caches with an associativity 1 1

2
have miss rates that are very close to those

of two-way set associative caches of significantly greater size. For example in Fig. 4, caches with sizes of

48K (n = 1:5) and 64k (n = 2) have very similar miss rates although the two-way cache is 33% larger.

For standard LRU set associative caches the property of inclusion arise when a given cache memory

increase his size (usually duplicating the number of sets) and then all the references that hit in the original

cache hits in the bigger cache. This observation applies to SWSA cache too, and then bigger SWSA

caches of a given associability have lower or equal miss rate statistics. SWSA caches offer the possibility

of increase the total cache size by increase the associativity. For example for a given SWSA cache of

size C = C1 + C2, a bigger cache if obtained if only C2 is increased to C 0

2
and C1 remains constant. This

increased SWSA cache has a greater degree of associativity than the original given SWSA cache according

to expression 3. Focusing in these cases, i.e. a SWSA cache with a bank 1 of constant size C1 and a bank

2 of variable size from C2 = 0 (DM cache) up to C2 = C1 (two-way set associative cache), SWSA caches

with the swap replacement policy have the property of inclusion. So independently of the accesses pattern

SWSA caches of increasing associativities has better or equal hit rate statistics.

C. Analysis Using the D3C Model

In this section the performance of SWSA caches is analyzed using the D3C model [5]. With this model

a non-compulsory miss is categorized as a conflict miss if the LRU distance of the reference that produced

it is less than or equal to the number of blocks in the cache. If the LRU distance is greater than the

number of blocks in the cache then the miss is a capacity miss. Conflict misses for SWSA (SW) caches
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are plotted in Fig. 5. Direct-mapped (DM) and two-way set associative (2W) caches are also considered

for comparison purposes. Compulsory misses are the same for all configurations (and close to zero) so

they are not plotted; neither are capacity misses as they are nearly coincident.

From Fig. 5 the following observations can be done. SWSA caches with high degrees of sharing, such

as 32 or 16, have more conflicts than two-way set associative caches of comparable size for instructions

under both integer and floating point benchmarks, and for data under integer benchmarks, as it can be seen

by comparing the first two points of each SW curve with the closest points of the 2W curves. However,

with degrees of sharing of 4 or 2 they perform better than two-way. This behavior is more noticeable with

instruction caches. For small data caches under the floating point benchmarks, shared-way set associativity

performs better than two-way set associativity, and their performance is roughly equal for large caches. An

interesting observation is that for instruction and data caches a 1.5 SWSA cache often has the same conflict

miss rate than the next two-way set associative cache, which is 33% larger. This means that enlarging the

second bank of a 1.5-way SWSA cache to convert it in a two-way set-associative cache of greater size

usually does not result in better solved conflicts, so this increment in size only produces the benefit of

a reduction of the capacity misses. Thus when there are no more capacity misses, or when they remain

constant as the cache increases (this may happen because nearly all these misses have LRU distances that

are much greater than the cache sizes that are being considered), 1.5 SWSA caches have the same miss

ratio as two-way set associative caches that are 33% larger.

D. Miss Ratios with the LRU Replacement Policy.

SWSA caches using a LRU replacement policy as described in Section II were also simulated. The miss

rates obtained for instruction and data caches under SPEC95 benchmarks were slightly better or equal

than those for the swap replacement policy, so these results are not plotted and it may be assumed that for
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L1 SWSA caches the swap and LRU replacement policies produce almost the same miss rate statistics.

These experimental results make SWSA caches with the LRU replacement policy very interesting due to

the combination of very good miss rate statistics and ease of implementation.

E. Analysis using the simple loop model

In our methodology to evaluate SWSA caches, we constrain the indexing functions used to accesses

the cache banks to bit mapped functions. This bit mapped indexing provides the easiest implementation

and the minimum access times to the banks. Bit mapped indexing leads to power of two memory bank

sizes (cache blocks sizes are assumed to be power of two). Because SWSA cache use banks of different

size, it’s not possible to obtain a SWSA cache of power of two total cache size. Then, with bit mapped

indexing its not possible to compare direct mapped or set associative caches with SWSA caches of the

same size. The use of non power of two memory banks (i.e. no bit mapped indexing) leads to greater

hardware complexity, longer cache access times and potentially better miss rates for typical workloads.

Better miss rates are possible because the no bit mapped indexing function may cause an effect similar to

the produced by the skewed functions used in skewed cache memories.

In order to provide results for a simulation that use DM, 2W and SWSA caches of the same size, we used

a theoretical memory access model as the workload: the Simple Loop Model. The simple loop model has

been proposed and analyzed in [18] and further analyzed in [6]. This model reference a contiguous zone

of memory, with a stride between the references of exactly one cache block, except for the last reference

that jumps backwards in memory to close the loop. The number of iterations of the loop tend to infinite.

The simple loop model reference memory very orderly, so the cache sets are filled very orderly too. this

fill pattern is not altered by the choice of a non power of two number of sets (as opposite to a real workload

where the cache memory could be beneficed from a hashing of memory blocks over the cache sets). In
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the next example we compare DM, 1.5 SWSA and 2W LRU caches of 12Kbytes, 24Kbytes and 48Kbytes,

using a loop of 30Kbytes. The results are given in table I.

TABLE I

MISSES FOR DM, SWSA AND 2W CACHES UNDER THE SIMPLE LOOP MODEL.

DM SWSA 2W

C = 12Kbytes 100% 100% 100%

C = 24Kbytes 40% 53% 60%

C = 48Kbytes 0% 0% 0%

From table I, for 12 Kbytes caches the 30 Kbytes loop is big enough to produce trashing in all the sets,

so the miss rate is 100% for the three organizations. For 48 Kbytes caches, the caches are bigger than the

loop. After the first turn of the loop, the three organizations can retain completely the loop and then the

miss is tend to 0%. The 24 Kbytes caches are an intermediate case where the behavior difference between

the three organization arise. The lowest miss rate is obtained for the DM cache (miss rate DM = 40%),

next de SWSA cache (miss rate SWSA = 53%) and finally the worst miss rate is for the 2W cache

(miss rate 2W = 60%). For standard set associative caches and the simple loop model it is known that

miss rates are worst as the cache is more associative [18], [6]. The results given in table I agree with the

last and also shows that the 1.5 24kbytes SWSA cache, gives a miss rate worst than a DM cache and better

than a 2W cache. This results agree with the definition for the associativity for SWSA caches given in

this work in the sense that SWSA caches are more associative than DM caches and less than 2W caches.

Although the simple loop model is a theoretical model, match the memory access patterns of some real

programs that use loops to access instructions or big data structures and then is useful to support generality

for our proposed organization.
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F. More simulation results

In order to support generality of our proposed organization, we provide results for other benchmarks

with different characteristics from the used above. We used the set of Java benchmarks from the University

of Wisconsin [12]. All the set of nine benchmarks were simulated using the traces available in [12]. Mean

miss rates were obtained for LRU SWSA L1 data caches. Direct mapped, two way and four way set

associative caches were simulated for comparison purposes. The results are shown in figure 6. Figure 6

shows results of similar characteristics than the obtained for the SPEC95 benchmarks, i.e. the miss rates

for SWSA caches usually are under the interpolation line for 2W miss rate curves. Then, the analysis made

in section B holds for the Java benchmarks and confirm the way SWSA caches perform as compared to

direct mapped and standard set associative caches.

G. Miss Ratios of Second-Level SWSA Caches

SWSA L2 caches were also evaluated under the SPECint95 and SPECfp95 benchmarks in the way

indicated in Section III. Two 16Kbytes 2-way set associative caches with LRU replacement policy and

32 byte lines were used as instruction and data L1 caches. The L2 caches under study used the swap

replacement policy. Mean miss rates were obtained for the integer and floating point benchmarks are

shown in Fig. 7. It can be observed form fig. 7 that the 768 kbytes SWSA L2 cache performs as a one

megabyte cache for the integer benchmarks and only slightly worse for the floating point benchmarks.

The 640 kbytes cache is also very interesting as it shows miss rates very close to the one megabyte cache,

which is 56% larger.
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IV. IMPLEMENTATION ISSUES

Shared-way set associativity makes better use of memory than two-way associativity. This leads to in-

teresting hit/miss statistics as it was shown in previous sections, but associativities higher than two provide

even better results. Shared-way set associativity may offer a speed benefit compared to conventional ar-

chitectures only if its access times are better than those of associativities higher than two. To analyze this

issue it is relevant to know why higher associativities increase access times. Running an extended version

of CACTI [20][16], with different configurations of associativities between two and eight, showed that

more than 90% of the increase in access time is due to the delay of the data output multiplexor, which

raises because it has a number of inputs that is proportional to the associativity. The slightly larger tags

also augment the delay of the tag array wordlines and comparators but this difference is almost insignifi-

cant. Shared-way set associativity does not add inputs to the multiplexor, so this suggests that the access

time penalty of associativities higher than two is not present. Thus, shared-way set associativity could

result in better overall speeds when compared to traditional architectures. SWSA caches are better ap-

preciated if we consider that some architectures may work with no more than two ways. An example is

the bit-difference circuitry referenced earlier [10]. Kulkarni et al. showed that it reduces data access time

for an associativity of two but not for greater associativities [11]. Hence, if a design uses a difference-bit

scheme, shared-way set associative architectures are interesting alternatives.

The access of data for each way is generally done in parallel, and selecting which will drive the output,

based on the comparison of tags, is usually the critical timing path. In SWSA caches this selection can

be done using only the tag comparison for the second bank, by choosing the data from this bank if there

was a match, or from the first bank if there was not. Smaller memories are faster, so removing the larger

tag memory from the critical path could improve the access time. This result is even more important if

we consider that CPUs not necessarily use the data output and the hit signal simultaneously. If data was
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available before the hit signal it could be convenient to let the CPU begin execution with that data and

later roll back if there was not a hit, because it would have remained in an idle state anyway. Some of

the alternatives to conventional organizations that were mentioned in the introduction rely on this kind of

predictive execution. SWSA caches with a high degree of sharing would be advantageous if this scheme

is adopted. Also, if an address hits in the faster tag way, it is convenient to terminate the lookup in the

slower way, with the consequent saving in power consumption.

Another way to exploit the unbalance of the sizes of the tag banks with second-level caches is to access

the tags of the second way in parallel with the access of the first level cache. So, if the second level cache

must be accessed, only one data bank would have to be searched, leading to significant power savings. This

would most surely require multiporting the tag bank of the second way and having much more accesses

on it, but shared-way set associativity would alleviate this problem, because the second way would be

considerably smaller.

V. EXTENSION OF SWSA CACHES TO HIGHER ASSOCIATIVITIES.

In this section a SWSA cache that uses more than two ways is described. Figure 8 shows a scheme for

a SWSA cache that uses four ways, corresponding one memory bank for each way. Each bank is allowed

to be of size less or equal than the previous one, starting from the left with a bank of a given size. The

banks must be restricted to a power of two size, so that bit mapped indexing may be used. Given a memory

address issued by the processor, the selected set is conformed using a bit map independently for each bank.

Let Cj be the size of bank j and L the block size, an index is used to access each bank, the number of bits

for index j, Ij , is given by Cj

L
= 2Ij . The example in fig. 8 shows the case where bank 1 is twice bank 2

and bank 2 is twice bank 3 and 4. So if a given number of bits I1 is necessary for index 1, I2 needs one bit

less than index 1 to access the bank 2 lines (i.e. the tags used for bank 2 have one bit more than the tags
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used for bank 1). Similarly, I3 and I4 need two bit less than index 1 to access the bank 3 and bank 4 blocks

(i.e. the tags used for banks 3 and 4 have two bits more than the tags used for bank 1).

When more than two ways are used in a SWSA cache, it is difficult to characterize the cache from a

single degree of associativity and the total cache size. A n-way SWSA cache is characterized with a tuple

of numbers and a given total cache size or bank 1 cache size as follow: each number in the tuple gives

the size ratio between the corresponding cache memory bank and the first bank. For example a SWSA

cache with four banks of sizes 8Kbytes, 4Kbytes, 2Kbytes, and 2Kbytes respectively is characterized by

the 4-tuple 1 1

2

1

4

1

4
. As another example, for a standard 4 way set associative cache the corresponding tuple

is 1111. The description given in this section shows how a SWSA cache can be extended using more

than two ways. A detailed analysis must be done in order to evaluate the performance of these extended

schemes and will be addressed in future work.

VI. CONCLUSIONS

Shared-Way Set Associativity is an organization that makes a more efficient use of memory than con-

ventional two-way set associativity without the additional costs that higher associativities have. It provides

new alternatives for cache organization that may offer benefits depending, within other factors, on the state

of technology. Shared-way set associativity differs from other approaches in that it enables the use of bit-

mapped indexing on caches of total sizes that are not powers of two without having to add ways. This

gives a degree of freedom to obtain area-efficiency.

The main characteristic of SWSA caches is that one way is larger than the other. Each line of the

smaller way is thus shared between several of the larger. There are then alternatives, each corresponding

to a different degree of sharing, that span from two-way (degree of sharing equal to one) to direct-mapped

(no second way). The degree of associativity of SWSA caches calculated with the given formula reflects
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this fact as it ranges from 2 to 1 correspondingly.

We performed simulations with traces extracted from SPEC95 benchmarks using two replacement poli-

cies (swap and LRU). One of them (LRU), is very easy to implement. The results for configurations with

associativities from 1.125 to 1.5 were generally better than the interpolations of the results for two-way.

It is interesting to note that for large caches the miss rates of 1.5-way were similar to those of 33% larger

two-way caches. In order to support generality we also give additional simulation results using Java traces

and one theoretical memory access model. The issue of access time was addressed, and we discussed that

SWSA caches may have advantages, specially with configurations with a high degree of sharing. These

have miss rates that are very similar to those of slightly smaller two-way caches, so benefits in access

time would result in better overall speeds. Simulations for second level caches were also done and the

conclusions derived from the results are the same as those for first level caches.

SWSA cache architectures do not require any elaborate new hardware. Nevertheless, SWSA caches use

the same hardware scheme used for standard set associative caches, but implementing ways of different

size. Rather than produce overheads, the introduced asymmetry leads to better cache access time and

lower power consumption.

Shared-way set associativity shows benefits when compared to two-way set associativity, and also when

compared to direct-mapping depending on other architectural issues. This suggests their use as first-level

caches. The evolution of technology, specially per chip higher transistor counts and integration of third-

level caches, may lead to a tendency towards lower associativities for second level caches, eventually

making shared-way set associative caches an attractive possibility.
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Fig. 7: Local mean miss rate for the SPEC95 benchmarks for SWSA L2 caches. Curves for direct mapped
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Fig. 8. A four bank SWSA cache example
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