
Gender-related differences in urinary 6-sulfatoxymelatonin levels
in obese pubertal individuals

Introduction

Melatonin is produced in most organisms from algae to
mammals, and its role varies considerably across the

phylogenetic spectra [1]. In humans, it plays a major
function in the coordination of circadian rhythmicity,
including the sleep/wake cycle [2]. Circulating melatonin

is produced and secreted mostly at night by the pineal
gland. Its secretion is proportional to the duration of
darkness, and it thus acts as a chemical code of scotophase
duration.

Melatonin secretion is an �arm� of the biologic clock in
the sense that it responds to signals from the central
pacemaker located in the suprachiasmatic nuclei (SCN) and

in that the timing of the melatonin rhythm indicates the
status of the clock, both in terms of phase (i.e. internal
clock time relative to external clock time) and amplitude.

Melatonin also plays a role in energy expenditure and body
mass regulation in mammals [3]. Visceral fat levels increase
with age [4, 5] whereas melatonin production declines [6].

Daily melatonin supplementation to middle-aged rats
restored melatonin levels to those observed in young rats
and suppressed the age-related gain in visceral fat [7, 8].
Melatonin treatment also has been shown to prevent the

increase in body fat caused by ovariectomy in rats [9].

Melatonin partly mediates its effects through MT2 recep-
tors present in adipose tissue [10].
In human adults, obesity was not accompanied by

significant modifications of melatonin production [11]. In

childhood and adolescence, significant changes in body
composition take place [12]. However, the possible corre-
lation of obesity in prepubertal children and adolescents

with melatonin production has not been examined so far.
To better characterize a possible melatonin alteration in
prepubertal and pubertal obesity, we studied diurnal,

nocturnal and total melatonin production in 50 obese
children and adolescents, and 44 normal controls matched
on age, sex and maturational stage. Melatonin production

was assessed by measuring the 24-hr urinary output of the
predominant melatonin metabolite, 6-sulfatoxymelatonin.
It is well established that urinary excretion of 6-sul-
fatoxymelatonin is an accurate reflection of melatonin

production.

Materials and methods

Population examined

The study included 94 subjects of a Caucasic-Hispanic
origin, aged 4–15.7 yr: 50 obese and 44 with normal weight
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(wt) (48 boys). The sample was divided into the following
groups: mid-childhood (4–7.9 yr), including eight obese and
eight normal wt boys, and nine obese and 10 normal wt

girls; late-childhood (8–12 yr), including eight obese and
eight normal wt boys, and 10 obese and four normal wt
girls; pubertal (10.1–15.7 yr, Tanner II–IV): including eight
obese and eight normal wt boys, and seven obese and six

normal wt girls. All pubertal girls were premenarchal.
Normal wt subjects belonged to a cohort of children and

adolescents participating in a follow-up study of normal

growth and development. Obese subjects were derived from
the Department of Pediatrics for diagnosis and treatment of
obesity; in all of them obesity was related to overfeeding

and familiar history of obesity. Obese individuals had a
body mass index (BMI) above the 95th percentile according
to sex and age (Table 1). BMI of normal wt subjects was
between 25th and 75th percentiles according to sex and age

[13]. All children slept from 21:30–22:30 to 07:00–08:00 hr
daily; nobody showed evidence of sleep apnea or any other
sleep disorder. Subjects with any clinical or endocrine

pathology or those receiving medication were excluded
from the sample: all subjects had normal liver function
tests. They lived in Buenos Aires or its surroundings

(34�37¢S, 58�25¢W).
Informed consent was obtained from all subjects and

their parents. The study was conducted according to the

Declaration of Helsinski II and the Guidelines for Good
Clinical Practice. The protocol was approved by the Ethical
and Research Committees of the participating centers.

Urine collection

A 24-hr urine sample was collected at home during two

intervals: (i) a 14-hr nocturnal sample (from 18:00 to
08:00 hr), and (ii) a 10-hr diurnal sample (from 08:00 to
18:00 hr). Detailed verbal and written instructions were

given to the parents to assure complete collection of
samples. All collections were made on Sunday to avoid
possible interference with school activities.

Collected urines were stored in a refrigerator until

delivered to the laboratory within 24 hr of the urine
collection. The volume of each urine collection was
measured and aliquots were conserved in plastic bottles

without preservatives and stored frozen ()20�C) until

assay. A trained laboratory technician was in charge to
receive the samples and to verify their completeness. Urine
samples that were lesser than the expected volume by body

wt were discarded.

Determination of urinary 6-sulfatoxymelatonin

Blinded analysis of urine 6-sulfatoxymelatonin levels was
performed by radioimmunoassay using an assay kit from
Stockgrand Ltd. (Guildford, UK) as previously des-

cribed [14]. The urine samples were diluted prior to
assay (1/250). The intra- and interassay coefficients of
variation were 4% and 7%, respectively. Excretion of

6-sulfatoxymelatonin was expressed as: (i) total amount
excreted (lg); (ii) lg excreted per time interval; and (iii)
estimated amplitude: the difference between nocturnal
and diurnal samples.

Statistical analysis

Results were statistically analyzed after log transformation
of data by a factorial analysis of variance (ANOVA),
Pearson’s test for correlations and Student’s t-test. An

initial analysis included the whole data and gender, weight
and age as variables. Subsequently, female and male data
were assessed separately. SPSS software, version 10.1 (SPSS

Inc., Chicago, IL, USA) was employed. Results are
expressed as mean ± S.D. P-values <0.05 were considered
evidence for statistical significance.

Results

Nocturnal (18:00–08:00 hr) and diurnal (08:00–18:00 hr)

6-sulfatoxymelatonin excretion in the 24-hr urine collection
are depicted in Fig. 1. A factorial ANOVA of the whole set
of data indicated that nocturnal 6-sulfatoxymelatonin

excretion and amplitude were significantly higher in the
obese individuals (F1.82 ¼ 7.5, P ¼ 0.008 and F1.82 ¼ 4.0,
P ¼ 0.048, respectively). A significant interaction �BMI ·
age� was detected, i.e. the effect of BMI was seen mainly at

the pubertal age (F1.82 ¼ 3.8, P ¼ 0.027 and F1.82 ¼ 3.1,
P ¼ 0.038, for nocturnal 6-sulfatoxymelatonin
excretion and the estimated amplitude of 6-sulfatoxymela-

tonin excretion, respectively). Total, nocturnal and diurnal
6-sulfatoxymelatonin excretion was significantly higher in
girls than in boys (F1.82 ¼ 29.8, F1.82 ¼ 25.8 and F1.82 ¼
19.0, respectively, P ¼ 0.001, factorial ANOVA). The effect
of age did not attain significance for any parameter
tested. A Pearson’s test indicated significance for the

following correlations: total and nocturnal 6-sulfatoxyme-
latonin excretion (r ¼ 0.98, P < 0.001), total and diurnal
6-sulfatoxymelatonin excretion (r ¼ 0.46, P < 0.001),
nocturnal sulfatoxymelatonin excretion and estimated

amplitude of 6-sulfatoxymelatonin excretion (r ¼
0.92, P < 0.001), total 6-sulfatoxymelatonin excretion
and estimated amplitude of 6-sulfatoxymelatonin

excretion (r ¼ 0.85, P < 0.001), and diurnal and nocturnal
6-sulfatoxymelatonin excretion (r ¼ 0.36, P < 0.001).
Diurnal 6-sulfatoxymelatonin excretion did not correlate

with amplitude of 6-sulfatoxymelatonin excretion (r ¼ 0.13,
P ¼ 0.2).

Table 1. Body mass index (BMI) (range) in the population exam-
ined

Group Age BMI (range)

Normal boys Mid-childhood 12.2–17.4
Late-childhood 15.2–18.9
Puberty 19.2–26.0

Normal girls Mid-childhood 14.0–17.4
Late-childhood 14.8–17.0
Puberty 16.0–21.0

Obese boys Mid-childhood 19.0–25.2
Late-childhood 22.8–30.5
Puberty 25.0–34.9

Obese girls Mid-childhood 17.3–26.5
Late-childhood 22.3–32.0
Puberty 23.0–34.5
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Further analysis of results segregated by sex indicated

that the difference in nocturnal 6-sulfatoxymelatonin excre-
tion between pubertal obese and normal BMI boys was
significant (Student’s t-test, P < 0.0001; Fig. 1, lower
panel) whereas differences in nocturnal 6-sulfatoxymelato-

nin excretion between obese and normal BMI girls did not
attain significance (Fig. 1, upper panel). The differences in
diurnal values of urinary 6-sulfatoxymelatonin of obese and

normal BMI boys or girls did not attain significance.
Total 6-sulfatoxymelatonin excretion (lg/24 hr) in mid-

childhood, late-childhood and puberty of boys was 6.7

(±3.7), 11.5 (±11.9) and 10.9 (±4.0) (obese) and 4.2
(±2.8), 10.3 (±7.6) and 2.8 (±2.1) (normal BMI),
respectively. The difference in total 6-sulfatoxymelatonin

excretion between obese and normal BMI boys found at
puberty was significant (Student’s t-test, P < 0.0001).
Total 6-sulfatoxymelatonin excretion in girls (lg/24 hr)

at mid-childhood, late-childhood and puberty was 24.1

(±16.0), 21.0 (±14.0) and 22.4 (±20.9) (obese) and 9.9

(±9.0), 25.0 (±10.6) and 18.1 (±14.6) (normal BMI),
respectively. The differences in total 6-sulfatoxymelatonin
excretion between obese and normal BMI girls did not

attain significance.
Estimated amplitudes (i.e. the difference between noc-

turnal and diurnal urinary 6-sulfatoxymelatonin excretion)
at mid-childhood, late-childhood and puberty (lg) were, in
obese boys, 5.4 (±3.3), 10.5 (±12.5) and 7.6 (±3.1) and, in
normal BMI boys, 3.4 (±3.2), 7.0 (±5.3) and 1.9 (±1.6),
respectively. The difference in amplitude of 6-sulfatoxyme-

latonin excretion between pubertal obese and normal BMI
boys was significant (Student’s t-test, P < 0.0001). In mid-
childhood, late-childhood and puberty, amplitude of

6-sulfatoxymelatonin (lg) in girls was 14.5 (±13.2), 13.8
(±12.6) and 16.0 (±17.5) (obese) and 8.0 (±7.6), 20.6
(±8.1) and 14.3 (± 14.5) (normal BMI), respectively. The
differences between obese and normal BMI girls did not

attain significance.

Discussion

Normal melatonin rhythms are closely related to those of
reproductive hormones during infancy and reciprocally

correlated during puberty. The demonstration of melatonin
receptors in reproductive organs [15, 16], and the localiza-
tion of sex hormone receptors in the pineal gland [17–20],

further strengthen these inter-relationships. However, it is
not yet clear whether such correlations are functionally
meaningful and a regulatory role of melatonin in puberty
has yet to be established.

The foregoing results indicate that the urinary excretion
of the major melatonin metabolite, 6-sulfatoxymelatonin, is
higher in obese than in lean boys at a pubertal age, a

difference not seen in girls. Puberty is a slow evolutionary
process that starts years before the first signs or biochemical
changes are detectable [21]. In the female, calorie intake,

body composition, or adipose tissue reserves control the
hypothalamic secretion of gonadotropin releasing hormone
and presumably exerts a permissive action in the initiation
of puberty [21]. Such a link between fat reserves and

gonadal function is not seen in males [22]. Rather a delay in
pubertal development has been reported in a subpopulation
of obese boys [23].

Serum melatonin concentration is undetectable in hu-
mans for the first 3 months of life, increases to a peak value
at 1–3 yr of age and declines thereafter. During childhood,

serum melatonin concentrations drop by about 80% [24].
The decrease in nocturnal serum melatonin in children and
adolescents correlated with body weight and body surface

area [6, 25]. A progressive decrease in nocturnal serum
melatonin or in urinary excretion rate of 6-sulfatoxymen-
tonin has been reported with advancing age, compatible
with a reduction in the amplitude of the circadian rhythm

with maturation [6, 26–30]. Indeed, prepubertal children
metabolize melatonin faster than adults as shown by
examining melatonin in serum and saliva, and 6-sul-

fatoxymelatonin in urine after an i.v. infusion of melatonin
[31].
Although a trend of decreasing urinary 6-sulfatoxymela-

tonin excretion with age was seen in the present study, the
differences found did not attain significance, presumably

Fig. 1. Nocturnal (i.e. 18:00–08:00 hr collection) (hatched bars)
and diurnal (i.e. 08:00–18:00 hr collection) (open bars) urinary
levels of 6-sulfatoxymelatonin (lg) in lean and obese girls, and boys
at mid-childhood (4–7.9 yr), late-childhood (8–12 yr) and puberty
(10.1–15.7 yr, Tanner II–IV) (mean ± S.D.). **P < 0.0001 when
compared with nocturnal values of lean puberal boys, Student’s
t-test. For further statistical analysis see text.
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because of the small number of individuals examined.
Indeed, although day-to-day melatonin production is
remarkably similar, individually a large inter-individual

variability exists, as it can be seen in the present study.
Others [32] reported that despite huge inter-individual
differences, melatonin production remains constant in one
and the same individual during childhood and adolescence.

The huge inter-individual variability of melatonin pro-
duction makes it difficult to conclude that what is found in
this small sample of normal boys reflects the changes in the

population. This applies to the low values of urinary
6-sulfatoxymelatonin (2.8 lg/24 hr) found in normal pub-
eral boys. Kennaway et al. [33] reported that 20-yr-old

subjects who were obese but were thin at birth produced
approximately 50% less melatonin than normally propor-
tioned subjects. The small sample of subjects examined in
the present study ruled out any possible correlation with

weight at birth.
The trend in melatonin observed as a function of

pubertal stage is altered in the presence of pubertal

disorders [27]. Nocturnal melatonin concentration in-
creased in male patients with hypogonadotropic hypogo-
nadism or delayed puberty compared with those in healthy

controls [34]. By contrast, plasma melatonin concentrations
of a girl with central precocious puberty were reportedly
low for chronological age, but appropriate for pubertal

status [35]. In addition, nocturnal serum melatonin
(between 23:00 and 01:00 hr) was statistically significantly
lower in 1- to 5-yr-old patients with central precocious
puberty when compared with healthy controls, whereas

pubertal patients aged 5–9 yr had circulating melatonin
concentrations in the same range as healthy subjects
approaching pubertal age [36].

Few observations have been published on the levels of
melatonin in obese, endocrinologically normal, individuals.
Shafii et al. [37] described an increase in serum melatonin

and in urinary melatonin and 6-sulfatoxymelatonin in a
severely obese 15-yr-old girl, which was not found in her
12-yr-old sister with a mild overweight. In the present

study, in which obese and normal individuals were clearly
separated by selecting quite apart BMI, i.e. percentile 25–75
for normal and percentile >95 for obese, total, nocturnal
and diurnal, 6-sulfatoxymelatonin excretion was signifi-

cantly higher in girls.
Indeed, melatonin levels tend to be higher in females

throughout the life span [38]. Likewise, differences in

body fat distribution between males and females are
detectable as prepubertal age [39]. Fat distribution of
late-pubertal boys is more �male� or �android� than

prepubertal boys, but late-pubertal girls do not differ
consistently from prepubertal girls [40]. Therefore, the
higher levels of 6-sulfatoxymelatonin melatonin found in
girls and the pubertal differences between obese and lean

boys could be partially explained by differences in
composition and distribution of body fat.

In conclusion, the results show that obese pubertal males

have a greater urinary excretion of 6-sulfatoxymelatonin
and therefore a greater production of melatonin. To what
extent the increase in melatonin in pubertal obese males

accounts for delayed puberty in some of these subjects
deserves to be further explored.
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