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Abstract
LaCu3Fe4O12 undergoes a phase transition at 393 K from an antiferromagnetic insulating state at low
temperatures to a paramagnetic metallic state above the critical temperature. We build a basic model for the
electronic structure of this material that allows us to extract the mechanism that governs the transition and
calculate the stability of the different phases. It also allows us to speculate on the effect of pressure on this
material to build a T–p phase diagram.

1. Introduction

The transition-metal oxides (ABO3) forming perovskite-like
structures have been the subject of much experimental and
theoretical research due to the large variety of physical
properties found in them [1–3]. The motivation for research
is not only based on academic interest but also on the possible
technological applications. Colossal magnetoresistance, giant
dielectric constant, ferrimagnetism, ferroelectricity and other
peculiar properties are intertwined in the material and can
be modified by the effect of temperature, pressure, chemical
composition or external fields [4, 5]. In general, changes in
the physical properties are a consequence of valence changes
of the transition-metal elements forming the compound. The
B element is usually dominant in the physical behavior of the
material and its valence is modified by partially substituting
the three-valent rare earth element by a two-valent alkaline
earth. This substitution often results in a transition from an
insulating to a half-metallic magnetoresistant material [6].

Recently Long et al [7] have reported an unusual
temperature induced valence change in the double ordered
perovskite LaCu3Fe4O12. When heated from low tempera-
tures, the compound shows a first-order transition from an
antiferromagnetic insulator to a paramagnetic metal at 393 K.
They show that the phase transition occurs as a consequence
of the transfer of one hole per Cu to Fe, so the transition
is from LaCu3+

3 Fe3+
4 O12 to LaCu2+

3 Fe3.75+
4 O12. Changhoon

Lee et al [8] studied the effect of magnetic interactions Fe–Fe
and Fe–Cu on the transition on the basis of density functional
analysis.

Since at the transition the physical properties of the
material change abruptly and substantially, it would be
desirable to be able to control temperature, pressure and
possible doping of this perovskite at the point at which the
transition takes place. To do this it is necessary to have an
idea of the mechanism leading to the phase transition. The aim
of this paper is to give a simple description of the transition,
suggest a pressure–temperature (T–p) phase diagram for this
compound, and describe the properties of the different phases.

To this end we resort to a Falikov–Kimball (FK)
model [9]. The FK model includes both extended conduction
electrons and strongly correlated localized electrons with
the insulator–metal transition occurring when the localized
electrons (or holes) move into the conduction bands.

According to Long et al’s charge transfer results, we take
two competing electronic configurations around the critical
temperature (TN). In order to reduce the system to an FK
model we consider: (i) below TN we have the Cu3+ ion
containing six electrons in the 3d t2g orbitals and two electrons
in the 3d e2g orbitals, forming a nonmagnetic state, while
Fe3+, containing five electrons in the 3d t2g orbitals, forms
a S = 5/2 spin state; (ii) above TN, we have the Cu2+

ion containing six electrons in the 3d t2g orbitals and three
electrons in the 3d e2g orbitals, forming a S = 1/2 state, while
the Fe3.75+ result from four localized electrons forming a S =
2 spin state in the 3d t2g orbitals and a 0.25 itinerant electron.
It is the Coulomb repulsions between the added electron in Cu
and the itinerant electrons in Fe that give rise to the FK model.
Figure 1 shows the two competing electronic configurations
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Figure 1. Schematic sketch of the relevant electronic structure in
the AF and PM phases (spin up). Figure shows the density of states
per formula unit: four Fe bands and three localized Cu levels
between which electron transfer takes place. For T < TN, we can
see the Fermi level (εF) just above the four degenerate Fe filled
bands and below the three degenerate Cu levels (empty). For
T > TN, the figure shows the εF inside the four Fe bands and just
above the three single occupied Cu levels. The arrow inside the
bands show the localized spin of Fe.

around TN in a simplified scheme. We draw the density of
states per formula unit with three Cu atoms and four Fe. For
T < TN (the insulating room temperature phase), the figure
shows the Cu levels empty and Fe bands filled. In contrast, for
T > TN (the high temperature metallic phase), we can see the
three Cu levels filled and the four Fe bands partially filled.

We assume the exchange coupling between e2g and t2g
in each Fe site is strong enough to consider the spin of
the mobile electrons in each site always to be aligned with
the localized electrons in that site. This condition leads to a
half-metallic band in which the hopping is conditioned by the
spin correlation between nearest-neighbor Fe sites [10].

In the following section we set up the model free energy
as a function of the Cu occupation and the magnetization of
the Fe ions in the ferromagnetic or antiferromagnetic phases.

In section 3 we minimize the free energy to obtain
the stable state at each temperature and discuss the results.
Section 4 consists of the conclusions.

2. Model

We propose a model which contains the following basic
ingredients.

(a) A band of extended states, which we assume originates
from the iron 3d states hybridized with the oxygen atoms
lying in between. Due to strong Hund’s coupling on Fe
sites, itinerant electrons with spin σ can hop only to
Fe sites with parallel localized spins. These extended
states give the kinetic energy EK and this favors the
ferromagnetic order of the localized Fe spins. Beside this
energy, to determine the magnetic behavior of the system,
we also consider the antiferromagnetic superexchange
interaction energy EM between the Fe localized spins,
which favors the antiferromagnetic order of Fe spins.

(b) A set of more localized states (assumed to originate in Cu
atoms), with energy EL.

(c) Finally, we have the FK contribution EFK, which arises
from the Coulomb repulsion between particles in localized
and extended states, which is treated in the mean-field
approximation.

With these ingredients, the charge transfer occurs due
to the superposition of the extended and localized states,
which results from two main effects: the effective difference in
energies between them, which depends on the charge at each
type of state on one side (the mean-field Coulomb repulsion
favors electrons to occupy either of the states) and the width
of the band states on the other (see figure 1). Since we assume
double-exchange [11] to act as the mechanism that allows
the formation of extended states, the spin order is basic in
determining the bandwidth. Spin ordering determines not only
the bandwidth but it is also the main source of entropy, which
drives the transition from ordered to disordered states.

Both, the entropy and the bandwidth are expressed in
terms of magnetization of the iron states and we restrict
our approach to simple magnetic structures: ferromagnetic,
paramagnetic, and antiferromagnetic phases.

In order to write the model free energy per formula unit of
the system, first we obtain the corresponding internal energy
E. For this purpose, we need to calculate EK, EM, EL, and
EFK.

2.1. The kinetic energy

In the mean-field approximation for the FK term, the only
nontrivial energy is the kinetic energy of the itinerant electrons
EK which becomes somewhat complicated due to the need to
take into account the strong correlation between Fe orbitals.
To take this into account we resort to a simple technique that
we have often used before [12–14] based on a mean-field
approximation on the hopping term which is described below.
To obtain a first approximation to this energy, we consider first
a single-band model Hamiltonian:

HFe = εFe

∑
i,σ

c†
iσ ciσ −

∑
〈i,j〉,σ

tµi,µj,σ c†
iσ cjσ , (1)

where εFe is the Fe site diagonal energy, c†
iσ , ciσ creates and

destroys, respectively, an itinerant electron with spin σ (↑,
↓) at Fe site i, µi (+, −) refers to the localized spin of Fe
at site i (Ising model), and tµi,µj,σ is the nearest-neighbor
hopping term tFe when σ , µi, and µj are all parallel and zero
in any other case. This hopping term favors a ferromagnetic
background of the localized Fe spins [10]. In order to obtain
the density of states for itinerant electrons, we calculate
local Green’s functions in an interpenetrating Bethe lattice
using the renormalized perturbation expansion (RPE) [15].
The RPE connects the propagator at site i to propagators at
the nearest-neighbor sites i + δ which exclude visiting site
i again and which we will denote by small gs. These new
propagators are in turn connected to propagators of the same
type at sites i + δ + δ′, etc, so that the Green’s function
at each site depends, through this chain, on the local spin
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configurations of the Fe. This procedure leads to different
Green’s functions for different sites, according to the local
spin configurations around the site. We are interested in the
configurational average of Green’s functions over all possible
spin configurations. This configurational average over local
spin directions is assumed to be the same at every site of
the same sublattice, to restore translational invariance in the
spirit of the mean-field theories as ATA, CPA, etc. To this
end we consider two interpenetrating sublattices α and β,
characterized by the magnetization mα and mβ , respectively,

and we introduce Gασµ ( Gβσµ) which include the probabilities

να± = (1 ± mα)/2 (νβ±) that an α (β) Fe ion has for its
localized spin + (↑) or − (↓). In accordance with the model
Hamiltonian, we have Gα

↑−
=Gα
↓+
= Gβ

↑−
=Gβ
↓+
= 0 and only

Gα
↑+

and Gβ
↑+

(or Gα
↓−

and Gβ
↓−

) are given by

Gα
↑+
=

να+

[ω − εFe − zt2Fegβ
↑+
]

, (2)

where we assume that the sum over neighbors can be replaced
by the number of nearest neighbors z times their average
Green functions gβ

↑+
given by

gβ
↑+
=

ν
β
+

[ω − εFe − (z− 1)t2Fegα
↑+
]
, (3)

with

gα
↑+
=

να+

[ω − εFe − (z− 1)t2Fegβ
↑+
]

. (4)

Similarly, we can write

Gβ
↑+
=

ν
β
+

[ω − εFe − zt2Fegα
↑+
]
. (5)

The Green’s functions for down electrons are obtained by
replacing ↑ by ↓ and + by −.

Let us mention that, when the coordination number z→
∞, the functions g→ G and the above equations reduce to
those used in a dynamical mean-field approach. In that case
zt2Fe scales as W2

Fe/4, being half the bandwidth. So that the
Green’s functions reduce to

Gα
↑+
=

να+

[ω − εFe − t′2Gβ
↑+
]

(6)

and

Gβ
↑+
=

ν
β
+

[ω − εFe − t′2Gα
↑+
]
, (7)

with t′2 = W2
Fe/4.

In this work, we consider only three possible magnetic
phases for Fe: ferromagnetic (F), antiferromagnetic (AF), and
paramagnetic (P).

In the F phase we have mα = mβ = m (the average site

magnetization), so that Gα
↑+F = Gβ

↑+F and we obtain from

equations (6) and (7):

Gα
↑+F(±) =

ω ±

√
ω2 − 4ν+t′2

2t′2
, (8)

where we take εFe = 0 and ν+ = (1 + m)/2. The
corresponding density of states per Fe site can be written

as ρ↑+F(m, ω) = (−1/π)ImGα
↑+F =

√
4ν+t′2 − ω2/2π t′2.

Therefore, n↑F =
∫ εF
−∞

ρ↑+F(m, ω) dω is given by

n↑F =
ν+

2
+

εF

√
4ν+t′2 − ε2

F

4π t′2
+
ν+

π
sin−1

(
εF

2t′
√
ν+

)
, (9)

where εF is the Fermi energy. The corresponding kinetic
energy is E↑F =

∫ εF
−∞

ωρ↑+F(m, ω) dω and this gives

E↑F = −

(√
4ν+t′2 − ε2

F

)3

6π t′2
. (10)

In a similar manner, for down electrons, we can write

ρ↓−F(m, ω) = (−1/π)ImGα
↓−F =

√
4ν−t′2 − ω2/2π t′2, with

ν− = (1− m)/2.
Then n↓F and E↓F are obtained by replacing ν+ by ν−

in equations (9) and (10). Taking into account these results,
we obtain the average number of electrons per site of Fe in the
ferromagnetic phase as nFe(m, εF) = n↑F+n↓F and the kinetic
energy as Eband(m, εF) = EbandF(m, εF) = E↑F + E↓F.

In the AF phase we have mα = −mβ = m and solving
equations (6) and (7) we obtain

Gα
↑+AF(±) =

(ω2
+ t′2m)

2ν+t′2ω
±

√
ω4 + t′4m2 − 2t′2ω2

2ν+t′2|ω|
(11)

and

Gβ
↑+AF(±) =

(ω2
− t′2m)

2ν−t′2ω
±

√
ω4 + t′4m2 − 2t′2ω2

2ν−t′2|ω|
. (12)

It is easy to see that Gβ
↓−AF(±) = Gα

↑+AF(±) and Gα
↓−AF(±) =

Gβ
↑+AF(±). So that the corresponding AF density of states per

site is ρ↑+AF(m, ω) =
√

2t′2ω2 − (ω4 + t′4m2)/(2π t′2|ω|)
and the same for ρ↓−AF(m, ω). From here we can obtain the
total average number of particles per AF site as nFe(m, εF) =

2
∫ εF
−∞

ρ↑+AF(m, ω) dω and the corresponding kinetic energy
Eband(m, εF) = EbandAF(m, εF) = 2

∫ εF
−∞

ωρ↑+AF(m, ω) dω.
For m = 0 (mα = mβ = 0), our previous results (for

F or AF) reduce to the kinetic energy (EbandP(εF)) in the
paramagnetic phase.

2.2. The free energy

Considering three Cu atoms and four Fe atoms per formula
unit, we can write the contribution of the local energy and
the kinetic energy as EL + EK = 3εCunCu + 4Eband(m, nFe),
where εCu is the Cu site diagonal energy. Finally, charge
conservation implies 3nCu + 4nFe = 4. We consider now the
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Figure 2. Paramagnetic (m = 0) and ferromagnetic density of
states for spin ↑ (ρF+) and ↓ (ρF−) versus ω/t, for different values
of the magnetization m and εFe = 0. For m = 1, ρF− = 0.

magnetic energy contribution due to the number of localized
electrons in t2g Fe orbitals. In the F phase we take this energy
as EM,F = K0m2, where K0 (>0) is an antiferromagnetic
coupling constant. For the AF phase, as a first approximation,
we consider EM,AF = −K0(1 − αnCu)m2, where we take
the coupling as a linear function of nCu. We introduce
this factor to take into account a weakening of K0 due to
spin frustration produced by the antiferromagnetic coupling
between the localized spin Cu electron and the Fe spins in
nearest-neighbor sites. We fix the constant α = 0.3 in order to
fit the experimental data [7] at the transition: the extrapolated
Néel temperature (T∗N ∼ 600 K) and the magnetization m =
mα = −mβ . In this work, in order to introduce the model
with a minimum number of parameters, we do not include an
antiferromagnetic coupling between the localized Cu and Fe
spins, which is small as compared to other parameters due to
the fact that there is no direct connection between them.

Finally, we include an FK term, which is the term
producing the first-order transition: EFK = 3GnCunFe.

To proceed further, we need an expression for the
difference in entropy between the considered phases. We
assume three main contributions to this quantity: one
magnetic dominant, due to the Fe spin, for which we take
a numerical approximation to the Brillouin entropy for S =
2 as a function of magnetization, SFe = ln(5)(1 − m2)2/3,
the second and third are due to Cu levels and they are the
configurational entropy of the Cu level occupation, SCu =

− [nCu ln(nCu)+ (1− nCu) ln(1− nCu)], and the magnetic
entropy of the local spin, S′Cu = nCu ln(2).

From the above considerations, we obtain the free
energy as a function of the occupation numbers of the Cu
orbitals (nFe is related to nCu by charge conservation) and
the magnetization. Depending on the magnetic order, we
can write three different expressions for the free energy by
formula unit. The antiferromagnetic free energy takes the
form

FAF = 3εCunCu + 4EbandAF(m, nFe)+ EM,AF

+ EFK − 4TSFe − 3T(SCu + S′Cu), (13)

Figure 3. Antiferromagnetic density of states for spin ↑ (ρAF+) and
↓ (ρAF−) versus ω/t, for different values of the magnetization m and
εFe = 0. When m increases, the gap around ω = 0 increases and
ρAF± decreases. For m = 1, ρAF± disappears. The vertical full line
at ω = 0 represents the δ-peaks.

the ferromagnetic free energy is given by

FF = 3εCunCu + 4EbandF(m, nFe)+ EM,F

+ EFK − 4TSFe − 3TSCu, (14)

where we ignore the contribution of S′Cu, due to the order of
Cu spins in the F phase. Finally, the paramagnetic free energy
is

FP = 3εCunCu + 4EbandP(nFe)

+ EFK − 4T ln(5)− 3T(SCu + S′Cu). (15)

From these equations, by minimization, we determine nCu(T)
and m(T) corresponding to the lowest free energy. Hereafter
we take εFe = 0 and t′2 = 6t2.

3. Results and discussion

Let us first consider the behavior of the density of states in
the F, P, and AF phases. In figure 2, we show the evolution
of the ferromagnetic density of states ρF(m, ω) for spin ↑
(ρF+) and ↓ (ρF−) with the magnetization m. For spin up
(down) the bandwidth is given by 9.8t

√
ν+ (9.8t

√
ν−). For

m = 0, this figure shows the paramagnetic density of states
ρP(ω) and the bandwidth reduces to 6.93t. For m = 1, we
can see a wide band (9.8t) with a maximum kinetic energy
and we have a ferromagnetic metal (FM). In figure 3, we
show the antiferromagnetic density of states ρAF(m, ω). In
this case, the density of states for spin σ , has two identical
bands with bandwidth 4.9t

√
ν− separated by a gap given by

Eσg = 4.9t(
√
ν+ −

√
ν−). Besides these bands, for ω = 0

and m 6= 0, the spectrum also shows δ-peaks arising from
the poles of the Green’s functions. For m = 0, Eσg = 0 and
we recover the paramagnetic ρP(ω). When m is increased,
the bands narrow and their spectral weight is diminished,
therefore the gain in kinetic energy decreases. For m = 1,
the kinetic energy reduces to zero and an antiferromagnetic
insulator (AFI) phase occurs.
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Figure 4. The temperature-hopping (pressure) phase diagram. The
model shows four phases: antiferromagnetic metal (AFI),
ferromagnetic metal (FM), paramagnetic insulator (PI), and
paramagnetic metal (PM). At zero-temperature the figure shows a
first-order transition from the AFI to FM at t ' 0.28 eV. Note that
nCu changes from 0 to 1. For t < 0.18 eV, at low temperatures the
model gives an AFI–PI transition and at high temperatures the
PI–PM transition takes place. For 0.18 eV < t < 0.28 eV, we have
the transition from AFI to PM. For t > 0.28 eV we obtain only the
transition from FM to PM with nCu = 1 in both phases. The
parameters are adjusted taking into account the experimental results
from Long et al .

The free energy equations (13) and (14) depend on two
variables, m and nCu, and five parameters,1 = (εFe−εCu), G,
t, K0, and temperature (T). At T = 0, the minima correspond
to m= 1 in both phases. Further, to obtain a first-order transfer
of electrons from Fe to Cu, we have chosen G as the largest
parameter of the model so that the repulsion between extended
and local electrons dominates in the minimization of the
energy, so that the minima fall into nCu = 0 or nCu = 1.

For t � K0, the minimum free energy corresponds to
nCu = 0 and the AFI is stable. From equation (13) we
obtain FAF = −K0. In contrast, for K0 � t, the minimum
corresponds to nCu = 1 and the model minimum energy
corresponds to the FM phase. Equation (14) reduces to FF =

3εCu+4EbandF+K0+3G/4. Solving equations (9) and (10) we
obtain EbandF = EbandF(m = 1, nFe = 1/4) = −0.796t. Then,
increasing the hopping parameter t, the model shows a phase
transition from AFI to FM.

For T 6= 0, we adjust the model parameters to obtain the
extrapolated Néel temperature and the transition temperature
according to Long et al’s experimental results in a suitable
bandwidth. For this purpose, we take (the more difficult
parameter to estimate) G = 1 eV, 1 = −0.09 eV, K0 =

0.22 eV, and we fix the constant α = 0.3. With this choice
of parameters we show that the AFI phase jumps into an FM
phase at T = 0 for t ' 0.28 eV.

If we take any other reasonable choice of these
parameters, no different qualitative results are obtained.

Using these parameters we obtain the phase diagram, T
versus t, shown in figure 4. We take the hopping parameter t
as an independent variable that can be modified by pressure.
For t < 0.18 eV, the model gives a paramagnetic insulator

phase (PI) between the low temperature AFI phase and the
high temperature PM. In the PI phase, the Cu levels are
empty (nCu = 0) and the system increases only the magnetic
entropy (m = 0) to lower the free energy. Therefore, we can
see two phase transitions: by increasing temperature we can
observe first a transition from AFI to PI, where nCu remains
zero without charge transfer. At higher temperatures a second
transition from PI to PM takes place with valence changes
and without magnetic order. For 0.18 eV < t < 0.28 eV,
when T increases, we have only one transition from AFI to
PM where the magnetization changes and the charge transfer
occur simultaneously: from m 6= 0, nCu = 0 to m= 0, nCu = 1.
We speculate that this is the physics, in simplified terms,
that governs Long et al’s charge transfer results. Finally, for
large values of t (t > 0.28 eV), where the ferromagnetic
kinetic energy is larger than the antiferromagnetic, the ground
state is a ferromagnetic metal. with increasing temperature, a
magnetic transition from FM to PM without charge transfer
(nCu = 1) takes place.

4. Conclusions

We have presented a simple thermodynamic model for the
simultaneous charge/spin order transition in LaCu3Fe4O12.
The model presented here allows us to understand, in simple
terms, the mechanism that governs the phase transition and
also allows us to speculate on the effect of pressure on this
material to build a T–p phase diagram. We conclude that:

(i) the transition is a Falikov–Kimball transition, i.e. it is a
consequence of the Coulomb repulsion between extended
Fe bands and localized Cu sites;

(ii) the entropy difference that drives the transition at a
critical temperature is mainly due to the Fe spin;

(iii) assuming that the Fe bandwidth increases with pressure,
the model allows us to propose the T–p phase diagram
shown in figure 4, where it can be seen that the transition
temperature first decreases with pressure and then, after
an AF to F transition occurs, increases again;

(iv) using the model, it is possible to calculate different
thermodynamic properties of the phases: magnetization,
magnetic susceptibility, specific heat, latent heat,
occupation of extended states, etc; finally, we would
like to emphasize that it would be desirable to obtain
experimental results under pressure.
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