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A Non-Parametric Non-Stationary Procedure for
Failure Prediction

Jonas D. Pfefferman and Bruno Cernuschi-Frias

Abstract—The time between failures is a very useful measure- Ty (n) time from the latest occurrence of the Joto the
ment to analyze reliability models for time-dependent systems. currentn
In many cases, the failure-generation process is assumed to bergg time between failures
stationary, even though the process changes its statistics as timeTBF TBE of t i
elapses. — k - ortype
This paper presents a new estimation procedure for the proba- TBFx(n) estimate of the TBF for the TaFatn
bilities of failures; it is based on estimating time-between-failures. () mean value function
The main characteristics of this procedure are that no probability 0 time between occurrencéand(i + 1) of the ToF.

distribution function is assumed for the failure process, and that

the failure process is not assumed to be stationary. The model clas-
sifies the failures inQ different types, and estimates the probability ASSUMPTIONS
of each type of failure s-independently from the others.

This method does not use histogram techniques to estimate the 1) Each failure-type is considered independently from the

probabilities of occurrence of each failure-type; rather it estimates others in order to obtain the estimates of the corre-
the probabilities directly from the values of the time-instants at sponding TBF; then, a normalization factor is introduced
which the failures occur. The method assumes quasistationarity to insure (1).

only in the interval of time between the last 2 occurrences of the 2) The probability distribution for each failure-type does not
same failure-type.

An inherent characteristic of this method is that it assigns dif- change within the interval between 2 consecutive occur-

ferent sizes for the time-windows used to estimate the probabilities rences of this failure-type.
of each failure-type. For the failure-types with low probability, the 3) The underlying pdf is not known.

estimator uses wide WindOWS, while for those with hlgh probablllty 4) The fa"ure Stochastlc process |S nonstatlonary

the estimator uses narrow windows. . . . .
As an example, the model is applied to software reliability data. 5) The fa|lur_e process is lacally approx_lmately ergodic.
6) Only 1 failure-type occurs at each discrate

Index Terms—Predictive validity, software reliability model. 7) Thep(n) do not change within the interval between the
2 latest consecutive occurrences of the failkire
ACRONYMS AND ABBREVIATIONS!

CF cumulative (number of) failures |. INTRODUCTION
FT failure time O ANALYZE failures, many models usually assume a
pdf probability density function particular failure pdf [1]-[3], [5], [9], [13], [15]-[18],
r.V. random variable [21]-[26]. In many cases, the system under study does not sat-
ToF type of failure isfy the hypothesis of-independence [10] and is nonstationary,
ToF ToF #: but it is assumed to be stationary as a simplifying hypothesis,
P&C-F  method and estimators proposed in this paper. e.g., when the main interest is prediction of the total number
of failures.

NOTATION Here, assumptions #3 and #4 are used. This model is based
n instance of time on previous work [19] where a nonparametric nonstationary es-
Nrem remaining number of failures tim_ation procedure was introducgd to improve the comprt_assion
pi(n) Pr{occurrence of ToFatn} ratio of some Iossles; compression methods [8]3 [14]. This new
pr(n) estimate ofpy,(n) procedure adapts_ quickly to statistical .changes in Flm_e.
trem remaining test time The P&C-F estimators use assumption #5, that is, in a sense,

the process is locally approximately ergodic over a sliding

. . _ time window at everyn: even though the process might not
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TABLE | 1
DATA-SET FOR THESYNTHETIC EXAMPLE: s-INDEPENDENTBERNOULLI I.V. 09
WITH A LINEARLY VARYING PARAMETER 08
WH. PM. 07
Pr{S} |0| H N=6 PE. N=5 08
1 S [100 100 1.00 1.00 0 s
0 F |05 050 067 067 o
0.30 F |03 03 050 050 0.4 _—
031 |F|025 025 050 050 03 T—
032 |F|020 020 050 063 02 e
033 | S |03 033 017 047 s
0.34 F|020 017 029 0.39 0.1 P
035 |F|o025 017 017 032 N e
0.36 S | 033 033 0.25 0.27 reromMOoO2IN R8s 3TN0 22N 8
037 | S |04 050 050 027
038 |F |03 050 075 0.39 Time (n)
039 |s|o42 050 060 045
040 | F|038 050 050 052
0.41 F | 0.36 050 033 0.54 Fig. 1. Typical run of estimators for the synthetic exampléndependent
0.42 F|033 033 033 050 Bernoulli r.v. with a linearly varying parameter.
043 | S |o038 033 02 039
044 |S |04 050 050 037
g':g g g-gg g'gg g'gg g'ﬁ the probability to be estimated. The main goal is to estimate the
047 | F|035 033 050 049 probability of Success, at eaeh using the current observation
048 | F 1033 033 050 055 of the experiment as well as a few of the previous observations.
049 | F|032 017 050 055 In Table 1
050 | S |03 017 014 043 n lable _ _ B
0.51 F|033 017 025 038 * Column 1 (see also Fig. 1) gives the probability of suc-
052 | E0% O ol ook cess. Each row corresponds torarEach Success everf)is a
054 | s |03 03 02 018 Bernoullir.v., independently drawn at eachwith a probability
055 | S |03 050 050 025 Pr{S}.
) S |03 050 050 0.30 . N
8,2? Flo037 050 080 043 » Column 2 gives a realization of th_e process.
058 | 803 067 067 053 » Column 3 corresponds to the estimation of £} at each
g'gg IS; g'gé 8'2?, 8'?,‘5’ 8'23 n, by simply dividing the “number of Success events” by the
061 | S |041 o067 060 072 “total number of events up to the currerit(a histogram). This
062 | F|040 050 050 066 technique is not acceptable if %} varies with time. If such
063 | S|042 067 050 063 LA . X
0.64 F|lo4 05 050 057 a variation is slow enough, then a windowed histogram can be
0.65 S | 0.42 050 0.50 0.52 considered.
066 | S |044 067 067 053 . . .
067 | s|o4 o067 o067 057 + Column 4 (see also Fig. 1) gives the results for a sliding
0.68 S |046 083 067 060 windowed histogram, corresponding to the “number of Success
g-gg g g'ig ‘1’% 8'2_7, g'g?‘, events over the latesf events” divided byV = 6. Defining N
o1 | F|o4s 083 o088 o7 is a delicate matter because it depends on the characteristics of
0.72 g 0-;3 g-gg g'gg g~;§( the time varying P§S}. The method P&C-F here does not use a
8:;2 S 8251 083 088 081 histogram appr_oach; instead, the estimate QBF}?rconsidered
075 | F|050 067 08 084 here is proportional td /7". Analogously, the estimate for the
P B s 067 06T 0% Fail probability is proportional td/ R. Because both probabil-
078 | S |0s3 08 080 079 ities add up to 1, the following estimate for{f} is used:
079 8 054 08 080 077 T = time between the latest 2 occurrences of the Success
08 |S|o0s55 08 08 077
081 | S |05 100 080 080 event _
082 | S |05 100 080 080 R = time between the latest 2 occurrences of the Fail event
083 |S|o057 100 08 080
08 |S |05 100 08 080 R
08 |S |05 100 08 080 p=——".
08 |F |05 08 092 082 T+ R
087 | S |05 08 08 083

» Column 5 (see also Fig. 1) shows this estimate.
algorithms [4] can be used. As a simple example, considers Column 6 is the average of the previous 5 estimates in
the case where the results of a sequential experiment h&@umn 5.
0n|y 2 possib|e results, Success and Fai.[ndependenﬂy Flg 1 shows that the averaged method performs much better
but not s-identically distributed in time as Bernoulli r.v. with than the windowed histogram estimator. The remainder of this
different parameter at eact] and where the parameter varie$ection improves the rather crude estimate in the first part of
slowly. Table | and Fig. 1 give a synthetic run of this modefhis section. This example shows how using the time between
where the parameter, which corresponds to the probability i Success events is equivalent to a variable-width window, for
Success, varies linearly, though any arbitrary smoothly varyiMglich
function can be considered. The P&C-F estimation method ¢ events with higher probability use smaller windows,
does not assume a parametric model as a function of time for e events with smaller probability use larger windows.
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To include several types of failure-exclusion, proceed as fdhus providing a rationale for estimating thg(n) as:
lows. This paper classifies failures ép types, numbered from

0 to @ — 1, with type 0 corresponding to the occurrence of 0 pr(n) = /f(in), 4)
failures. To simplify the notation, consider the occurrence of TBFg(n)

no failure atn as the occurrence of Tgkatn. Also, consider x(n) = a normalization factor that insures that (1) is satisfied,

that assumption #6 is valid; although this implies that the Va3t (n) = estimate of the-expected value of the TBF for
ious failure-types are ngtindependent at eaah the purpose is fFl"UI’]; type_k atn

to estimate the probabilities for each failure-type independent yEstimatingpk(n) for eachk — 0. 1 O — 1, is done si-
from the thers, updatlng the ?St.'mated propab|llt|es at eﬂe_rymultaneously using) estimators operating independently, and
for all @ failure-types. This is similar to what is done when his;

¢ dt timat babilit then using<(n) to insure (1).
ograms are used to estimate probabilities. Section Il presents the P&C-F estimation procedure. Sec-

S = {s0, 51, 52, -, s@-1}: the set of failure-types that tjon, || applies the model to software failure data.
can happen to the system under study,
so = no-failure type, Il. A M ODEL FOR THEPROBABILITY ESTIMATION OF FAILURES

pr(n) = Pr{failure-typek occurred an}, — . o .
po(n) = Pr{no-failure atn}. The model in this paper is based on estimating the probabil-

The corresponding time-dependent probability distributiofl€S of having 0, 1, 2, .. failures per a given discrete unit of
time, (e.g., days, weeks). To apply the statistic model in Sec-
tion I, consider that Tof-corresponds to the event of having 0
failures in a time-unit, analogously,
P;r(n) = (po(n), p1(n), p2(n), - po-1(n)). ToF;, = event of having: failures in a time-unit; =
1,2, ..., k.
Hence, the failure process can be viewed as a discrete source
of failure-types given by the “number of failures per time-unit,”
e.g., letk failures occur during time-unit, then, Tol occurs
atn. This definition, leads to a probability distribution:
Prs(n) = {po(n), p1(n), ..., pg-1(n)} for the set:
S = {TOF(), ToF, ..., TOFQfl}.
Because at each, only one ToF can occur, th@ ToFs are not If Prs(n) is known, then prediction of the remaining failures
s-independent. But, if a histogram over a time window of dize (1) iS obtained by taking the-expectation of the “number
is used to estimate the.(n), then (1) is automatically verified; of failures per time-unit”:
also, the estimation of eagh as the number of Tofthat oc- o-1
curred over the time window divided by, is equivalent to con- trem) = (Z i 'pz') “trem- ()
sidering the estimation of the probabilities of the various ToFs '
independently from each other. Similarly, estimate the probabil- ]
ities of each of the) ToFs independently from each other. AN this paper, P§(n) is not assumed to be known, thu,..,.)
a simplifying hypothesis, use assumption #7 to obtain a first d§-stimated as:
timate ofpy(n). Because the procedure in this paper does not Q-1
automatically satisfy (1) as the histogram procedure previously f(trem) = (Z i ﬁz) “trem- (6)
discussed, a normalization factef) is introduced, so that the i=1

normal!zed (_estlmates _sat|sfy ). ) To motivate the model in this paper, consider software-relia-
The idea is to consider the TBF for each failure-type, asigjr Because of its very own nature, the probabilities of fail-

nonstationary stochastic process, and to estimagdhi®), [7], \,resin software reliability usually change in time (hopefully, de-

[24] following a procedure similar to the one presented in [1%easing). Hence, it is desirable thit,.., ) should not assume

as explained in the remainder of this section. ) any particular distribution function, nor satisfy any stationarity
Ifthepy,(n) do not change between 2 consecutive occurrenges, sihesis. Also, to be useful, the estimation method should be

of ToFy, then the TBF for each failure-type follows a geometrig; st enough to be able to follow the nonstationary characteris-

distribution atn: tics of the model. Thus an adaptive procedure is introduced to
estimate these probabilities.

is:

Because (assumption #6), at each discretaly 1 failure-type
can occur, they(n) satisfy:

Q-1
Spn) =1,  Vn @
k=0

=1

Pr{TBFy(n) = m|ToFy atn} As in [19], estimation of the probabilities of each type of
=pr(n)- (1= pre(n))™ ", m=1,2,.... (2) failureare obtained from the times between 2 consecutive oc-
currences of each TeFUsing assumptions #1 and #2, each r.v.
Hence, the mean value of the TBF for eadh = 7« followsageometric distribution between two consecutive oc-
0,1,2,...,0Q—1,is: currences of ToE:

) Pr{r(n) = m|ToF; atn}
PR 3) —(n)- (=)™, m=12.., @)

E [TBFk(n)|TOFk atTL] =
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so that: The estimator for TBE(n) in (12) corresponds to a moving
1 average filter, while (14) corresponds to a 1-pole autoregressive
E [k (n)|ToFy atn] = o (n)’ lIR filter. Extending this idea, the desired estimator is:
Pk Approach #4
1—pi
Var [r3,(n)| ToF}, atn] = 7;’5" ()”). (8)
Pr\n — . .
TBFk(n) = 7(mi(n)) = o - T (ne(n) — 1)
To obtain the estimator for Bfn), several approaches are 8- A(m(n) = 2)) + 7 - To(e(n) — 1), (15)
given.
Approach #1 _ This estimator (15) corresponds to a 2-pole autoregressive IIR
nr(n) = number of occurrences of failures of typeip ton.  filter. The coefficients should be taken so that 5+ = 1 to
Use (9): obtain an unbiased estimator for the stationary case:
TBEF4(n) = 71 (i (n)) = ———— .nk(ﬁ):l (). (9) Bf#x (1 (m))] = Bl (me(n)] = —— (16)
k AT () — 1 K- pi(n)

i=1

the a, 3, v must be selected so that the filter is stable. As in
Approach #1 [see (10)], see also (4), the P&C-F estimator for
pr(n) at everyn is:

This estimator is updated only when ToBccurs. To estimate
Prs(n), (4) and (8) suggest the following estimator faratn:

VRN )
pr(n) = ()

a’(n) is the normalization factor:

k=0,1,2,...,Q—-1; (10) pr(n) = —F/— oln) ; 17)

TBF,, is now given by (15), and(n) is the normalization factor

0-1 -1 that insures that the estimated probabilities add up to one. Equa-
o'(n) = Z [ (e (n))] ™" ) (11) tion (15) shows thaTBEk(n) is upglated (_)nly When TaFoc-
=0 curs, and then, only during the period of time while a JaBes

not appear, the denominator of (17) does not change, but the nu-
For the stationary case, as (9) showsis an unbiased estimatormerator does change, because some other ToF occurred. Hence,
for E[r;], and its variance goes to 0 as— oo. This method (17) estimategy.(n) at every instant.
converges, at least weakly, to the probability distribution of the Setting adequate values for the parametgrs, y involves a
failure-source,S. When the source is not stationary, the maitrade-off between the speed of convergence and the variance of
interest is in the possibility of following the changespin Ap-  the estimators. As is usually the case with algorithms that must
proach #1 does not follow well the changes of the probabilitydapt to nonstationary environments, this trade-off depends on
distribution due to the long-term memory of the average ovetie degree-of-stationarity of the source [12]. Other filter-types
all the past. The estimator (9) can be improved by taking tle@n be used. The 2-pole IIR filter (15) is an illustrative example.
estimation, not over all the past, but over a sliding window that Another issue that must be addressed is that the estimator for

only considers the late® occurrences of the TgF TBF, is updated only when a T@Foccurs. Ifr(j) is uncor-
Approach #2 related inj for eachk, then, solving the Yule-Walker equa-
tions [12] for the AR process (15), and using (8), the variance
1 ne(n)—1 of ,%k (77k (TI/)) is:
T (m(n)) = 5 Z 7 (2); (12) Varli (s ()] l—a-p Varfrd
i=ny(n)—B ar|Tg(Me(n))| = 30 g " Var|Tk
" l+a+p+ 155
this estimator has finite memory, but does not adapt as fast as l—a-p 1 — pi(n)
desired. = 2a8 T 2 (18)
l+a+p+22  pi(n)

Approach #3

Theideais to construct an estimator similar to that of (10), bythis result (18) shows that the estimator has large variance for
using a different estimator for TBFsee (4). An alternative to those ToF which have very low probability. Furthermore, the
the sliding window procedure (12), is to introduce a coefficienfpdating rule implies that a ToF that previously had nonzero
a, 0 < a < 1, to produce loss of memory in the form: probability and then has zero probability will never be updated.
This is not a difficulty when the source is stationary, but when
dealing with nonstationary sources, the situation in which a ToF
decreases its probability to low values or zero as time elapses
should be considered. To address this problem, (15) is modified.

ne(n)—1

TBFi(n) =7 (n(n))=v- Y =Dk 5 () (13)
i=1

the result is: Approach #5
_ . Tw(n) is a saw tooth like process; it begins counting from 0
TBFx(n) =7 (mk(n)) at the occurrence of TgFand then increases until TplBccurs

=a-Tg(ne(n) — 1)+~ - m(ne(n) —1).  (14) again, thus resetting to 0, and begins counting again.
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With this modification, the final form of(n) is: measurement of occurrences of grouped-failures requires less
effort. Several software-failures production data are given as
Pr(n) = grouped failures [15], [22], [25]. To model grouped-failures pro-
a(n) .19 duction, a CPGEO was introduced [21].

Models usually P&C-F for software reliability, predict the
o number of failures which are produced in a given interval
o(n) = the normalization factot. (1 (n) — 1) and7x (mx(n) —  test-time; these are known as growth-models. Some of the best

- Tr(m(n) — 1) + B Fr(m(n) —2) + - Tr(n)’

2) are recursively obtained using (15). known growth models are NHPP, where the Poisson parameter
In (19), the estimator fol' BF}, is, see (4): is a given function of time [15], [17]; for example, in G-O [9]:
T/B\Fk(n) = u(t) =a-[1 —exp(=b-t, a>0,b>0; (21)
Q- Tk(ﬁk(“) - 1) + [3 . Tk(ﬁk(“) - 2) +- Tk(n) (20) in M=O [17]
At the n previous to the one in which TaFoccurs,Tx(n) = 1 )
7(nk(n)). TheTy(n) in (19) is introduced to lefi (n) decrease p(t) =5 log(A-0 -t +1). (22)

if the ToF, does not occufTy(n) produces jumps if; (n), and . .
then, this term introduces “noise” in the estimation of those To-Eﬂ|e CPPTZ [3] is based on an extension [2] of the CRE [5]. As

with high probabilities. To deal with this “noisy” estimation Ofshown N [2.]’ th? C.RE.'S equivalent to a CP, with a PTZ as the
the ToF with high probability, the, 3, v must be adequately compounding distribution. The CPPTZ is a 2-parameter model,
selected. and this can be a d,elica’te }natter 1 for the CP, and 1 for the PTZ [2], [3]. The CP parameter can
Finally, using (19), the mean value for the “number of failure e] d;gicgzti?;ﬂn:g?geug_lr_‘g erEr'antgr]esgl(()arrnael?rtfetrggéiogafte
remaining” at every: can be estimated from (6). considered, e.g., [11]. In [3], to adapt better to data changes,
a Mode estimator was introduced for the PTZ. Also in [3], the

lll. AN APPLICATION TO SOFTWARE FAILURES DATA unbiased Plackett estimator, e.g., [11] is also considered. Results

Additional Acronyms and Abbreviations presented here for the CPPTZ model are based on [2], [3].

CPGEO  compound Poisson—geometric (model) A characte.ristic.usuall_y fapplieq Fo compare software_ relia-

CPPTZ compound Poisson—compounded by a p1R/lity models is their predlc.tmle validity [17], [26]. Let;, fail-
(model) ures hgve been produced in timg, . TheT failure data produced

CRE chains of rare-events (model) up to timetpas < tmt_ are used to estimate the parameters of

G-O Goel-Okumoto (model) the mean value function so that

LS least squares (method) (tonst) = 1

M-O Musa—Okumoto (model) Hitpast past:

MLE maximum likelihood estimation (method) Then, replacing the estimated values of the parameterétin

NHPP  nonhomogeneous Poisson process an estimate of the number of failures upttg; is obtained as

PTZ Poisson truncated at zero. fultior)-

N ) If u(t) is proportional to (as happens in many models) the

Additional Notation remaining number of failures can be estimated as:

Lot total test time .

tpast elapsed test time Trem = fi(ttot) — Mpast

Ntot total number of failures = /l(trem + tpast) - ﬂ(tpast) = ,a(trem)- (23)

Topast past number of failures.

Software reliability is being increasingly studied [9], [10]NOW, compare the results obtained using NHPP, CPGEO,
[15]-[18], [21]-[23], [25], [26]. Several measurements of softCPPT_Z models, and the method in Section I, using the
ware failures production have been reported, and probabilisiglowing data:
models for software failures prediction have been P&C-F. Sev- * T5 from [18] grouped by day,
eral models are based on the assumption that the statistics of DS1 from [22],
the failure process are known. Some of these models assume a J5, Data 7, and Data 8, from [15],

Poisson process or NHPP. extending results in [20]. For the NHPP model, M—O or G-O are
The estimator in this paper has 2 important characteristicsused, as indicated in the figure captions. The results obtained
1) It adapts faster than other methods; using both models are very similar. The MLE for the NHPP

2) It does not assume-priori probability distribution func- model was used when possible, and LS otherwise. Conditions
tions. This section compares the method in this paper with soffioe the convergence of MLE in NHPP models are in [13].
other models for software reliability. Software failures data can be classified according to the shape
Some of the best-known models include the G-0O [9], and tlbéthe CF curve. Generally, it is concave, showing a decreasing
M-0 (also known as logarithmic) [17]; both of these models afailures production rate; or it looks like an S-shaped curve with
based on NHPP. These 2 models can be applied for TBF data,inflection point; or it shows a 2-stage system. Next, the pre-
as well as grouped failures in interval-times data. However, théctive validity of the published models (discussed in this paper)
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TABLE I
DATA SET FORDATA 7
CF Day| CF Day | CF Day | CF Day
4 107 | 186 84 | 374 62 | 494 35
11 105 | 193 83 | 379 61 | 496 34
21 104 | 200 82 | 386 60 | 497 33
34 103 | 205 81 | 393 59 | 508 32
42 102 | 212 80 | 407 58 | 509 31
55 101 | 218 79 | 420 57 | 511 29
59 100 | 224 78 | 434 56 | 513 28
66 99 | 228 77 | 445 55 | 517 27
74 98 | 240 76 | 447 54 | 518 26
75 97 | 246 75 | 451 53 | 522 24
81 96 | 253 74 | 455 52 | 523 23
94 95 | 261 73 | 458 51 | 524 22
101 94 | 272 72 | 464 50 | 526 20
110 93 | 278 71 | 470 49 | 527 17
118 92 | 287 70 | 473 48 | 528 16
123 91 | 294 69 | 476 45 | 529 11
133 90 | 306 68 | 480 43 | 530 9
140 89 | 318 67 | 481 41 | 532 4
151 88 | 333 66 | 483 40 | 533 2
156 87 | 347 65 | 484 38 | 535 0
164" 86 | 354 64 | 486 37
177 85 | 363 63 | 491 36
600
500
)
g
3 0
8
"5 300
13
é 200
3
r4
100
[
0 20 60 80 100
Test time in days
Fig. 2. CFversustest-time (days) for Data 7 [15].
1000 -
900 o Sahinoghu
4 CPPTZ

800 -
700 4

Remaining failures
o
8

X Actual Data

Test time in days

TABLE I

DATA SET FORDATA 8
CF Day | CF Day | CF Day | CF Day
5 108 | 211 89 | 346 69 | 460 49
10 107 | 217 88 | 367 68 | 463 48
15 106 | 230 86 | 375 67 | 464 46
20 105 | 234 85 | 381 66 | 465 44
26 104 | 236 84 | 401 65 | 466 41
34 103 | 240 83 | 411 64 | 467 40
36 102 | 243 82 | 414 63 | 468 37
43 101 | 252 81 | 417 62 | 469 36
47 100 | 254 80 | 425 61 | 470 32
49 99 | 259 79 | 430 60 | 472 31
80 98 | 263 78 | 431 59 | 473 29
84 97 | 264 77 | 433 58 | 475 22
108 96 | 268 76 | 435 57 | 476 13
157 95 | 271 75 | 437 56 | 477 9
171 94 | 277 74 | 444 55 | 478 6
183 93 | 290 73 | 446 54 | 479 3
191 92 | 309 72 | 448 52 | 480 0

200 91 | 324 71 | 451 51

204 90 | 331 70 | 453 50

Number of failures

Fig. 4. CFversugtest time (days) for Data 8 [15].

Remaining failures
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Fig. 5. Actual and predicted remaining failunersugtime (days) for Data 8.

failures. After that, G-O and the P&C-F model give the best
results. The MLE method has been used, except for the G-O

Fig. 3. Actual and predicted remaining failunersugime (days) for Data 7. model for which the LS method was applied up to day 59.
Data 8 set has the 3 characteristics mentioned in the previous

are evaluated, as well as that of the P&C-F model. Failures pparagraph. It is an S-shaped system (see Fig. 5) with an inflec-
dictions are made in the same units of time as they were méan-point near day 18, joined with a second simple stage be-

sured.

ginning around day 40; see Table Il and Fig. 4. As shown in

Data 7 CF are shown in Table Il and Fig. 2. They have dig. 5, CPPTZ as well a P&CF have the better fit up to day
almost constant rate up to day 60; after that, the mean slofi@ The MLE method was used, except for the G—O model for
decreases abruptly. Predicted values for the 4 models are shevhich the LS method was applied up to day 50. From day 70,
in Fig. 3. Up to day 60, all the models predict similar remaininthe results obtained are similar to those of the G—O model.



440 IEEE TRANSACTIONS ON RELIABILITY, VOL. 51, NO. 4, DECEMBER 2002

TABLE IV
DATA SET FORDATA DS1

w
8
o

2500 {
CF Day| CF Day| CF Day| CF Day 8
6 163 | 670 122 | 1511 84 | 1957 39 % 2000
14 161 | 674 121 | 1549 83 | 1968 38 -
21 160 | 678 120 | 1579 82 | 1970 37 2 1500 1
51 159 | 702 119 | 1602 81 | 1975 36 £
67 158 | 726 118 | 1637 80 | 1988 35 £ 1000
89 157 | 742 117 | 1638 76 | 2000 34 S
90 156 | 762 116 | 1648 75 | 2010 33 500
120 155 | 773 115 | 1649 74 | 2021 32
155 154 | 780 114 | 1653 73 | 2025 31 0 +—od ,
172 153 | 797 113 | 1656 71| 2027 30 0 200
183 152 | 838 112 | 1661 69 | 2028 29 o
200 151 | 862 111 | 1681 68 | 2037 28 Test time in days
229 150 | 876 110 | 1695 67 | 2042 27
231 149 | 893 109 | 1703 66 | 2045 26 Fig. 7. Actual and predicted remaining failuresrsustime (days) for data
246 147 | 911 108 | 1704 65 | 2048 25 DS1.
264 146 | 918 107 | 1712 63 | 2060 24
279 145 | 921 106 | 1725 62 | 2064 21 TABLE V
297 144 | 940 105 | 1749 61 | 2081 20
342 143 | 990 104 | 1766 60 | 2088 19 DATA SET FORDATA J5
348 142 | 1041 103 | 1771 59 | 2090 18
350 141 | 1080 102 | 1773 58 | 2094 17 CF Day | CF _Day | CF Day | CF Day
361 140 | 1121 101 | 1777 57 | 2096 16 2 72| 124 53 | 199 35 | 205 17
385 139 | 1141 100 | 1792 56 | 2100 15 4 70 | 126 52 | 204 34 | 300 16
404 138 | 1142 99 | 1799 55 | 2104 14 7 69 | 129 51 | 205 33 | 303 15
426 137 | 1208 98 | 1812 54 | 2108 13 10 68 | 131 50 | 209 32 | 307 14
441 136 | 1247 97 | 1820 53 | 2119 12 16 67134 49| 217 31315 13
446 134 | 1268 96 | 1826 52 | 2145 11 24 66 | 142 48 | 220 30 | 318 12
464 133 | 1283 95| 1828 51 | 2163 10 32 65| 148 47 (222 29 (322 11
474 132 | 1318 94 | 1841 49 | 2171 9 4 64155 46 | 228 28 (327 10
479 131 | 1325 93 | 1858 48 | 2186 7 54 63| 163 45 | 241 27 | 333 9
503 130 | 1331 92 | 1865 47 | 2196 6 60 62| 165 44 | 250 26 | 337 7
535 120 | 1362 91 | 1877 46 | 2201 5 65 61 | 168 43 [ 256 25 | 342 6
542 128 | 1377 90 | 1881 45 | 2207 4 69 60| 172 42 | 263 24 | 346 5
549 127 | 1400 89 | 1883 44 | 2212 3 75 59 | 175 41 | 266 23 | 351 4
571 126 | 1419 88 | 1902 43 | 2216 2 85 58| 178 40 [ 269 22 | 356 3
600 125 | 1452 87 | 1910 42 | 2218 0 91 57| 182 39 (273 21| 361 2
628 124 | 1459 86 | 1925 41 98 56|18 38 | 278 20 | 364 1
646 123 | 1480 85 | 1936 40 108 55191 37 | 284 19 | 367 0
118 54195 36 | 200 18
2500 P
350
n 2000 7]
] 8 w
3 5
:-|: 1500 E 250
S "6 200
™3
g .
3 §
500 z 100
50
° 0
[ 20 ) 60 80 100 120 140 160 180 0 0 2 30 “ 50 PA o 0
Test time in days Test time in weeks
Fig. 6. CFversustest time (days) for data DS1 [22]. Fig. 8. CFversustest time (weeks) for data J5 [15].

Data DS1 [22] are shown in Table IV and Fig. 6. The CF isharacteristic for this case is that when the other models predic-
a concave curve with an inflection point near day 90. The ML#on is higher than the real data, the P&C-F model crosses the
method was used, except for the G—O model for which the lt8al data-value several times, resulting in a better prediction for
method was used up to day 100. The only model that follows teeme intervals. For this example, the MLE method was used,
inflection point is G-0O, as shown in Fig. 7. However, CPPTExcept for the G—-O model for which the LS method was used
and the P&C-F model are better between day 80 and day 140p to week 31.

CF from Data J5 are in Table V and Fig. 8. The curve shows Failures data T5 [18] grouped by day are shown in Table VI
an almost constant failures rate. The prediction curves in Figaf@id Fig. 10. They look like a 2-stage system with an inflec-
show that the closest fit corresponds to the CPGEO and M+On point after day 200 due to design changes, as mentioned
models. They give similar results from day 48. Results obtain@d[18]. In this case, according to the theorem in [13], MLE can
using the P&C-F model are similar to these models. The mdie applied only between arrival days 59 and 280. Otherwise, it
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Remaining failures

Fig. 9. Actual and predicted remaining failuresrsustime (weeks) for data

TABLE VI
DATA SET FORDATA T5
CF Day | CF Day | CF Day | CF Day | CF Day | CF Day | CF Day | CF Day
T 430 | 123 387 | 230 332 | 289 249 | 389 194 | 510 153 | 606 110 | 750 62
4 429|124 386 | 233 330 | 290 247 | 395 193 | 511 152 | 608 109 | 751 61
8 428|125 385 | 235 327 [ 293 246 | 399 192 | 516 151 | 609 108 | 752 59
9 426|127 383 | 236 323 | 294 245 | 406 191 | 518 150 | 612 107 | 753 58
10 425 | 131 382 | 237 322 | 301 244 | 411 190 | 521 149 | 614 106 | 756 57
12 424 | 136 381 | 241 321 | 303 243 | 415 189 | 524 148 | 615 105 | 760 56
15 423|139 380 | 242 320 | 304 242|420 188 | 525 146 | 616 104 [ 761 53
18 422|143 379 | 245 319 | 305 241 | 427 187 | 532 145 | 617 102 | 767 52
23 421 | 148 378 | 246 317 | 306 237 | 432 186 | 534 144 | 618 101 | 772 51
27 420 | 150 377 | 247 315 | 311 233 | 434 185 | 540 143 | 621 100 | 773 50
29 419 | 153 376 | 250 314 | 314 231 | 435 183 | 543 142 | 622 98 | 775 49
31 418 | 154 373 | 251 311 | 317 229 | 437 182 | 545 141 | 626 97 [ 776 48
36 417 | 155 372 | 252 310 | 318 227 | 439 180 | 546 140 | 627 96 | 779 47
40 416 | 157 370 | 253 309 | 324 226 | 441 179 | 549 139 | 633 95 | 780 45
42 415|159 369 | 254 306 | 320 225 | 444 178 | 551 138 | 637 94 | 781 42
49 414 | 160 368 | 255 303 | 333 224 | 449 177 | 560 137 | 648 93 | 784 41
52 413 | 161 365 [ 256 301 | 338 223 | 451 176 | 562 136 | 651 92 | 785 40
59 412 | 163 364 [ 257 300 | 340 221 | 452 175 | 565 135 | 658 91 | 787 39
63 410 | 166 363 [ 262 208 | 342 220 | 459 174 | 567 133 | 663 90 | 788 38
70 409 | 167 362 | 263 297 | 345 219 | 463 172 | 568 132 | 667 89 | 790 37
71 408 | 168 360 [ 264 293 | 346 218 | 465 171 | 570 131 | 675 86 | 791 33
75 406 | 170 359 | 265 292 | 352 217 | 468 170 | 571 130 | 676 85 | 792 32
78 403 | 171 358 | 267 291 | 355 215 | 469 169 | 573 127 | 682 84 | 793 31
79 402 | 172 357 | 269 200 | 359 214 | 471 167 | 577 126 | 687 83 | 794 30
80 400 | 174 353 | 270 287 | 361 213 | 474 166 | 578 125 | 693 79 | 795 27
83 399 | 180 348 | 271 279 | 365 210 | 478 165 | 581 123 | 703 78 | 798 23
8 397 | 183 344 | 272 278 | 366 208 | 485 164 | 582 122 | 712 77 | 799 20
93 396 | 190 342 | 274 276 | 367 207 | 488 163 | 583 121 | 716 73 | 800 18
99 395 | 192 341 | 275 275 | 368 204 | 490 162 | 586 120 | 731 71 | 801 12
103 394|203 340 | 276 273 {369 203 | 494 160 | 591 119 [ 736 70 | 802 11
112 393|207 339|277 269|371 201|496 159 | 592 118 | 740 69 | 811 8
113 392 | 216 338 | 280 268 | 375 200 | 497 158 | 593 117 | 741 68 | 813 6
114 391|218 337 [ 282 264 | 378 199 | 501 157 | 595 115 | 742 67 | 819 5
116 390 | 219 336 | 285 263 | 379 198 | 504 156 | 597 113 | 745 66 | 824 4
117 389 | 221 335 | 286 261 | 385 197 | 505 155 | 600 112 | 746 65 | 826 3
119 388 [ 226 333 | 288 259 [ 386 196 | 507 154 | 602 111 | 748 64 | 827 2
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Fig. 10. CFversustest time (days) for data T5 [18].
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Fig. 11. Actual and remaining failuregrsustime (days) for data T5.

remaining failures. Therefore, this system cannot be treated as
having a single stage using either M—O or G-0O, and then, NHPP
model results are not shown for these data. CPPTZ and CPGEO
give the closest results, though the P&C-F model follows the
shape of the actual data better as shown in Fig. 11. For these
data, there is little grouping of failures, because there is 1 failure
per day for the majority of time.

As seen from the examples, the P&C-F estimator is very
noisy. Part of this noise is due to t17%&(n) term, which, as
described in Section I, introduces jumps in the estimations.
Although the prediction can be further filtered to obtain a
smoother estimator closer to the real data, here, it is presented
in the form (19) to show its main characteristics.

The examples show the advantage of the P&C-F model in the
sense that it permits modeling very different situations with a

is not possible to find any reasonable good fit using LS becaussified framework. To evaluate the performance of the P&C-F
the predicted total number of failures is lower than the numberodel, it is important to consider that there were no assumptions
of failures att,,s; for days beyond 280, resulting in negativeabout probability distribution or number of stages.
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