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A Non-Parametric Non-Stationary Procedure for
Failure Prediction

Jonas D. Pfefferman and Bruno Cernuschi-Frías

Abstract—The time between failures is a very useful measure-
ment to analyze reliability models for time-dependent systems.
In many cases, the failure-generation process is assumed to be
stationary, even though the process changes its statistics as time
elapses.

This paper presents a new estimation procedure for the proba-
bilities of failures; it is based on estimating time-between-failures.
The main characteristics of this procedure are that no probability
distribution function is assumed for the failure process, and that
the failure process is not assumed to be stationary. The model clas-
sifies the failures in different types, and estimates the probability
of each type of failure -independently from the others.

This method does not use histogram techniques to estimate the
probabilities of occurrence of each failure-type; rather it estimates
the probabilities directly from the values of the time-instants at
which the failures occur. The method assumes quasistationarity
only in the interval of time between the last 2 occurrences of the
same failure-type.

An inherent characteristic of this method is that it assigns dif-
ferent sizes for the time-windows used to estimate the probabilities
of each failure-type. For the failure-types with low probability, the
estimator uses wide windows, while for those with high probability
the estimator uses narrow windows.

As an example, the model is applied to software reliability data.

Index Terms—Predictive validity, software reliability model.

ACRONYMS AND ABBREVIATIONS1

CF cumulative (number of) failures
FT failure time
pdf probability density function
r.v. random variable
ToF type of failure
ToF ToF #
P&C-F method and estimators proposed in this paper.

NOTATION

instance of time
remaining number of failures

occurrence of ToFat
estimate of
remaining test time
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1The singular and plural of an acronym are always spelled the same.

time from the latest occurrence of the ToFto the
current

TBF time between failures
TBF TBF of type

estimate of the TBF for the ToFat
mean value function
time between occurrencesand of the ToF .

ASSUMPTIONS

1) Each failure-type is considered independently from the
others in order to obtain the estimates of the corre-
sponding TBF; then, a normalization factor is introduced
to insure (1).

2) The probability distribution for each failure-type does not
change within the interval between 2 consecutive occur-
rences of this failure-type.

3) The underlying pdf is not known.
4) The failure stochastic process is nonstationary.
5) The failure process is locally approximately ergodic.
6) Only 1 failure-type occurs at each discrete.
7) The do not change within the interval between the

2 latest consecutive occurrences of the failure.

I. INTRODUCTION

T O ANALYZE failures, many models usually assume a
particular failure pdf [1]–[3], [5], [9], [13], [15]–[18],

[21]–[26]. In many cases, the system under study does not sat-
isfy the hypothesis of-independence [10] and is nonstationary,
but it is assumed to be stationary as a simplifying hypothesis,
e.g., when the main interest is prediction of the total number
of failures.

Here, assumptions #3 and #4 are used. This model is based
on previous work [19] where a nonparametric nonstationary es-
timation procedure was introduced to improve the compression
ratio of some lossless compression methods [8], [14]. This new
procedure adapts quickly to statistical changes in time.

The P&C-F estimators use assumption #5, that is, in a sense,
the process is locally approximately ergodic over a sliding
time window at every : even though the process might not
be stationary or ergodic, it varies slowly enough so that over
a sliding time window of appropriate size, the process might
be considered stationary and ergodic. Strictly, only averages
over the ensemble (expectations) should be considered. But,
considering the process locally ergodic, the model can use time
averages over sliding windows, to estimate-expected values
from a single realization of the process. Hence, histogram
techniques over appropriate window sizes [6] or adaptive
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TABLE I
DATA-SET FOR THESYNTHETIC EXAMPLE: s-INDEPENDENTBERNOULLI r.v.

WITH A LINEARLY VARYING PARAMETER

algorithms [4] can be used. As a simple example, consider
the case where the results of a sequential experiment have
only 2 possible results, Success and Fail,-independently
but not -identically distributed in time as Bernoulli r.v. with
different parameter at each; and where the parameter varies
slowly. Table I and Fig. 1 give a synthetic run of this model,
where the parameter, which corresponds to the probability of
Success, varies linearly, though any arbitrary smoothly varying
function can be considered. The P&C-F estimation method
does not assume a parametric model as a function of time for

Fig. 1. Typical run of estimators for the synthetic example:s-independent
Bernoulli r.v. with a linearly varying parameter.

the probability to be estimated. The main goal is to estimate the
probability of Success, at each, using the current observation
of the experiment as well as a few of the previous observations.

In Table 1
• Column 1 (see also Fig. 1) gives the probability of suc-

cess. Each row corresponds to an. Each Success event () is a
Bernoulli r.v., independently drawn at each, with a probability
Pr .

• Column 2 gives a realization of the process.
• Column 3 corresponds to the estimation of Pr at each

, by simply dividing the “number of Success events” by the
“total number of events up to the current” (a histogram). This
technique is not acceptable if Pr varies with time. If such
a variation is slow enough, then a windowed histogram can be
considered.

• Column 4 (see also Fig. 1) gives the results for a sliding
windowed histogram, corresponding to the “number of Success
events over the latest events” divided by . Defining
is a delicate matter because it depends on the characteristics of
the time varying Pr . The method P&C-F here does not use a
histogram approach; instead, the estimate of Prconsidered
here is proportional to . Analogously, the estimate for the
Fail probability is proportional to . Because both probabil-
ities add up to 1, the following estimate for Pr is used:

time between the latest 2 occurrences of the Success
event

time between the latest 2 occurrences of the Fail event

• Column 5 (see also Fig. 1) shows this estimate.
• Column 6 is the average of the previous 5 estimates in

column 5.
Fig. 1 shows that the averaged method performs much better

than the windowed histogram estimator. The remainder of this
section improves the rather crude estimate in the first part of
this section. This example shows how using the time between
the Success events is equivalent to a variable-width window, for
which

• events with higher probability use smaller windows,
• events with smaller probability use larger windows.
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To include several types of failure-exclusion, proceed as fol-
lows. This paper classifies failures in types, numbered from
0 to , with type 0 corresponding to the occurrence of 0
failures. To simplify the notation, consider the occurrence of
no failure at as the occurrence of ToFat . Also, consider
that assumption #6 is valid; although this implies that the var-
ious failure-types are not-independent at each, the purpose is
to estimate the probabilities for each failure-type independently
from the others, updating the estimated probabilities at every
for all failure-types. This is similar to what is done when his-
tograms are used to estimate probabilities.

, , : the set of failure-types that
can happen to the system under study,

no-failure type,
Pr failure-type occurred at ,
Pr no-failure at .

The corresponding time-dependent probability distribution
is:

Because (assumption #6), at each discreteonly 1 failure-type
can occur, the satisfy:

(1)

Because at each, only one ToF can occur, the ToFs are not
-independent. But, if a histogram over a time window of size

is used to estimate the , then (1) is automatically verified;
also, the estimation of each as the number of ToFthat oc-
curred over the time window divided by, is equivalent to con-
sidering the estimation of the probabilities of the various ToFs
independently from each other. Similarly, estimate the probabil-
ities of each of the ToFs independently from each other. As
a simplifying hypothesis, use assumption #7 to obtain a first es-
timate of . Because the procedure in this paper does not
automatically satisfy (1) as the histogram procedure previously
discussed, a normalization factor is introduced, so that the
normalized estimates satisfy (1).

The idea is to consider the TBF for each failure-type, as a
nonstationary stochastic process, and to estimate the, [7],
[24] following a procedure similar to the one presented in [19]
as explained in the remainder of this section.

If the do not change between 2 consecutive occurrences
of ToF , then the TBF for each failure-type follows a geometric
distribution at :

at

(2)

Hence, the mean value of the TBF for each
, is:

at (3)

thus providing a rationale for estimating the as:

(4)

a normalization factor that insures that (1) is satisfied,
estimate of the -expected value of the TBF for

failure type at .
Estimating for each , is done si-

multaneously using estimators operating independently, and
then using to insure (1).

Section II presents the P&C-F estimation procedure. Sec-
tion III applies the model to software failure data.

II. A M ODEL FOR THEPROBABILITY ESTIMATION OF FAILURES

The model in this paper is based on estimating the probabil-
ities of having 0, 1, 2, failures per a given discrete unit of
time, (e.g., days, weeks). To apply the statistic model in Sec-
tion I, consider that ToFcorresponds to the event of having 0
failures in a time-unit, analogously,

ToF event of having failures in a time-unit,
.

Hence, the failure process can be viewed as a discrete source
of failure-types given by the “number of failures per time-unit,”
e.g., let failures occur during time-unit , then, ToF occurs
at . This definition, leads to a probability distribution:

Pr , for the set:
ToF , ToF , , ToF .

If Pr is known, then prediction of the remaining failures
( ) is obtained by taking the-expectation of the “number
of failures per time-unit”:

(5)

In this paper, Pr is not assumed to be known, thus
is estimated as:

(6)

To motivate the model in this paper, consider software-relia-
bility. Because of its very own nature, the probabilities of fail-
ures in software reliability usually change in time (hopefully, de-
creasing). Hence, it is desirable that should not assume
any particular distribution function, nor satisfy any stationarity
hypothesis. Also, to be useful, the estimation method should be
fast enough to be able to follow the nonstationary characteris-
tics of the model. Thus an adaptive procedure is introduced to
estimate these probabilities.

As in [19], estimation of the probabilities of each type of
failure are obtained from the times between 2 consecutive oc-
currences of each ToF. Using assumptions #1 and #2, each r.v.

follows a geometric distribution between two consecutive oc-
currences of ToF:

at

(7)
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so that:

at

at (8)

To obtain the estimator for Pr , several approaches are
given.

Approach #1
number of occurrences of failures of typeup to .

Use (9):

(9)

This estimator is updated only when ToFoccurs. To estimate
Pr , (4) and (8) suggest the following estimator forat :

(10)

is the normalization factor:

(11)

For the stationary case, as (9) shows,is an unbiased estimator
for E , and its variance goes to 0 as . This method
converges, at least weakly, to the probability distribution of the
failure-source, . When the source is not stationary, the main
interest is in the possibility of following the changes in. Ap-
proach #1 does not follow well the changes of the probability
distribution due to the long-term memory of the average over
all the past. The estimator (9) can be improved by taking the
estimation, not over all the past, but over a sliding window that
only considers the latest occurrences of the ToF:

Approach #2

(12)

this estimator has finite memory, but does not adapt as fast as
desired.

Approach #3
The idea is to construct an estimator similar to that of (10), but

using a different estimator for TBF, see (4). An alternative to
the sliding window procedure (12), is to introduce a coefficient

, , to produce loss of memory in the form:

(13)

the result is:

(14)

The estimator for TBF in (12) corresponds to a moving
average filter, while (14) corresponds to a 1-pole autoregressive
IIR filter. Extending this idea, the desired estimator is:

Approach #4

(15)

This estimator (15) corresponds to a 2-pole autoregressive IIR
filter. The coefficients should be taken so that to
obtain an unbiased estimator for the stationary case:

(16)

the , , must be selected so that the filter is stable. As in
Approach #1 [see (10)], see also (4), the P&C-F estimator for

at every is:

(17)

is now given by (15), and is the normalization factor
that insures that the estimated probabilities add up to one. Equa-
tion (15) shows that is updated only when ToFoc-
curs, and then, only during the period of time while a ToFdoes
not appear, the denominator of (17) does not change, but the nu-
merator does change, because some other ToF occurred. Hence,
(17) estimates at every instant .

Setting adequate values for the parameters, involves a
trade-off between the speed of convergence and the variance of
the estimators. As is usually the case with algorithms that must
adapt to nonstationary environments, this trade-off depends on
the degree-of-stationarity of the source [12]. Other filter-types
can be used. The 2-pole IIR filter (15) is an illustrative example.

Another issue that must be addressed is that the estimator for
TBF is updated only when a ToFoccurs. If is uncor-
related in for each , then, solving the Yule–Walker equa-
tions [12] for the AR process (15), and using (8), the variance
of is:

(18)

This result (18) shows that the estimator has large variance for
those ToF which have very low probability. Furthermore, the
updating rule implies that a ToF that previously had nonzero
probability and then has zero probability will never be updated.
This is not a difficulty when the source is stationary, but when
dealing with nonstationary sources, the situation in which a ToF
decreases its probability to low values or zero as time elapses
should be considered. To address this problem, (15) is modified.

Approach #5
is a saw tooth like process; it begins counting from 0

at the occurrence of ToF, and then increases until ToFoccurs
again, thus resetting to 0, and begins counting again.
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With this modification, the final form of is:

(19)

the normalization factor, and
are recursively obtained using (15).
In (19), the estimator for is, see (4):

(20)

At the previous to the one in which ToFoccurs,
. The in (19) is introduced to let decrease

if the ToF does not occur; produces jumps in , and
then, this term introduces “noise” in the estimation of those ToF
with high probabilities. To deal with this “noisy” estimation of
the ToF with high probability, the , , must be adequately
selected, and this can be a delicate matter.

Finally, using (19), the mean value for the “number of failures
remaining” at every can be estimated from (6).

III. A N APPLICATION TOSOFTWARE FAILURES DATA

Additional Acronyms and Abbreviations

CPGEO compound Poisson—geometric (model)
CPPTZ compound Poisson—compounded by a PTZ

(model)
CRE chains of rare-events (model)
G–O Goel–Okumoto (model)
LS least squares (method)
M–O Musa–Okumoto (model)
MLE maximum likelihood estimation (method)
NHPP nonhomogeneous Poisson process
PTZ Poisson truncated at zero.

Additional Notation

total test time
elapsed test time
total number of failures
past number of failures.

Software reliability is being increasingly studied [9], [10],
[15]–[18], [21]–[23], [25], [26]. Several measurements of soft-
ware failures production have been reported, and probabilistic
models for software failures prediction have been P&C-F. Sev-
eral models are based on the assumption that the statistics of
the failure process are known. Some of these models assume a
Poisson process or NHPP.

The estimator in this paper has 2 important characteristics:
1) It adapts faster than other methods;
2) It does not assumea-priori probability distribution func-

tions. This section compares the method in this paper with some
other models for software reliability.

Some of the best-known models include the G–O [9], and the
M–O (also known as logarithmic) [17]; both of these models are
based on NHPP. These 2 models can be applied for TBF data,
as well as grouped failures in interval-times data. However, the

measurement of occurrences of grouped-failures requires less
effort. Several software-failures production data are given as
grouped failures [15], [22], [25]. To model grouped-failures pro-
duction, a CPGEO was introduced [21].

Models usually P&C-F for software reliability, predict the
number of failures which are produced in a given interval
test-time; these are known as growth-models. Some of the best
known growth models are NHPP, where the Poisson parameter
is a given function of time [15], [17]; for example, in G–O [9]:

(21)

in M–O [17]:

(22)

The CPPTZ [3] is based on an extension [2] of the CRE [5]. As
shown in [2], the CRE is equivalent to a CP, with a PTZ as the
compounding distribution. The CPPTZ is a 2-parameter model,
1 for the CP, and 1 for the PTZ [2], [3]. The CP parameter can
be directly estimated using MLE, or the moments method [2],
[3]. For estimating the PTZ parameter, several methods can be
considered, e.g., [11]. In [3], to adapt better to data changes,
a Mode estimator was introduced for the PTZ. Also in [3], the
unbiased Plackett estimator, e.g., [11] is also considered. Results
presented here for the CPPTZ model are based on [2], [3].

A characteristic usually applied to compare software relia-
bility models is their predictive validity [17], [26]. Let fail-
ures have been produced in time . The failure data produced
up to time are used to estimate the parameters of
the mean value function so that

Then, replacing the estimated values of the parameters in,
an estimate of the number of failures up to is obtained as

.
If is proportional to (as happens in many models) the

remaining number of failures can be estimated as:

(23)

Now, compare the results obtained using NHPP, CPGEO,
CPPTZ models, and the method in Section II, using the
following data:

• T5 from [18] grouped by day,
• DS1 from [22],
• J5, Data 7, and Data 8, from [15],

extending results in [20]. For the NHPP model, M–O or G–O are
used, as indicated in the figure captions. The results obtained
using both models are very similar. The MLE for the NHPP
model was used when possible, and LS otherwise. Conditions
for the convergence of MLE in NHPP models are in [13].

Software failures data can be classified according to the shape
of the CF curve. Generally, it is concave, showing a decreasing
failures production rate; or it looks like an S-shaped curve with
an inflection point; or it shows a 2-stage system. Next, the pre-
dictive validity of the published models (discussed in this paper)
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TABLE II
DATA SET FORDATA 7

Fig. 2. CFversustest-time (days) for Data 7 [15].

Fig. 3. Actual and predicted remaining failuresversustime (days) for Data 7.

are evaluated, as well as that of the P&C-F model. Failures pre-
dictions are made in the same units of time as they were mea-
sured.

Data 7 CF are shown in Table II and Fig. 2. They have an
almost constant rate up to day 60; after that, the mean slope
decreases abruptly. Predicted values for the 4 models are shown
in Fig. 3. Up to day 60, all the models predict similar remaining

TABLE III
DATA SET FORDATA 8

Fig. 4. CFversustest time (days) for Data 8 [15].

Fig. 5. Actual and predicted remaining failuresversustime (days) for Data 8.

failures. After that, G–O and the P&C-F model give the best
results. The MLE method has been used, except for the G–O
model for which the LS method was applied up to day 59.

Data 8 set has the 3 characteristics mentioned in the previous
paragraph. It is an S-shaped system (see Fig. 5) with an inflec-
tion-point near day 18, joined with a second simple stage be-
ginning around day 40; see Table III and Fig. 4. As shown in
Fig. 5, CPPTZ as well a P&CF have the better fit up to day
70. The MLE method was used, except for the G–O model for
which the LS method was applied up to day 50. From day 70,
the results obtained are similar to those of the G–O model.
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TABLE IV
DATA SET FORDATA DS1

Fig. 6. CFversustest time (days) for data DS1 [22].

Data DS1 [22] are shown in Table IV and Fig. 6. The CF is
a concave curve with an inflection point near day 90. The MLE
method was used, except for the G–O model for which the LS
method was used up to day 100. The only model that follows the
inflection point is G–O, as shown in Fig. 7. However, CPPTZ
and the P&C-F model are better between day 80 and day 140.

CF from Data J5 are in Table V and Fig. 8. The curve shows
an almost constant failures rate. The prediction curves in Fig. 9
show that the closest fit corresponds to the CPGEO and M–O
models. They give similar results from day 48. Results obtained
using the P&C-F model are similar to these models. The main

Fig. 7. Actual and predicted remaining failuresversustime (days) for data
DS1.

TABLE V
DATA SET FORDATA J5

Fig. 8. CFversustest time (weeks) for data J5 [15].

characteristic for this case is that when the other models predic-
tion is higher than the real data, the P&C-F model crosses the
real data-value several times, resulting in a better prediction for
some intervals. For this example, the MLE method was used,
except for the G–O model for which the LS method was used
up to week 31.

Failures data T5 [18] grouped by day are shown in Table VI
and Fig. 10. They look like a 2-stage system with an inflec-
tion point after day 200 due to design changes, as mentioned
in [18]. In this case, according to the theorem in [13], MLE can
be applied only between arrival days 59 and 280. Otherwise, it
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TABLE VI
DATA SET FORDATA T5

Fig. 9. Actual and predicted remaining failuresversustime (weeks) for data
J5.

Fig. 10. CFversustest time (days) for data T5 [18].

is not possible to find any reasonable good fit using LS because
the predicted total number of failures is lower than the number
of failures at for days beyond 280, resulting in negative

Fig. 11. Actual and remaining failuresversustime (days) for data T5.

remaining failures. Therefore, this system cannot be treated as
having a single stage using either M–O or G–O, and then, NHPP
model results are not shown for these data. CPPTZ and CPGEO
give the closest results, though the P&C-F model follows the
shape of the actual data better as shown in Fig. 11. For these
data, there is little grouping of failures, because there is 1 failure
per day for the majority of time.

As seen from the examples, the P&C-F estimator is very
noisy. Part of this noise is due to the term, which, as
described in Section II, introduces jumps in the estimations.
Although the prediction can be further filtered to obtain a
smoother estimator closer to the real data, here, it is presented
in the form (19) to show its main characteristics.

The examples show the advantage of the P&C-F model in the
sense that it permits modeling very different situations with a
unified framework. To evaluate the performance of the P&C-F
model, it is important to consider that there were no assumptions
about probability distribution or number of stages.
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From the analysis in this paper, the P&C-F model shows good
performance compared the other models, even though it might
be improved by selecting other filters. The good capability to
follow the changes of the real data can be seen from the figures.
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