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Nonequilibrium self-energies, Ng approach, and heat current of a nanodevice for small bias
voltage and temperature
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Using nonequilibrium renormalized perturbation theory to second order in the renormalized Coulomb
repulsion, we calculate the lesser �< and and greater �> self-energies of the impurity Anderson model, which
describes the current through a quantum dot, in the general asymmetric case. While in general a numerical
integration is required to evaluate the perturbative result, we derive an analytical approximation for small
frequency ω, bias voltage V , and temperature T , which is exact to total second order in these quantities. The
approximation is valid when the corresponding energies �ω, eV , and kBT are small compared to kBTK , where
TK is the Kondo temperature. The result of the numerical integration is compared with the analytical one and
with Ng approximation, in which �< and �> are assumed proportional to the retarded self-energy �r times an
average Fermi function. While it fails at T = 0 for �|ω| � eV , we find that the Ng approximation is excellent
for kBT > eV/2 and improves for asymmetric coupling to the leads. Even at T = 0, the effect of the Ng
approximation on the total occupation at the dot is very small. The dependence on ω and V are discussed in
comparison with a Ward identity that is fulfilled by the three approaches. We also calculate the heat currents
between the dot and any of the leads at finite bias voltage. One of the heat currents changes sign with the applied
bias voltage at finite temperature.

DOI: 10.1103/PhysRevB.89.125405 PACS number(s): 72.15.Qm, 73.21.La, 75.20.Hr

I. INTRODUCTION

Progress in nanotechnology has led to the confinement
of electrons into small regions, where the electron-electron
interactions become increasingly important. Therefore the
interpretation of transport experiments at finite bias voltage
V , for example, different variants of the Kondo effect in
transport through quantum dots (QDs) [1–8], requires the
theoretical treatment of the effects of both, nonequilibrium
physics and strong correlations. This problem is very hard
and at present only approximate treatments are used that have
different limitations [9–11].

For nonequilibrium problems, perturbation theory is per-
formed on the Keldysh contour, in which the time evolves
from t0 → −∞ in which the system is in a well defined state
and the perturbation is absent, to t → +∞ in one branch and
returns to the initial state at t0 on the other branch of the contour.
Thus the position in the contour is not only given by the time,
but also by a branch index. See, for example, Ref. [12] from
which we borrow the notation. As a consequence, there are
four different one-particle Green functions depending on the
branch index of the creation and annihilation operators. They
can be classified as retarded, advanced, lesser and greater (Gr ,
Ga , G<, and G>, respectively). Similarly, the Dyson equation
leads to four self-energies �r , �a , �<, and �> [9,12].

In general, it is more difficult to approximate the lesser
and greater quantities than the retarded ones. Ng proposed an
approximation in which the lesser and greater self-energies
�< and �> are proportional to average distribution functions
[f̃ (ω) and f̃ (ω) − 1, respectively, see Sec. IV] with the
same proportionality factor [13]. A consistency equation
[Eq. (11)] imposes that this factor is the imaginary part of the
retarded self-energy �r . Therefore this approximation permits
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to reduce the problem to the calculation of retarded quantities
only. The Ng approximation has been used in many different
subjects, like Andreev tunneling through strongly interacting
QDs [14], spin-polarized transport [15–17], first-principles
calculations of correlated transport through nanojunctions
[18], thermopower [19], decoherence effects [20] and scaling
[21] in transport through QDs, magnetotransport in graphene
[22], asymmetric effects of the magnetic field in an Aharonov-
Bohm interferometer [23], and shot noise in QDs irradiated
with microwave fields [24]. Therefore it is of interest to test
this approximation and establish its range of validity. In a
recent paper [25], is was claimed that Ng approximation
(Sec. IV) is exact at low energies. In a Comment to this work,
we have argued that it is not the case [26]. In their Reply
[27], the authors claim that our analytical result for �< for
zero temperature derived previously does not satisfy a Ward
identity, but a direct calculation shows that it does [28,29].
This will be shown for all temperatures in Sec. III A 2.

One of the approaches used to study the impurity Anderson
model (IAM) out of equilibrium is Keldysh perturbation theory
in the Coulomb repulsion U [9,30–33]. However, it is restricted
to small values of U . Instead, in renormalized perturbation
theory (RPT) [34], the renormalized repulsion Ũ is always
small allowing for a perturbation expansion even if U → ∞.
A calculation of �r to second order in Ũ leads to the exact
result to total second order in frequency ω, bias voltage V , and
temperature T in terms of thermodynamic quantities, or the
renormalized parameters, which can be obtained from exact
Bethe ansatz [36] or numerical-renormalization-group (NRG)
[37,38] calculations at equilibrium. This �r has been used to
obtain the exact form of the conductance through a quantum
dot to total second order in V and T for the electron-hole
symmetric (EHS) IAM with symmetric voltage drops and
coupling to the leads [36]. These results are valid for eV

and kBT small compared to kBTK , where TK is the Kondo
temperature. Motivated by recent experiments searching for
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universal scaling relations for the conductance [4,39], further
developments were made [21,40–43], but concentrated mainly
on the EHS case.

Besides, thermal properties of quantum dots have been
studied before [19,44–48], but concentrated mainly on the
linear response regime of vanishing voltage and temperature
gradient.

In this work, we calculate the lesser and greater self-
energies of the IAM in the general (not EHS) case, for different
(symmetric and asymmetric) coupling to the leads, using RPT
to second order in Ũ . The result is compared with the Ng
approximation for different temperatures. We derive an exact
analytical expression for small ω, V , and T (to total second
order), useful when the corresponding energies �ω, eV , and
kBT are small compared to kBTK . We also calculate the heat
currents between the dot and any of the leads at finite bias
voltage and the same temperature for both leads. At T = 0,
an exact analytical expression is provided to third order in
eV/(kBTK ). For finite temperature, a nonmonotonic behavior
of one of the currents is obtained as a function of V .

The paper is organized as follows. In Sec. II, we describe
the system and the IAM used to represent it. In Sec. III,
we review briefly the formalism of the RPT and obtain the
analytical expressions for �< and �> for small energies. In
Sec. IV, we describe the Ng approximation. Section V contains
a discussion on the conservation of the current. In Sec. VI, the
results for �<(ω) calculated with RPT to second order in
the renormalized Coulomb repulsion are compared with the
Ng approximation and the analytical expression at different
voltages and temperatures. In Sec. VII, we show how the
bias voltage originate heat currents. Section VIII contains a
summary and discussion.

II. MODEL

We use the IAM, to describe a semiconductor QD or a
single molecule attached to two conducting leads, with a bias
voltage V applied between these leads. The Hamiltonian can
be split into a noninteracting part H0 and a perturbation H ′ as
[9,49]

H = H0 + H ′,

H0 =
∑
kνσ

εkν c
†
kνσ ckνσ +

∑
σ

εσ
eff ndσ

(1)
+

∑
kνσ

(Vkν c
†
kνσ dσ + H.c.),

H ′ =
∑

σ

(
Ed − σμBB − εσ

eff

)
ndσ + U nd↑nd↓,

where ndσ = d†
σ dσ , and ν = L,R refers to the left and

right leads, respectively. In general, εσ
eff is determined self-

consistently, except for the electron-hole symmetric (EHS)
case (Ed = μ − U/2) with magnetic field B = 0, for which
εσ

eff = μ [9,31], where μ is the Fermi level, which we set as
zero in the following.

We write the chemical potentials of both leads in the form

μL = αLeV , μR = −αReV, (2)

where αL + αR = 1. Similarly, the couplings to the leads
assumed independent of frequency are expressed in terms of
the total resonant level width � = �L + �R as (we take � = 1
in what follows)

�ν = π
∑

k

|Vkν |2δ(ω − εkν) = βν�. (3)

III. RENORMALIZED PERTURBATION THEORY

The basic idea of RPT is to reorganize the perturbation
expansion in terms of fully dressed quasiparticles in a Fermi
liquid picture [34]. The parameters of the original model are
renormalized and their values can be calculated exactly from
Bethe ansatz results, or accurately using NRG. One of the
main advantages is that the renormalized expansion parameter
Ũ/(π�̃) is small. In the EHS case Ũ/(π�̃) � 1, being 1 in the
extreme Kondo regime (U = −2Ed → ∞) [34,36]. Within
RPT, the low-frequency part of Gr

dσ (ω) is approximated as [34]

Gr
dσ (ω) � z

ω − ε̃σ
eff + i�̃ − �̃r

σ (ω)
, (4)

where �̃ = z� is the renormalized resonant level width, z is
the quasiparticle weight, ε̃σ

eff is the renormalized level energy
and �̃r

σ (ω) is the renormalized retarded self-energy (with
�̃r

σ (0) = ∂�̃r
σ (ω)/∂ω = 0 at V = ω = 0). �̃ is of the order

of kBTK , where TK is the Kondo temperature.
The spectral density of d electrons is ρσ (ω) =

−ImGr
dσ (ω)/π . The free quasiparticle spectral density of d

electrons is given by

ρ̃σ
0 (ω) = �̃/π(

ω − ε̃σ
eff

)2 + �̃2
. (5)

Both densities at the Fermi energy can be related to the
occupancy by the Friedel sum rule [49,50]

π�ρσ (0) = π�̃ρ̃σ
0 (0) = sin2(π〈ndσ 〉), (6)

which allows one to relate the effective dot level with its
occupancy

ε̃σ
eff = �̃ cot(π〈ndσ 〉). (7)

The lesser Green’s function can be written in the form [9,43]

G<
dσ (ω) =

∣∣Gr
dσ (ω)

∣∣2

z
(2i�̃f̃ (ω) − �̃<

σ (ω)), (8)

where

f̃ (ω) =
∑

ν

βνf (ω − μν) (9)

is a weighted average of the Fermi functions f (ω) =
1/(eω/kBT + 1) at the two leads, and �̃<

σ (ω) is the renormalized
lesser self-energy.

The greater quantities can be obtained from the retarded
and lesser ones using the relations [12]

G< − G> = Ga − Gr = −2iImGr (ω), (10)

�< − �> = �a − �r = 2iIm�r (ω), (11)

where we have used that in the frequency domain, the advanced
quantities Ga(ω), �a(ω) are the complex conjugates of the
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corresponding retarded ones. In the following, we assume that
B = 0 and the leads are paramagnetic, so that the subscript
σ can be dropped, and 〈ndσ 〉 = n/2, where n is the total
occupancy at the QD.

The linear term in the specific heat and the impurity
contribution to the magnetic susceptibility at zero temperature
are given by [34]

γC = 2π2k2
Bρ̃0(0)/3, (12)

χ = (gμB)2ρ̃0(0)(1 + Ũ ρ̃0(0))/2, (13)

These equations can be inverted to obtain the effective
parameters from an accurate knowledge of thermodynamic
quantities. For example, from Eqs. (6), (7), and (12),

�̃ = 2πk2
B

3γC

sin2(πn/2), (14)

and the renormalized interaction is obtained through the
Wilson ratio

R = χ

γC

1

3

(
2πkB

gμB

)2

= 1 + Ũ ρ̃0(0). (15)

A. Renormalized lesser and greater self-energies

The renormalized self-energies are calculated as in ordinary
perturbation theory in the Keldysh formalism using the low-
energy approximation for the unperturbed Green functions
[34–36]. To order Ũ 2, the renormalized lesser and greater
self-energies can be written as [9]

�̃<(ω) = z�<(ω)

= −2πiŨ 2
∫

dε1dε2ρ̃0(ε1)ρ̃0(ε2)ρ̃0(ε1 + ε2 − ω)

× f̃ (ε1)f̃ (ε2)[1 − f̃ (ε1 + ε2 − ω)], (16)

�̃>(ω) = 2πiŨ 2
∫

dε1dε2ρ̃0(ε1)ρ̃0(ε2)ρ̃0(ε1 + ε2 − ω)

× [1 − f̃ (ε1)][1 − f̃ (ε2)]f̃ (ε1 + ε2 − ω). (17)

1. Analytical approximation for small energies

In this section, we calculate the lesser and greater self-
energies assuming that the energies ω, eV , and kBT are small
in comparison with �̃, which in turn is of the order of kBTK

[34]. Specifically, to evaluate the self-energies to total second
order in ω, V , and T , it suffices to replace the quasiparticle
spectral density ρ̃0(ε) by its value at the Fermi energy (order 0
in an expansion in ω), because the two integrations in Eqs. (16)
and (17) already introduce terms of second order, due to the
effect of the Fermi functions in restricting the intervals of εi for
which the integrand has non negligible values. For the same
reason, terms of higher order in Ũ lead to terms of higher order
in ω, V , or T . Therefore the result below is exact to second
order. Note that besides the evaluation to second order in Ũ ,
the only additional approximation is neglecting the energy
dependence of ρ̃0(ε). The Fermi functions are treated exactly
and are not expanded [29].

Using Eq. (9), one sees that

f̃ (x) + f̃ (−x) = f (x) + f (−x) = 1, (18)

which together with Eq. (9) allows to write the approximation
of Eq. (16) for small arguments as

�̃<
2 (ω,V,T ) = −2ip

∑
νξκ

βνβξβκ

∫
dε1dε2f (ε1 − μν)

× f (ε2 − μξ )f (ω + μκ − ε1 − ε2), (19)

where the factor

p = π [ρ̃0(0)]3Ũ 2 = (R − 1)2 sin2(πn/2)

�̃

= 3(R − 1)2γC

2πk2
B

= 2π (R − 1)2χ

R(gμB)2
, (20)

can be expressed in terms of the linear term in the specific heat
and the magnetic susceptibility at T = 0.

The integrals in Eq. (19) are evaluated analytically as
described in Appendix. The result can be written in the form

�̃<
2 = −ip

∑
j

cjf (aj )
[
a2

j + (πkBT )2
]
,

c1 = β2
LβR, a1 = ω − (1 + αL)eV,

c2 = β3
L + 2βLβ2

R, a2 = ω − αLeV, (21)

c3 = β3
R + 2β2

LβR, a3 = ω + αReV,

c4 = βLβ2
R, a4 = ω + (1 + αR)eV .

Particular cases of this low-energy expansion were derived
before [30,43]. Using Eqs. (17)–(19), and (9), one sees that
to total second order in ω, V , and T , the greater self-energy
becomes simply

�̃>
2 (ω,V,T ) = −�̃<

2 (−ω,−V,T ). (22)

It is interesting to note that to the same order, calculating
the imaginary part of �̃r from the difference Eq. (11), using
Eqs. (18), (21), and (22), the Fermi functions disappear and
collecting the different terms one recovers the very simple
result [36]

Im�̃r
2 = −p

2
[ω2 − 2γωeV + δ(eV )2 + (πkBT )2], (23)

γ = αLβL − αRβR, (24)

δ = γ 2 + 3βLβR. (25)

2. Ward identities

The different self-energies should satisfy the Ward identi-
ties [35,36]

∂�̃η(ω)

∂eV

∣∣∣∣
V =0

= −γ

(
∂�̃η(ω)

∂ω
+ ∂�̃η(ω)

∂Ed

)
, (26)

where the superscript η denotes >, <, r , or a, and γ is given
by Eq. (24). These identities come simply from the properties
of the Fermi functions f (ω − μν) and evaluation at V = 0
renders both of them equal after derivation [see Eq. (2)]. They
are satisfied at any order in perturbation theory.
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Direct differentiation of the analytical expression (21) gives

∂i�̃<
2 (ω)

∂ω

∣∣∣∣
V =0

= p
ω

1 + ex

(
2 − x

1 + e−x

)
,

x = ω

kBT
(27)

∂�̃<
2 (ω)

∂eV

∣∣∣∣
V =0

= −γ
∂�̃<

2 (ω)

∂ω
. (28)

∂�̃<
2 /∂Ed can be neglected since it only modifies ρ̃0(0) and

therefore leads to a contribution of higher order. Thus �̃<
2

satisfies the Ward identity (26) to linear order in ω and ωx.
These results will be discussed further in Sec. VI C. The T →
0 limit is well defined and the Ward identity is also satisfied
by �̃<

2 (ω) at T = 0 in spite of the claim in Ref. [27] that it is
not the case [28,29]. It is trivial to see that Im�̃r

2 [Eq. (23)]
also satisfies Eq. (26) and from Eq. (11), �̃>

2 satisfies the Ward
identity too.

IV. NG APPROXIMATION

The Ng approximation can be written as

�̃<
Ng(ω) = 2if̃ (ω)Im�̃r (ω), (29)

where f̃ (ω) is defined by Eq. (9). Using Eq. (8), it can be
written in the equivalent form

G<
Ng(ω) = −2if̃ (ω)ImGr (ω). (30)

Using Eqs. (10) and (11), also the greater quantities become
proportional to the retarded ones:

�̃>
Ng(ω) = −2i[1 − f̃ (ω)]Im�̃r (ω), (31)

G>
Ng(ω) = 2i[1 − f̃ (ω)]ImGr (ω). (32)

These equations are exact in the noninteracting case (U =
0) and also at equilibrium (V = 0) [13]. In addition using the
results of RPT up to Ũ 2 for �̃r (ω), it can be shown that at
T = 0, the perturbative result �̃<(ω) and the corresponding
Ng approximation �̃<

Ng(ω) coincide for ω < -(1 + αR)eV and
ω > (1 + αL)eV . However, if the expression Eq. (23) for
Im�̃r (ω) at small energies is replaced in Eq. (29), an analytical

expression for �̃<
Ng(ω) is obtained which is obviously different

from the exact result for small ω, V , and T , Eq. (21). The
quantitative differences will be discussed in Sec. VI.

V. CONSERVATION OF THE CURRENT

Using the Keldysh formalism [51,52], the current flowing
between the left lead and the dot can be written as

IL = 4ie�L

h

∫
dω

[
2if (ω − μL)ImGr

d (ω) + G<
d (ω)

]
, (33)

while the current flowing between the dot and the right lead is

IR = −4ie�R

h

∫
dω

[
2if (ω − μR)ImGr

d (ω) + G<
d (ω)

]
.

(34)

Conservation of the current requires IL = IR = I .

Using Eqs. (4) and (8), the difference can be written in the
form

IL − IR = −4e�̃

h

∫
dω

∣∣∣∣Gr
d (ω)

z

∣∣∣∣2

× [2f̃ (ω)Im�̃r (ω) + i�̃<(ω)]. (35)

Using Eqs. (21) and (23), it is easy to see that to total
third order in eV/�̃ and kBT /�̃ this expression vanishes.
Thus RPT conserves the current to this order. Instead, if Ng
approximation Eq. (29) is used, IL − IR vanishes identically
and the current is conserved to all orders.

VI. LESSER SELF-ENERGY TO SECOND ORDER IN ˜U

In this section, we present results for �̃<(ω) calculated
with RPT to second order in Ũ by numerical integration. The
expression used is equivalent to Eq. (16) but we have used a
different approach explained in the Appendix of Ref. [9], in
which one integral is evaluated analytically. This result �̃<(ω)
is superior to the analytical one �̃<

2 (ω) [Eq. (21)] because
no additional approximations (constant quasiparticle density)
were made. Both coincide to total second order in ω, V , and
T . Therefore the difference is due to higher order terms in
�̃<(ω).

For the calculation of the current, we also need the real part
of the renormalized retarded self-energy �̃r (ω), which is also
calculated as in Ref. [9] with the constant and linear terms in
ω for V = T = 0 subtracted [34,43].

We have chosen a total occupation n = 2〈ndσ 〉 = 3/4 (out
of the EHS case). From Eq. (7), this implies ε̃σ

eff = (
√

2 − 1)�̃.
We have taken Ũ/(π�̃) = 1 for simplicity [53]. This quotient
enters as a constant factor [Ũ/(π�̃)]2 in �̃<(ω) but modifies
the values of the current discussed below. Preliminary NRG
results indicate that for Ed = −2� and U → +∞, one has
n = 3/4 and renormalized parameters z = �̃/� = 0.115 and
Ũ/(π�̃) = 1.136 [54].

We assume here a symmetric voltage drop αL = αR =
1/2.This is motivated by the fact that even for molecular
quantum dots with high asymmetric coupling to the leads
(βL � βR or βL � βR), the shape of the diamonds with the
regions of high conductivity as a function of bias voltage V

and gate voltage Vg indicates a rather symmetric voltage drop.
Instead, we consider different ratios of βL/βR .

A. Symmetric coupling to the leads

In Fig. 1, we show �̃<(ω) for βL = βR and different values
of V at zero temperature. In the equilibrium case V = 0 (not
shown), it is known that �̃<(ω) = 2if (ω)Im�̃r (ω), �̃r (ω) ∼
ω2 for small ω [Eq. (23)] and therefore, i�̃<(ω) is a decreasing
function of ω for negative ω and zero for positive ω at T = 0.
The expression Eq. (21) indicates that the effect of a small
voltage is to split this result into four similar expressions, two
shifted to smaller ω and two to higher ω. The net effect is
to increase i�̃<(ω), but it continues to be a monotonically
decreasing function.

The comparison between the numerical result �̃<(ω) and
the analytical one �̃<

2 (ω) [Eq. (21)] to total second order
in ω and V is good for |ω| < 0.2�̃, suggesting that higher
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FIG. 1. (Color online) Full lines: renormalized lesser self-energy
as a function of frequency for βL = βR , T = 0, and several bias
voltages. From bottom to top eV = 0.1, 0.2, and 0.3. Dotted line:
analytical result at small energies [Eq. (21)]. �̃ = 1 is taken as the
unit of energy.

order terms are small in this interval. Instead, for −ω < 0.2�̃,
�̃<

2 (ω) overestimates �̃<(ω).
We have also calculated the currents between the left

lead and the dot IL and between the dot and the right lead
IR for eV � 0.4�̃. The relative error |IL − IR|/I , where
I = (IL + IR)/2, is less than 2.2 × 10−4 for the values of eV

studied. An excellent fit of the difference between currents
in this interval is IL − IR = (2e/h)[−0.00311(eV/�̃)4 −
0.007 77(eV/�̃)5] [53]. This confirms the analysis of the
previous section that the current is conserved to order V 3

by RPT. In the same interval, the current can be fitted by
I = (2e/h)[0.8531(eV/�̃) − 0.1754(eV/�̃)3] . The linear
term agrees with the expected conductance from Friedel
sum rule, proportional to sin2(π〈ndσ 〉) = (2 + √

2)/4 ≈
0.8536.

The effect of temperature on i�̃<(ω) is shown Fig. 2 and
the result is compared with the analytical expression for small
ω, V , and T [Eq. (21)] and the Ng approximation [Eq. (29)].
While as shown above, the former expression �̃<

2 (ω) works
well at T = 0, the Ng approximation �̃<

Ng(ω) fails in the
region of small frequencies, below eV . In particular, it has
jumps at both chemical potentials μν due to the factor f̃ (ω)
[Eq. (9)] in Eq. (29) and it increases in some interval at positive
frequencies in contrast to the overall decreasing behavior of
i�̃<(ω). However, the Ng approximation improves rapidly
with increasing temperature. For kBT = eV/4, i�̃<

Ng(ω) lies

a little bit below (above) i�̃<(ω) for ω near to the smaller
(greater) chemical potential. For kBT = eV/2, �̃<

Ng(ω) is al-

ready a good approximation for �̃<(ω) in the whole frequency
range. Instead, the analytical expression �̃<

2 (ω) overestimates
�̃<(ω) for kBT � eV/2, particularly at negative frequencies,
indicating that terms in temperature of higher order than
T 2 become important. Concerning the conservation of the
current, |IL − IR|/I remains below 0.001 for eV = 0.2�̃ and
kBT � �̃ .

FIG. 2. (Color online) Full lines: renormalized lesser self-energy
as a function of frequency for βL = βR , eV = 0.2, and several
temperatures. From bottom to top kBT = 0, 0.05, 0.1, and 0.2. Dashed
line: Ng approximation [Eq. (29)]. Dotted line: analytical result at
small energies [Eq. (21)].

B. Larger coupling to the lead of higher chemical potential

In this section, we study the case βL = 9βR . As seen in
Fig. 3, increasing the coupling with the left lead, for which
the chemical potential μL = αLeV > 0 has the main effect
of shifting i�̃<(ω) to higher frequencies. Since i�̃<(ω) is
a decreasing function of ω, this shift implies higher values
i�̃<(ω) for fixed ω. This can be understood from the analytical
expression Eq. (21) in which the terms with coefficients
c1 and c2 increase in magnitude. For βL → 1 (βR → 0),
only c2 survives and all self-energies reduce to those of a
QD at equilibrium with the left lead, Im�̃r (ω) behaves as
(ω − μL)2 for small ω and V at T = 0 [see Eq. (23)], the Ng
approximation becomes exact and f̃ (ω) = f (ω − μL). While
this limit is still not reached for βL = 9βR , one expects a
smaller ratio |IL − IR|/I and a better comparison with the Ng
approximation. However, while the currents decrease, the ratio
|IL − IR|/I is of the same order of magnitude as before, for

FIG. 3. (Color online) Same as Fig. 1 for βL = 9βR .

125405-5



A. A. ALIGIA PHYSICAL REVIEW B 89, 125405 (2014)

FIG. 4. (Color online) Same as Fig. 2 for βL = 9βR .

the range of voltages studied. The same happens for the case
βL = βR/9 discussed in Sec. VI C.

The evolution of �̃<(ω) with temperature is shown in Fig. 4
and compared with Ng and analytical approximations. At zero
temperature, �̃<

Ng(ω) has qualitatively similar shortcomings
as for symmetric coupling to the leads, with jumps at both
μν , but quantitatively the agreement is better, as expected. At
finite temperature, in this case, already for kBT = eV/4, the
Ng approximation reproduces very well �̃<(ω). For higher
temperatures, the agreement improves, while the analytical
approximation �̃<

2 becomes worse.

C. Larger coupling to the lead of lower chemical potential

In this section, we consider the opposite case as in Sec. VI B
and take βL = βR/9. In this case, the system is nearer to the
situation in which the dot is at equilibrium with the right lead
and similar considerations as in the previous section apply. In
Fig. 5, we display �̃<(ω) for several values of V . While for
small ω, i�̃<(ω) increases with V , the behavior changes for

FIG. 5. (Color online) Renormalized lesser self-energy as a func-
tion of frequency for βL = βR/9, T = 0 and several bias voltages
indicated inside the figure.

FIG. 6. (Color online) Same as Fig. 2 for βL = βR/9.

−ω > eV and i�̃<(ω) decreases with increasing V . This can
be understood from the Ward identity [Eqs. (28) and (24) for
small ω and V ]. While the identity is strictly valid for V = 0,
one expects it to be qualitatively valid for small eV compared
to |ω|. Since ∂i�̃<

2 /∂ω|V =0 is negative for negative ω and also
γ is negative for large βR , one expects a decrease of i�̃<(ω)
with increasing V for eV � −ω, as observed in Fig. 5.

The effect of temperature on i�̃<(ω) is shown in Fig. 6. The
deviations at zero temperature between the Ng approximation
and the correct result to order Ũ 2 are larger than in the
previous case, particularly for ω near μR (−0.1�̃ in the figure).
However, the comparison improves rapidly with increasing
temperature, and �̃<

Ng(ω) turns out to be a good approximation
for kBT � eV/4.

VII. THERMAL CURRENT INDUCED BY THE VOLTAGE

In this section, we discuss the heat currents JL flowing from
the left lead to the dot and JR flowing from the dot to the right
lead. From the thermodynamic equation dQ = dE − μN , it
is clear that

Jν = JE
ν − μνJ

N
ν , (36)

where JE
ν are the energy currents and JN

ν are the corresponding
particle currents.

For a model with nearest-neighbor hopping only, an energy
density can be defined and using the continuity equation the
energy current can be defined [55]. Alternatively, following
the definition given by Boese and Fazio [44] and using the
formalism of Meir and Wingreen [52]. one arrives at the same
expressions, similar to Eqs. (33) and (34),

JE
ν = ±4i�L

h

∫
ωdω

[
2if (ω − μν)ImGr

d (ω) + G<
d (ω)

]
,

(37)

where upper (lower) sign corresponds to ν = L(R). These
expressions were obtained previously by Dong and Lei [19],
who calculated the thermopower of a quantum dot in the linear
response regime (V → 0 and vanishing temperature gradient)
using Ng ansatz for G<

d (ω).
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The energy current is conserved: JE
L = JE

R . Following a
similar reasoning as in Sec. V, it is easily seen that this
condition is satisfied to total fourth order in in eV/�̃ and
kBT /�̃ by the RPT expressions and exactly by the Ng
approximation. Adding the first Eq. (37) for times �L plus
the second times �R and using JE

L = JE
R , an expression for

the energy current is obtained in which G<
d (ω) is eliminated.

The same trick has been used for the electric currents [52],
which are the particle currents times the elementary charge:
Iν = eJN

ν . Using this and Eqs. (33) and (34), one obtains

Jν = 8πβLβR�

h

∫
(ω − μν)dωρ(ω)[fL(ω) − fR(ω)]. (38)

Note that the heat current is not conserved. The difference JR −
JL = (μL − μR)Iv/e = IvV is precisely the Joule heating at
the quantum dot.

At zero temperature, the exact heat currents to order
(eV/�̃)3 can be obtained using Eq. (6) and [43]:

ρ(ω)

ρ(0)
� 1 + sin(πn)

[
ω − γ (R − 1)eV

�̃

]
. (39)

The result is

Jν � 8βLβR

h
(eV )2 sin2(πn/2)

(
αL − αR

2
+ eV sin(πn)

�̃

×
[
α3

L + α3
R

3
− γ (R − 1)(αL − αR)

2

]

∓αν

{
1 + eV sin(πn)

�̃

[
αL − αR

2
− γ (R − 1)

]})
.

(40)

The leading term gives JR = −JL = G(0)V 2/2, where
G(0) = 8βLβR sin2(πn/2)e2/h is the conductance at V = 0
[43]. Thus, for small V , the heat flow to each lead is the same
independently of the particular voltage drops and coupling to
the leads.

An analysis of the heat current in the general nonequi-
librium case, with different temperatures of the two leads,
would require to perform numerically three integrations in
frequency. This is highly demanding. Here, we study the
effect of temperature on the heat current assuming that it is
the same for both leads. We have taken Ũ/(π�̃) = 1.136.
This value was obtained from recent NRG calculations for
Ed = −2� and U → +∞, which also lead to n = 0.75 and
z = �̃/� = 0.115 [54]. The result for JL for symmetric
coupling to the leads and voltage drops αν = βν = 1/2 is
shown in Fig. 7. While for T = 0, JL is negative, as expected
from the leading quadratic term in Eq. (40), the temperature
leads to a positive linear term in V (for both heat currents
Jν), which dominates the current for small V . This positive
contribution is expected in linear response, and is consistent
with the negative Seebeck coefficient S for temperatures below
the Kondo temperature reported previously at equilibrium for
n < 1 (S is proportional to minus the energy current) [46,48].
As a consequence, for finite temperatures, JL changes sign as
a function of the applied bias voltage. For occupation n > 1, S
is positive and JR changes sign from negative to positive with
increasing bias voltage.

FIG. 7. (Color online) Thermal current between the left lead and
the quantum dot in units of �̃2/h for several temperatures. �̃ = 1 is
the unit of energy. Parameters in the text.

VIII. SUMMARY AND DISCUSSION

Using renormalized perturbation theory (RPT) to second
order in the renormalized Coulomb repulsion Ũ , we have
calculated the lesser self-energy �̃<(ω)/z for the impurity
Anderson model, which describes transport through quantum
dots, in the general case (without electron-hole symmetry,
asymmetric voltage drops and different coupling to the
conducting leads). The greater self-energy can be calculated
from the difference with the imaginary part of the retarded
self-energy [Eq. (11)]. Using an additional approximation,
valid for small �ω/�̃, eV/�̃ and kBT /�̃, where �̃/kB is
of the order of the Kondo temperature TK , we have derived
exact analytical expressions to to total second order in ω, V ,
and T for the lesser and greater self-energies. To this end, it
is enough to calculate the self-energies to order Ũ 2, because
higher-order terms contribute to higher order in ω, V , T . The
result is given in terms of renormalized parameters, which in
turn can be determined directly from NRG [37,38] or from
thermodynamic quantities at equilibrium, for which accurate
(NRG) [56] or exact (Bethe ansatz) [57–60] techniques can be
applied.

The resulting �̃<(ω) (obtained by numerical integration
of the diagrammatic expression) is calculated for several
values of V and T and different coupling to the leads and
compared with the analytical expression and, in particular,
to the Ng approximation [Eq. (29)] widely used in different
contexts [15–24]. While the Ng approximation is inaccurate
and presents artificial jumps at T = 0 for |ω| � eV , it turns
out to be a good approximation in the whole frequency
range for kBT � eV/2 for symmetric coupling to the leads
or kBT � eV/4 for the asymmetric cases studied here.

We have also shown that RPT conserves the current to terms
of order (eV/�̃)3 and discussed the dependence of �̃<(ω) on
bias voltage V in terms of Ward identities satisfied by the
analytical approximation.

The analytical results for small energies �ω, eV , and kBT

compared with the quasiparticle level width �̃ [Eqs. (21) to
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(23)] can be used to test other approximations for this tough
problem, involving strong correlations out of equilibrium.

The RPT approach to order Ũ 2 that we have followed
becomes invalid for eV > �̃. In particular, it cannot describe
the splitting of the Kondo peak in the spectral density obtained
with the noncrossing approximation [61,62], and observed
experimentally in a three-terminal quantum ring [63]. This
might be corrected by the inclusion of terms up to fourth order
[32].

Concerning physical observables, probably the most stud-
ied one in the last years is the nonequilibrium electric conduc-
tance through nanodevices. In the case of single-level quantum
dots for which the impurity Anderson model can be applied, the
lesser and greater quantities can be eliminated from the expres-
sions of the conductance using conservation of the current [52].
The same happens for the energy current and as a consequence
also for the heat current, as shown in Sec. VII. The lesser (or
greater) self-energy plays however a role in this conservation,
see Sec. V. For problems with two levels in which the couplings
to both leads are not proportional, such an elimination is not
possible and the lesser or greater Green functions enter in the
expression for the conductance. An example is the conductance
through a benzene molecule connected to the leads in the meta
or ortho positions, for which two degenerate levels should
be considered (and they couple with different phases to both
leads) [64]. Other similar systems are molecules with nearly
degenerate even and odd states [65], aromatic molecules or
rings of quantum dots [66], or two quantum dots connected
with different couplings to two leads [67]. In these systems,
quantum interference plays an essential role. The case of
complete destructive interference is described by an SU(4)
Anderson model [68], very similar as the one that describes car-
bon nanotubes [69–71], silicon nanowires [48,72], and more
recently a double quantum dot with strong interdot capacitive
coupling, and each QD tunnel-coupled to its own pair of leads,
for certain parameters [7,8,73–75]. The only difference is that
the relevant levels are connected to the leads with different
phases and therefore the conductance is different. Recently
RPT with parameters derived from NRG was applied to this
problem for equilibrium quantities. This approach can be ex-
tended to study the interference phenomena out of equilibrium.

Another observable, directly related to the lesser Green
function is the occupation at the dot, which is given by 〈ndσ 〉 =
−i

∫
dωG<

dσ (ω)/(2π ) [9]. RPT is not adequate to calculate this
integral because it involves energies far from the Fermi level
[34,43]. However, since the difference between �̃<(ω) and
the corresponding Ng approximation is restricted to energies
smaller that eV (see Sec. IV), we can calculate the effect
of this approximation on n = 2〈ndσ 〉 using Eq. (8). We find
that for the region of parameters that we have studied, the
difference �n = n − nNg is very small, of the order of 10−4z.
This is due to a large compensation of the regions of positive
and negative �̃>

Ng(ω) − �̃<(ω). In fact using Eqs. (8), (29),

and (35), one realizes that �n is proportional to IL − IR and
therefore (from the results of Sec. V) it is of order z(eV/�̃)4.

Nevertheless, one expects that the shortcomings of the
Ng approach would appear in dynamic properties at low
frequencies, for which time derivatives enter the conservation
laws and the left and right electric and energy currents become
different.

We have calculated the effect of the applied bias voltage V

on the heat currents between any of the leads and the quantum
dot. Due to the Joule heating, these currents exits even at zero
temperature for V �= 0. We provide exact expressions to order
(eV/�̃)3 at T = 0 [Eq. 40]. At finite temperature, the current
between the dot and one of the leads changes sign as a function
of V .
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APPENDIX: EVALUATION OF THE INTEGRALS
ENTERING THE RENORMALIZED LESSER

SELF-ENERGY FOR SMALL ENERGIES

The integrals entering Eq. (19) for �̃<(ω) have the form

X(ω) =
∫

dε2f (ε2 − μ2)Y (ω,ε2), (A1)

Y (ω,ε2) =
∫

dε1f (ε1 − μ1)f (ω + μ3 − ε1 − ε2). (A2)

Using

f (x)f (y) = f (−y) − f (x)

exp
(

x+y

kBT

) − 1
, (A3)

for the integrand of Eq. (A2) with x = ε1 − μ1, y = ω +
μ3 − ε1 − ε2, since ζ = x + y is independent of ε1, Y (ω,ε2)
becomes proportional to the integral of a difference of Fermi
functions. Using∫

dx [f (x − ζ ) − f (x)] = ζ, (A4)

one obtains that Y (ω,ε2) can be written in terms of the Bose
function b(ω):

Y (ω,ε2) = ζb(ζ ),

b(ζ ) = 1

exp
(

ζ

kBT

) − 1
(A5)

ζ = ω + μ3 − μ1 − ε2.

With the change of variable v = ε2 − μ2, replacing Eq. (A5)
in Eq. (A1), one has

X(ω) =
∫

dv(a − v)f (v)b(a − v),

(A6)
a = ω + μ3 − μ1 − μ2.

Using

f (v)b(a − v) = −f (a) [f (v) + b(−a + v)] , (A7)

one can write

X(ω) = f (a)X̃(ω), (A8)

X̃(ω) = −
∫

dv(a − v) [f (v) + b(−a + v)]

= X̃1(ω) + X̃2(ω), (A9)
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with

X̃1(ω) =
∫

dv(v − a) [f (v) − f (v − a)] , (A10)

X̃2(ω) =
∫

ydy [f (y) + b(y)] = (kBT )2
∫

dx
x

sinh(x)

= π2

2
(kBT )2. (A11)

Above, the changes of variable y = v − a, x = y/(kBT ) were
used.

Using instead y = v − a/2, X̃1 becomes

X̃1(ω) =
∫

ydy [f (y + a/2) − f (y − a/2)]

−
∫

dv [f (v) − f (v − a)] a/2. (A12)

The first integral vanishes, since the integrand is odd [as can be
checked using Eq. (18)]. Using Eq. (A4), the second integral
gives X̃1(ω) = a2/2. Replacing this and Eq. (A11) in Eq. (A8),
we finally obtain

X(ω) = f (a)

2
[a2 + (πkBT )2]. (A13)
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