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Generalized fluctuation relation for power-law distributions
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Strong violations of existing fluctuation theorems may arise in nonequilibrium steady states characterized
by distributions with power-law tails. The ratio of the probabilities of positive and negative fluctuations of
equal magnitude behaves in an anomalous nonmonotonic way [H. Touchette and E. G. D. Cohen, Phys. Rev. E
76, 020101(R) (2007)]. Here, we propose an alternative definition of fluctuation relation (FR) symmetry that,
in the power-law regime, is characterized by a monotonic linear behavior. The proposal is consistent with a
large deviationlike principle. As an example, we study the fluctuations of the work done on a dragged particle
immersed in a complex environment able to induce power-law tails. When the environment is characterized by
spatiotemporal temperature fluctuations, distributions arising in nonextensive statistical mechanics define the
work statistics. In that situation, we find that the FR symmetry is solely defined by the average bath temperature.
The case of a dragged particle subjected to a Lévy noise is also analyzed in detail.
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I. INTRODUCTION

Fluctuation theorems have become a standard tool to char-
acterize nonequilibrium states [1–7]. Independently of their
specific formulation [8–11], a common underlying ingredient
is an assertion about the symmetries of the fluctuation’s
measures. For example, one of the most common formulations
establishes that the probability of positive and negative
fluctuations of a given variable differ by an exponential weight
proportional to the fluctuation’s magnitude. This fluctuation
relation (FR) symmetry has been confirmed in a wide class of
experimental setups [12]. While most of the analyses focus on
variables such as entropy production and work (performed
on a system), the FR symmetries may also be valid for
nonthermodynamic variables [13].

A Brownian particle dragged by a spring through a thermal
environment is one of the simpler arrangements where a FR
symmetry can be theoretically predicted [14,15] and measured
[16]. While the work performed on the particle satisfies a
standard or conventional FR, the heat fluctuations follow and
extended FR [17]. The exponential weight that relates the
probability of positive and negative fluctuations does not scale
linearly with the heat variable. Similar deviations with respect
to a linear dependence have been found in the injected power
to systems driven by an external stochastic force [18,19].

Conventional or extended FRs [17–19] are essentially valid
when the probability distributions obey a large deviation
principle (LDP) [20,21]. This formalism also provides a
solid basis for characterizing nonequilibrium states [22].
Therefore, stronger violations of conventional FRs should arise
when power-law distributions [21] determine the fluctuation’s
statistics. In fact, self-similar structures cannot be studied in
the context of a standard large deviation theory [20,21].

One of the first analyses about the incompatibility of FRs
with anomalous (power-law distributed) fluctuations was done
by Touchette and Cohen in Ref. [23]. In contrast with previous
Langevin models [14,15], where the environment influence
is taken into account through a Gaussian white noise, they
considered a stable Lévy white noise. It was found that the ratio
of the probabilities of positive and negative work fluctuations

of equal magnitude behaves in an anomalous nonlinear way,
developing a convergence to one for large fluctuations. Hence,
negative fluctuations of the work performed on the particle are
just as likely to happen as large positive work fluctuations of
equal magnitude. This unusual property strongly departs from
the Gaussian case, where the validity of a standard FR implies
that positive fluctuations are exponentially more probable than
negative ones.

A similar analysis on anomalous fluctuation properties was
performed by Chechkin and Klages [24] for the same kind
of Langevin models. In the (power-law) Lévy case the same
conclusions were obtained. On the other hand, it was shown
that standard FRs remain valid in the presence of normal long
time correlated fluctuations. The long-range correlations only
alter the time speed of the large deviation functions (LDFs)
[20]. An analogous conclusion was obtained by Harris and
Touchette [25].

In Ref. [26] Beck and Cohen introduced an alternative FR
that arises by considering a superstatistical model [27,28],
where the particle environment develops (spatiotemporal)
temperature fluctuations. As is well known [27], this dynamics
leads to power-law distributions arising in Tsallis nonexten-
sive statistical mechanics [29–35]. The alternative FR was
derived by averaging temperature in a standard FR. When the
“measured” work distribution develops power-law tails [26],
a very complex expression that does not have a clear physical
meaning is obtained.

From different points of view, all quoted analyses [24,26]
sustain the main conclusion of Ref. [23]; that is, FRs in the
presence of power-law distributions acquire an anomalous
(complicated) structure whose origin can be linked to the
incompatibility of self-similar structures with a (standard)
LDP. The main goal of this paper is to introduce a generalized
and alternative FR such that in the presence of power-law
tails the symmetry between positive and negative fluctuations
is expressed through a linear dependence. Hence, a simple
scheme for understanding previous results [23–26] is obtained.
Furthermore, we associate the proposed symmetry with a
large deviationlike principle. In a long time regime, it allows
expressing the FR through the symmetries of a set of LDFs
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associated to the probability distribution and its characteristic
function. As in the standard case [4], both functions are related
by a Legendre-Fenchel transformation [20].

Similarly to the case of standard FRs, the proposed
probability symmetry does not assume an underlying ther-
modynamic equilibrium, either extensive or nonextensive.
Nevertheless, the alternative FR symmetry adopts a very
simple structure when written in terms of a set of functions
introduced in nonextensive entropy formalism [29,30]. The
relevance of this stretched relation becomes evident when
considering previous related analyses [26]. Furthermore, it is
expected that a FR associated to a nonextensive (stochastic)
thermodynamics may have a central role for understanding
intrinsic fluctuations in nanoscale systems [36].

The paper is outlined as follows. In Sec. II we introduce the
generalized FR symmetry. In Sec. III we apply the alternative
definition to a specific physical system characterized by
power-law tails. We analyze the fluctuations of the work done
on a dragged particle immersed in a complex environment
that develops (spatiotemporal) temperature fluctuations [26].
Furthermore, the Lévy model introduced in Ref. [23] is
analyzed in detail. In Sec. IV we give the conclusions. In
Appendix A we develop a large deviationlike principle and
characterize the symmetries of the LDFs. These last results rely
on a saddle-point approximation performed in Appendix B.

II. GENERALIZED FLUCTUATION RELATION

For an arbitrary stochastic variable xst, with probability
distribution p(x), a standard FR symmetry is defined by
the relation ln[p(x)/p(−x)] = ζx, or equivalently p(±x) =
p(∓x)e±ζx, where ζ is a positive constant. Here, we propose
the alternative FR symmetry

[p(x)]1−q − [p(−x)]1−q

1 − q
= ζx, (1)

which in turn can be expressed as

p(±x) = {[p(∓x)]1−q ± (1 − q)ζx} 1
1−q . (2)

The real parameter q is related with the index of the power-law
tails. Its domain will be specified later on. The units of the
constant ζ are [1/x]2−q . Nevertheless, in the standard case it
is a conjugate variable of x; that is, its units are [1/x]. This
discrepancy can be avoided by writing

ζ = ζph∫ ∞
−∞ dx[p(x)]q

, (3)

where now ζph plays the role of a (physical) conjugate
variable. Notice that even with this parameter redefinition
the proposed symmetry can be written solely in terms of
p(x). The generalized FR written in terms of ζ is called the
“un-normalized scheme,” while in terms of ζph it is called the
“normalized scheme.”

The previous relations, Eqs. (1) and (2), strongly depart
from the standard ones. Their structures are simplified by
writing them in terms of a set of functions introduced
previously in the context of Tsallis nonextensive statistical

mechanics [29]. A q-logarithm and q-exponential functions
are defined, respectively, as

lnq x ≡ x1−q − 1

1 − q
, ex

q ≡ [1 + (1 − q)x]
1

1−q , (4)

jointly with the generalized q-product operation

x ⊗q y ≡ [x1−q + y1−q − 1]
1

1−q . (5)

The relevance of these definitions comes from the property
that in the limit q → 1 they recover the standard logarithm
[ln1 x = ln x], the exponential function [exp1 x = exp x], and,
respectively, the standard product [x ⊗1 y = xy]. In terms of
them, Eq. (1) can be written as

lnq[p(x)] − lnq[p(−x)] = ζx, (6)

while Eq. (2) becomes equivalent to

p(−x) = p(x) ⊗q e−ζx
q , p(x) = p(−x) ⊗q eζx

q . (7)

Hence, the proposed FR can be read as a “deformation” of
the standard ones. The parameter q measures the degree of
departure with respect to the standard case (q → 1). Notice
that by using the properties lnq(x ⊗q y) = lnq x + lnq y, and
e
x+y
q = ex

q ⊗q e
y
q [29], the consistence between the previous

two expressions becomes evident.
The standard FR symmetry can also be written in terms of

the characteristic function Z(λ) = ∫ ∞
−∞ dxp(x)e−λx, that is,

Z(λ) = Z(−λ + ζ ), which in turn implies Z(ζ ) = 1. Taking
into account Eq. (2), it follows that here we must consider the
generalized expression

Zq(λ) ≡
∫ ∞

−∞
dx{[p(x)]1−q − (1 − q)λx} 1

1−q , (8)

which can be rewritten as

Zq(λ) =
∫ ∞

−∞
dx

[
p(x) ⊗q e−λx

q

]
. (9)

By using the associative property x ⊗q (y ⊗q z) = (x ⊗q

y) ⊗q z [29], the generalized FR [Eqs. (6) or (7)] implies the
equivalent symmetry

Zq(λ) = Zq(−λ + ζ ), Zq(ζ ) = 1. (10)

Notice that this condition is exactly the same as the one that
defines the standard case, q → 1.

Equation (9) naturally arises in nonextensive statistical
mechanics. Hence, its properties are well known [29] . Zq(λ)
is the generating function of a kind of generalized moments of
xst, which are calculated from powers of p(x).

In accordance with the normalized scheme [Eq. (3)], we
introduce the definitions

Zph
q (λph) ≡ Zq[λ(λph)], λ = λph∫ ∞

−∞ dx[p(x)]q
. (11)

Thus, Eqs. (3) and (10) allow us to write the equivalent
symmetry

Zph
q (λph) = Zph

q (−λph + ζph), Zph
q (ζph) = 1. (12)
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A. q-Gaussian distributions

Equations (6) and (7) define the generalized FR. Equiv-
alently, it can be expressed through the “q-characteristic
function” Eq. (9) leading to Eq. (10). Here, we search which
kind of distributions may satisfy these relations in an exact
way for any value of x.

Gaussian distributions always satisfy the standard symme-
try corresponding to lim q → 1. Normal distributions emerge
naturally when formulating a central limit theorem, as solu-
tions of linear Fokker-Planck equations, or by maximizing
Gibbs entropy under a second moment constraint. Similarly,
q-Gaussian distributions [29] are related to a generalized
central limit theorem [31], are solutions of a kind of nonlinear
Fokker-Planck equations [32], and maximize nonextensive
Tsallis entropy under a generalized second moment constraint
[33]. They read

p(x) =
√

β

Nq

expq[−β(x − x0)2], (13)

where β−1 measures the width of the distribution and Nq is a
normalization factor such that

∫ +∞
−∞ p(x)dx = 1, (q < 3). For

1 < q < 3, p(x) is characterized by power-law tails, p(x) �
1/(x − x0)2/(q−1), which is the case of interest in this paper.
Hence, the index q determines the exponent of the power-law
tails. The first moment of p(x) is finite for 1 < q < 2, while the
second one is finite for 1 < q < 5/3. In the domain 1 < q < 3,

the normalization constant reads [29]

Nq =
√

π

q − 1

�
( 3−q

2(q−1)

)
�

(
1

q−1

) , 1 < q < 3, (14)

where �(y) is the Gamma function.
It can be immediately proven that the generalized FR Eq. (6)

[or Eq. (7)] is satisfied, for any value of x, by the q-Gaussian
distribution Eq. (13) with

ζ = 4x0
β

3−q

2

N 1−q
q

, ζph = 4x0β

(
3 − q

2

)
. (15)

In the second expression we used the integral∫ +∞

−∞
[p(x)]qdx =

(
3 − q

2

)( Nq√
β

)1−q

, (16)

valid for the distribution Eq. (13). When q → 1, the standard
Gaussian expression ζ = ζph = 4x0β follows. On the other
hand, it is simple to realize that an arbitrary distribution
p(x) satisfies the symmetry Eq. (6) when x is restricted
to the interval where it develops power-law tails, p(x) �
1/(x − x0)2/(q−1). Hence, even in the presence of power-law
tails, a linear relation characterizes the symmetry between
positive and negative fluctuations of equal magnitude.

Using that
∫ +∞
−∞ expq(−ax2) = Nq/

√
a, after some algebra

the q-characteristic function Eq. (9) associated to the q-
Gaussian distribution Eq. (13) reads

Zq(λ) = expq̃

{(
3 − q

2

)( Nq√
β

)1−q[
λ2N 1−q

q

4β
3−q

2

− λx0

]}
,

(17)

where the index of the exponential reads

q̃ = 1 + q

3 − q
. (18)

Consistently, the function Eq. (17) satisfies the symmetry
Eq. (10) with the constant ζ given by Eq. (15). On the other
hand, Z

ph
q (λ) reads

Zph
q (λph) = expq̃

[
λ2

ph

4β
( 3−q

2

) − λphx0

]
. (19)

B. Fluctuation relations for time-scaled variables

While in the previous proposal we did not include time
as an explicit parameter, its generalization to time dependent
variables is immediate, xst → xst(t), p(x) → p(x,t). On the
other hand, when studying nonequilibrium systems it is
common to define the variable of interest as a time-scaled
one:

μst(t) 	 1

tκ

∫ t

0
dtvst(t) 	 xst(t)

tκ
, (20)

where (d/dt)xst(t) = vst(t). Usually, the time scaling is pro-
portional to the elapsed time, κ = 1. Hence, μst(t) can be read
as a “time-average” velocity. Here, we adopt a more general
point of view by considering arbitrary values of the exponent
κ > 0. In general, the definition Eq. (20) makes sense in an
asymptotic time regime. From now on, we use the symbol 	
for denoting an equality valid in a long time regime [20].
Clearly, the conditions that guarantee the achievement of this
regime depend on each particular system.

For variables such as μst(t) one can also define a generalized
FR. While its structure is very similar to the previous case, it is
worthwhile to write it explicitly. The probability distribution
p(μ) of μst(t) follows from the change of variable p(μ)dμ =
p(x)dx. Taking into account that p(x) satisfies Eq. (6), a
natural extension of the generalized FR is

1

tη
{lnq[p(μ)] − lnq[p(−μ)]} 	 αμ, (21)

or equivalently

p(−μ) 	 p(μ) ⊗q e−αtημ
q , p(μ) 	 p(−μ) ⊗q eαμtη

q .

(22)
The constant α as well as the exponent η > 0 depend on each
particular problem. Similarly, the q-characteristic function of
μst(t) is defined as

Zq(λ) =
∫ ∞

−∞
dμ

[
p(μ) ⊗q e−λtημ

q

]
. (23)

From Eq. (22), the following symmetry is satisfied:

Zq(λ) 	 Zq(−λ + α), Zq(α) 	 1. (24)

Notice that in order to simplify the notation we do not make
explicit either that Zq corresponds to the variable μst(t) or its
dependence on time.

For the normalized scheme, Eq. (3), we define the equiva-
lent FR:

1

t δ
{lnq[p(μ)] − lnq[p(−μ)]} 	 αph∫ ∞

−∞ dμ[p(μ)]q
μ. (25)
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In this case, the normalization time factor is defined with a
different exponent, δ > 0. By introducing the characteristic
function Z

ph
q (λph) ≡ Zq[λ(λph)], where

λ = λph
1

t δ−η

∫ ∞
−∞ dμ[p(μ)]q

, (26)

the equivalent symmetry follows:

Zph
q (λph) 	 Zph

q (−λph + αph). (27)

When the probability distribution p(μ) has an asymptotic
(t → ∞) exponential structure (q → 1), the (standard) FR
can be analyzed through a large deviation theory [20,21].
The LDFs, that is, the factors that scale the time dependence of
the probability distributions and the characteristic functions,
are related by a Legendre-Fenchel transform. Furthermore, the
relation Eq. (21) (q → 1), or equivalently Eq. (25), implies
some symmetries for the LDFs [4]. In the Appendices, by
establishing a generalized large deviationlike principle, we
demonstrate that these results can be generalized to the present
context (q 
= 1). Furthermore, general relations linking the
un-normalized [Eq. (21)] and normalized [Eq. (25)] schemes
are formulated [Eqs. (A3) and (A27)].

III. WORK PERFORMED ON A PARTICLE IMMERSED IN
A COMPLEX ENVIRONMENT

In the previous section we defined the alternative FR, and
in the Appendices we develop a related large deviationlike
principle. Here, we apply the proposal to a specific physical
example. We study the fluctuations of the work done on a
dragged particle [14,15] immersed in a complex environment
able to induce power-law tails in the particle statistics [23,26].
While this model has been studied previously, the following
analysis shows the conceptual and physical relevance of
proposing an alternative FR consistent with a LDP.

The position x(t) and velocity v(t) of the particle obey the
equations

dx(t)

dt
= v(t), (28a)

m
dv(t)

dt
= −γ v(t) − k[x(t) − x∗(t)] + ξ (t). (28b)

The contribution −γ v(t) gives the damping force. The term
−k[x(t) − x∗(t)] is the force produced by a harmonic potential
where the position of its minimum is given by the arbitrary
function x∗(t). Finally, the environment influence is introduced
through the noise ξ (t).

In the overdamped regime, mk � γ 2, the position evolu-
tion can be approximated by the stochastic equation:

γ
dx(t)

dt
= −k[x(t) − x∗(t)] + ξ (t). (29)

The work performed on the particle by the harmonic drag force
during a time τ is [15,23]

Wτ = −k

∫ τ

0
[x(t) − x∗(t)]v∗(t)dt, (30)

where v∗(t) ≡ (d/dt)x∗(t).

Independently of the environment model, the noise prob-
ability distribution is symmetric around the origin. Hence,
when it exists, the average noise intensity is null, 〈ξ (t)〉 = 0.

By assuming as valid the same property for the initial particle
position, 〈x(0)〉 = 0, we introduce the function

Mτ = k

∫ τ

0
dtv∗(t)

∫ t

0
dt ′e−(t−t ′)/τ0v∗(t ′), (31)

where the characteristic time is

τ0 ≡ γ

k
. (32)

When the distribution of the noise has a finite first moment, it
is simple to realize that Mτ gives the average performed work,
Mτ = 〈Wτ 〉. In general, it only defines the most probable value
of Wτ .

For the Langevin dynamics Eq. (29), transient behaviors
develop when τ � τ0. Therefore, the long time regime is
achieved when τ � τ0. Under this condition, the exponential
factor in Eq. (31) can be approximated by a delta-Dirac
function, e−(t−t ′)/τ0 	 τ0δ(t − t ′). Hence, we get

Mτ 	 γ

∫ τ

0
dt[v∗(t)]2. (33)

The object of interest is the probability density Pτ (W )
of performing a work W up to time τ. We also study the
asymptotic statistic of the dimensionless stochastic variable

wτ ≡ Wτ

Mτ

, (34)

whose probability density is denoted as pτ (w). At any time, the
most probable value of wτ is one. Equivalently, when it exists,
〈wτ 〉 = 1. Notice that Wτ and wτ correspond, respectively, to
the variables xst and μst of the previous section.

A. Standard model

In order to clarify the next results, here we briefly review
the standard case of a thermal environment at temperature
T . Therefore, ξ (t) is a Gaussian noise whose correla-
tion, consistently with a fluctuation-dissipation theorem, is
〈ξ (t)ξ (s)〉 = 2β−1γ δ(t − s), where β−1 = kBT . As demon-
strated in Ref. [15], for thermalized initial conditions, Pτ (W )
is a Gaussian distribution:

Pτ (W ) = 1√
2πVτ

exp

[
− (W − Mτ )2

2Vτ

]
, (35)

where the time dependent width Vτ is

Vτ = 2β−1Mτ . (36)

Pτ (W ) satisfies the standard FR symmetry:

ln[Pτ (W )] − ln[Pτ (−W )] = βW. (37)

The proportionality with β arises owing to the relation Eq. (36).
After a simple change of variables, the probability density

of the stochastic variable Eq. (34) is

pτ (w) = 1√
2πṼτ

exp

[
− (w − w0)2

2Ṽτ

]
, (38)

011109-4



GENERALIZED FLUCTUATION RELATION FOR POWER- . . . PHYSICAL REVIEW E 86, 011109 (2012)

where

w0 = 1, Ṽτ = Vτ

M2
τ

= 2

βMτ

. (39)

Hence, we have the following symmetry:

1

τ δ
{ln[pτ (w)] − ln[pτ (−w)]} = βMτ

τ δ
w 	 αphw. (40)

The exponent δ = η is chosen in such a way that in the
asymptotic regime the contribution Mτ/τ

δ does not depend
on time. We assume an accelerated potential movement

x∗(t) = v∗t1+ac

(1 + ac)
, v∗(t) = v∗tac , (41)

where v∗ is an appropriate constant and ac � 0. The usual
assumption of constant velocity, v∗(t) = v∗, is recovered with
ac = 0. The average work Eq. (33) behaves as

Mτ 	 γ v2
∗

1 + 2ac

τ 1+2ac . (42)

Therefore, the FR Eq. (40) is defined with

δ = 1 + 2ac, αph = 1

1 + 2ac

βγ v2
∗. (43)

Notice that in general δ 
= 1. A similar situation emerges in the
presence of normal long time correlated fluctuations [24,25].
Here, this dependence arises from the acceleration of the
harmonic potential, Eq. (41). In fact, δ = 1 when the velocity
is constant, ac = 0. On the other hand, owing to the chosen
normalization, Eq. (34), αph is not only proportional to β

(factor γ v2
∗).

B. Superstatistical model

Superstatistics [27,28] consists of superpositions of dif-
ferent statistics for driven nonequilibrium systems with
spatiotemporal inhomogeneities of an intensive parameter,
such as, for example, the inverse temperature β in the
previous example. We assume that the time scale on which
β fluctuates is much larger than the typical fluctuations of
Wτ, that is, τ0 = γ /k. Hence, the work distribution can
be written as Pτ (W ) 	 ∫

dβf (β)P G
τ (W,β), where P G

τ (W,β)
is the probability density of the normal environment case,
Eq. (35). This limit was analyzed in Ref. [26] without resorting
to a LDP. A very complex probability relation arises, not
having any clear dependence with the average environment
temperature. These drawbacks are surpassed with the present
approach.

As in Ref. [27], the temperature fluctuations are described
by a Gamma distribution:

f (β) = 1

�(n/2)

(
n

2β0

)n/2

β
n
2 −1 exp

(
− nβ

2β0

)
, (44)

where β0 corresponds to the average inverse temperature, β0 =∫
dβf (β)β, and n is a positive constant. After averaging over

this statistics, a q-Gaussian distribution is obtained:

Pτ (W ) 	 1√
2N 2

q Vτ

expq

[
− (W − Mτ )2

2Vτ

]
. (45)

The width function Vτ is given by

Vτ = 2β−1
q Mτ . (46)

Notice the similitude with Eq. (36). Here, Mτ also follows
from Eq. (33). On the other hand, the characteristic parameters
are [27]

q = 1 + 2

n + 1
, βq = 2

3 − q
β0. (47)

It is difficult to extract some physical information by
analyzing the distribution Eq. (45) through a standard FR
symmetry [26], Eq. (37). In fact, given that Pτ (W ) is a
q-Gaussian distribution, it satisfies the generalized FR Eq. (6).
The parameter ζ, from Eqs. (15) and (45), can be written as

ζ = [2Nq

√
Mτ ]q−1β

3−q

2
q , ζph = β0. (48)

While the un-normalized FR is defined by a linear dependence
on W, ζ depends on time. Hence, its physical content is un-
clear. Nevertheless, in the normalized scheme, ζph corresponds
to the physical (average) temperature β0. Explicitly, the work
probability distribution satisfies the FR symmetry

Zτ
q {lnq[Pτ (W )] − lnq[Pτ (−W )]} 	 β0W, (49)

where for notational convenience we have defined

Zτ
q ≡

∫ ∞

−∞
dW [Pτ (W )]q . (50)

As in the standard case, in the present approach the environ-
ment (average) temperature is the scaling parameter of the
linear relation Eq. (49). Furthermore, this result recovers the
standard FR Eq. (37) in the limit q → 1, that is, in the absence
of temperature fluctuations, f (β) = δ(β − β0).

The probability density of wτ , Eq. (34), is

pτ (w) 	 1√
2N 2

q Ṽτ

expq

[
− (w − w0)2

2Ṽτ

]
, (51)

where the coefficients read

w0 = 1, Ṽτ = Vτ

M2
τ

= 2

βqMτ

. (52)

Hence, pτ (w) satisfies the symmetry

zτ
q

τ δ
{lnq[pτ (w)] − lnq[pτ (−w)]} 	 β0Mτ

τδ
w 	 αphw, (53)

where the normalization reads

zτ
q ≡

∫ ∞

−∞
dw[pτ (w)]q . (54)

This integral can be performed by using Eq. (16). By assuming
the velocity dependence Eq. (41), it follows that

δ = 1 + 2ac, αph = 1

1 + 2ac

β0γ v2
∗. (55)

The previous analysis demonstrates that all features of a
standard FR remain valid for the present example if one uses
the generalized FR. This result is explicitly shown in Fig. 1.
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FIG. 1. (Color online) (a) Probability distribution pτ (w) for the
superstatistical model, Eq. (51), for different times τ. Inset: peak
region. (b) Plot of zτ

q{lnq [pτ (w)] − lnq [pτ (−w)]} for each time τ.

Inset: collapse of these curves to a single line when plotting the nor-
malized FR symmetry �(w) ≡ zτ

q{lnq [pτ (w)] − lnq [pτ (−w)]}/τ δ,

Eq. (53). The potential velocity is constant, ac = 0, Eq. (41). Hence,
δ = 1, Eq. (55). In the natural units of the problem (see text)
the parameters are v∗ = γ = k = 1. The average temperature is
β0γ v2

∗/k = αphτ0 = 0.3, and q = 1.8, Eq. (47).

In Fig. 1(a) we plot the q-Gaussian distribution Eq. (51)
for different times τ. In the inset we show the peaks of the
distributions. Their widths diminish with time. We assumed a
constant potential’s velocity, ac = 0 in Eq. (41). Hence, δ = 1.

By using the (natural) units of mass m0 = γ 2/k, distance
x0 = v∗γ /k, and time τ0 = γ /k, it follows that γ = k =
v∗ = 1. Therefore, the unique free parameters are q [Eq. (47)]
and the (dimensionless) noise intensity, that is, the average
temperature of the distribution Eq. (44), β0(γ v∗)2/k = αphτ0.

In Fig. 1(b) we plot the dependence with w of
zτ
q{lnq[pτ (w)] − lnq[pτ (−w)]}. The index q is the same that

defines the q-Gaussian distribution of Fig. 1(a). For each time,
a linear behavior is evident. In the inset we show the collapse
to a single line when introducing the time normalization factor
(1/τ δ), Eq. (53).

In the un-normalized scheme [Eq. (21)], the FR reads

1

τ η
{lnq[pτ (w)] − lnq[pτ (−w)]} 	 [βqMτ ]

3−q

2

τ η(2Nq)1−q
	 αw,

(56)
where the coefficients are

α = 1

(2Nq)1−q

(
βqγ v2

∗
1 + 2ac

) 3−q

2

, η = δ

(
3 − q

2

)
. (57)

Here, the coefficient α does not have a clear physical
meaning. Nevertheless, as mentioned before, based on a large
deviationlike theory (see the Appendices) it is possible to
establish some general relations between α and αph, as well as
between η and δ [Eqs. (A3) and (A27)], which are satisfied in
the present case.

C. Lévy noise model

In Ref. [23] the noise ξ (t) was taken as a symmetric
stable Lévy noise. Furthermore, different experimental setups
where the model may be explicitly measured were proposed.
While the analysis presented in that contribution is correct,
here we study the same problem by using the generalized FR.
We explicitly show that a FR can be established only when the
probabilities satisfy a LDP.

The noise is defined by its characteristic functional:

Gξ [λ(t)] =
〈

exp i

∫ ∞

0
dtλ(t)ξ (t)

〉
(58a)

= exp

(
− b

∫ ∞

0
dt |λ(t)|σ

)
, (58b)

where λ(t) is an arbitrary test function. The constant b

measures the noise intensity and 0 < σ < 2. Due to the
linearity of the stochastic dynamics Eq. (29), the work Eq. (30)
is also a stable variable with the same index σ. Its characteristic
function, GW (λ) = ∫ +∞

−∞ dWPτ (W ) exp[iλW ], then reads

GW (λ) = 〈exp[iλWτ ]〉, (59a)

= exp (iMτλ − Bτ |λ|σ ), (59b)

where Mτ is defined by Eq. (31) and Bτ can be obtained after
writing GW (λ) in terms of Gξ [λ(t)]. For arbitrary velocities
v∗(t), we get

Bτ = b

(
k

γ

)σ ∫ τ

0
dt

∣∣∣∣
∫ τ

t

dt ′e−(t ′−t)/τ0v∗(t ′)
∣∣∣∣
σ

. (60)

For τ � τ0, Mτ can be calculated from Eq. (33), while Bτ ,

after taking e−(t ′−t)/τ0 	 τ0δ(t ′ − t), can be approximated as

Bτ 	 b

∫ τ

0
dt |v∗(t)|σ . (61)

Equation (59) corresponds to the Fourier transform of a
Lévy probability distribution. As is well known [37], for
|W − Mτ | � B

1/σ
τ it develops power-law tails:

Pτ (W ) ≈ cσBτ

|W − Mτ |1+σ
, (62)

where cσ = π−1σ sin(πσ/2)�(σ ). Only when σ = 1, one
gets a simple analytical expression valid for any value of
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W, Pτ (W ) = (Vτ/π )[(W − Mτ )2 + V 2
τ ]−1. It is expected that

Eq. (62) satisfies the normalized FR:

Zτ
q {lnq[Pτ (W )] − lnq[Pτ (−W )]} ∝ ζph(τ )W, (63)

where the symbol ∝ denotes both an asymptotic time regime
(τ � τ0) and |W − Mτ | � B

1/σ
τ , that is, values of W in the

power-law regime. The parameter q and the function ζph(τ )
can be found by mapping the approximation Eq. (62) with the
power-law behavior of the q-Gaussian distribution Eq. (45).
We get

q = σ + 3

σ + 1
, Vτ = c′

σ B
2
σ
τ . (64)

where c′
σ = 1

2 ( 2
1+σ

)
1+σ
σ (cσNq)

2
σ . Notice that 5/3 < q < 3

[34]. With these relations at hand, the time dependent function
ζ (τ ) reads

ζph(τ ) ≈ c′′
σ

γ

b
2
σ

1

τ
2
σ
−1

. (65)

with c′′
σ = 2

c′
σ

σ
1+σ

(1+acσ )
2
σ

1+2ac
. In deriving this expression we

assumed the general velocity dependence Eq. (41). While
in the power-law regime the Lévy distribution satisfies
the generalized FR Eq. (63), the proportionality constant
[Eq. (48)] becomes time dependent, ζph → ζph(τ ). At long
times, for any value of σ ∈ (0,2), it vanishes. Hence, con-
sistent with the results of Ref. [23], one can conclude that
asymptotically positive and negative fluctuations of the same
magnitude have the same statistical weight. On the other hand,
by comparison with the fluctuation theorem Eq. (49), it follows
that here it is not possible to associate a temperature to the
stochastic Lévy dynamics.

Other distinctive features of the problem can be charac-
terized by analyzing the statistics of the dimensionless work
Eq. (34). After a simple change of variables, from Eq. (59),
the Fourier transform of its probability pτ (w) reads

Gw(λ) = 〈exp[iλwτ ]〉 (66a)

= exp (iλw0 − B̃τ |λ|σ ), (66b)

where the coefficients are

w0 = 1, B̃τ = Bτ

|Mτ |σ . (67)

From Eqs. (33) and (61) we get the asymptotic behavior:

B̃τ 	 b

γ σ

∫ τ

0 dt |v∗(t)|σ∣∣ ∫ τ

0 dt[v∗(t)]2
∣∣σ . (68)

For the velocity dependence Eq. (41), it follows that

B̃τ 	 dσ

b

(γ v∗)σ
1

τσ (1+ac)−1
, v∗(t) = v∗tac . (69)

where dσ = (1+2acσ )σ

1+acσ
. Therefore, when σ > 1/(1 + ac) the

width of the distribution diminishes, while for σ < 1/(1 + ac)
it increases with time. The former behavior is consistent with
a LDP [see Eq. (A1)]. Therefore, it should be possible to
establish a (generalized) FR symmetry for pτ (w). In the
second case, the typical fluctuations of the scaled work wτ

increase in size at higher times. This anomalous behavior is
inconsistent with both a LDP and the law of large numbers [23].

Therefore, we expect that pτ (w) does not fulfill any FR in
this case. On the other hand, by analyzing pτ (w) through a
standard FR, the transition σ ≷ 1 (ac = 0) leads to the different
characteristic behaviors found in Ref. [23].

For |w − w0| � B̃
1/σ
τ , the probability distribution pτ (w)

behaves as pτ (w) ≈ cσ B̃τ /|w − w0|1+σ [see Eq. (62)]. In that
regime, it satisfies the relation

zτ
q

τ δ
{lnq[pτ (w)] − lnq[pτ (−w)]} ∝ αphw, (70)

where the coefficients read

δ = 2(1 + ac − σ−1), αph ≈ d ′
σ b− 2

σ (γ v∗)2, (71)

with d ′
σ = 2σ

1+σ
(c′

σ d
2/σ
σ )−1, and q is defined by Eq. (64), that

is, q = σ+3
σ+1 . On the other hand, the expression for αph is

only approximated because it is based on a mapping with a
q-Gaussian distribution. In general, the value of zτ

q , Eq. (54),
differs from that corresponding to a Lévy distribution.

Equation (70) is valid for any value of σ ∈ (0,2) if w

pertains to the power-law domain. Equivalently, it does not
apply for |w − w0| � B̃

1/σ
τ . Therefore, when B̃τ decreases

(increases) in time the FR symmetry is valid (not valid) for
almost any value of w. In fact, the transition in the behavior of
the characteristic width B̃τ , Eq. (69), also determines when a
LDP applies (δ > 0) or not (δ < 0). From Eq. (71) it follows
that δ ≷ 0 if σ ≷ 1/(1 + ac). These properties are explicitly
shown in the next figures.

In Fig. 2(a) we plot the (exact numeric) Lévy distribution
pτ (w) [37] obtained from its Fourier transform Eq. (66). We
assumed a constant potential’s velocity, ac = 0 in Eq. (41),
and σ = 1.5. Hence, q = 1.8 [Eq. (64)] and δ = 2/3 > 0
[Eq. (71)]. Consistently, the peaks around w = 1 diminish
their widths for higher times. By using natural units, the unique
free parameter is the (dimensionless) noise intensity [Eq. (58)],
bτ0(γ 2v∗/k)−σ .

In Fig. 2(b) we plot the dependence with w of
zτ
q{lnq[pτ (w)] − lnq[pτ (−w)]} for different times τ. Small

deviations with respect to a linear behavior are observed
around |w0 − B̃

1/σ
τ | < w < |w0 + B̃

1/σ
τ |. Their magnitudes

diminish with time. In the inset we show the collapse to a single
curve when introducing the time normalization factor (1/τ δ),
Eq. (70). We checked that the same property is valid for higher
times, indicating the consistence between the generalized FR
and its associated LDP. The value of αphτ

δ
0 was estimated from

the slope of the collapsed curves (see the inset). The theoretical
estimation, Eq. (71), gives αphτ

δ
0 = 1.85.

In Fig. 3(a) we plot the Lévy distribution pτ (w) for σ =
0.75, and ac = 0. Hence, q = 15/7 � 2.14 [Eq. (64)] and
δ = −2/3 < 0 [Eq. (71)]. A negative δ implies that the widths
of the peaks around w = 1 grow with time. The linear behavior
of zτ

q{lnq[pτ (w)] − lnq[pτ (−w)]} with w is only valid for w �
w0 + B̃

1/σ
τ , where B̃τ increases in time. Added to this failure,

after introducing the normalization factor (1/τ δ), the curves do
not collapse into a single curve (see the inset). These properties
are parallel to the inapplicability of a LDP. On the other hand,
the theoretical estimation, Eq. (71), gives αphτ

δ
0 = 0.21.
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FIG. 2. (Color online) (a) Levy probability distribution pτ (w)
defined by Fourier transform Eq. (66)) with σ = 1.5. Inset: peak
region. (b) Plot of zτ

q{lnq [pτ (w)] − lnq [pτ (−w)]} for each time τ.

Inset: collapse of these curves when plotting the normalized FR
symmetry �(w) ≡ zτ

q{lnq [pτ (w)] − lnq [pτ (−w)]}/τ δ, Eq. (70). The
potential velocity is constant, ac = 0, Eq. (41). Hence, δ = 2/3,

Eq. (71). In natural units (see text) the parameters are v∗ = γ =
k = 1. The noise intensity reads b(γ v∗)2 = 2.

IV. SUMMARY AND CONCLUSIONS

We have introduced an alternative definition of FR sym-
metry that satisfies two conditions. In the regime where the
probability of interest develops power-law tails the symmetry
is expressed through a linear behavior. Furthermore, the
generalized symmetry has associated a large deviationlike
theory.

The FR symmetry can be written as a difference between
the generalized q-logarithm of the probability distributions
for positive and negative fluctuations, Eq. (6). The parameter
q depends on the exponent of the power-law tails. In terms of
a generalized characteristic function, Eq. (9), the proposed FR
can be expressed as in the standard case, Eq. (10). Similar
relations, Eqs. (21) and (25), were formulated for time-
scaled variables. Based on the large deviationlike principle,
in the Appendices we showed that a set of LDFs can be
consistently defined for both the probability distribution and

FIG. 3. (Color online) (a) Levy probability distribution pτ (w)
defined by the Fourier transform Eq. (66) with σ = 0.75. Inset:
peak region. (b) Plot of zτ

q{lnq [pτ (w)] − lnq [pτ (−w)]} for each
time τ. Inset: �(w) ≡ zτ

q{lnq [pτ (w)] − lnq [pτ (−w)]}/τ δ, Eq. (70).
The potential velocity is constant, ac = 0, Eq. (41). Hence, δ =
−2/3 < 0, Eq. (71). In natural units (see text) the parameters are
v∗ = γ = k = 1. The noise intensity reads b(γ v∗)2 = 2.

its associated characteristic function. The standard Legendre
structure connecting them remains valid even in the presence
of self-similar power-law distributions, Eqs. (A23) and (A24).
Therefore, the generalized FR can be expressed as in the
standard case when written in term of the LDFs, Eqs. (A25)
and (A26).

The general formalism was applied for characterizing the
fluctuations of the work performed on a dragged particle
immersed in a complex environment. When the power-law
nature of the dynamics is induced by (spatiotemporal) temper-
ature fluctuations, the work statistics is given by a q-Gaussian
distribution. The FR symmetry is scaled by the environment
average temperature. This fluctuation theorem [Eq. (49)] may
in principle be confirmed in different experimental setups [27].

By analyzing the case in which the environment is repre-
sented by an external Lévy noise, we reinterpreted the results
of Ref. [23]. Taking into account the superstatistical model,
we conclude that some of those results are not valid in general.
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Due to the interplay between the noise statistics, the velocity
of the power input, and the particle dissipative dynamics, in
the long time regime the probabilities of positive and negative
fluctuations of equal magnitude become identical. This result
follows from the asymptotic vanishing of the characteristic
constant that defines the work probability symmetry, Eqs. (63)
and (65). On the other hand, the time-scaled work only satisfies
the generalized FR when its behavior is compatible with a
LDP; that is, the size of its characteristic fluctuations must
diminish with time (Figs. 2 and 3).

While the uniqueness of the present proposal was not
proved, based on the requirements that it satisfies [38], one can
conclude that it may be considered as a valid and solid tool
for analyzing nonequilibrium fluctuations in systems charac-
terized by power-law distributions. The stretched relation with
nonextensive thermodynamics [29], as well as its applicability
in specific experimental setups [36], are open problems that
certainly deserve extra analysis.
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APPENDIX A: LARGE DEVIATION FUNCTIONS

In this section we show the consistence of the proposed
FR with a large deviationlike principle. It is not obvious
that an arbitrary generalized FR may satisfy this condition.
Specifically, we show that it is possible to define two LDFs
from the (long time) asymptotic behavior of the probability
density and its associated q-characteristic function. Both of
them become related by a Legendre-Fenchel transformation
[20]. These results provide a solid mathematical support to the
proposed FR.

1. Un-normalized scheme

We base our analysis on time-scaled variables, Eq. (20).
A large deviationlike principle relies on providing a general
structure for the probability p(μ) in the long time regime.
Instead of a standard exponential structure [20], here we
assume

p(μ) 	 t δ/2

Cq

expq

[ − t δC1−q
q ϕ(μ)

]
. (A1)

As before, the symbol 	 denotes an equality valid in a long
time regime. The factor t δ (δ > 0) measures the time speed
of ϕ(μ) � 0. As in Refs. [24,25] (see also Appendix D of
Ref. [20]), we consider the case in which δ 
= 1. On the other
hand, the factor (t δ/2/Cq) in front of the q-exponential is
necessary for providing the correct units and normalization
of p(μ).

After a simple manipulation without involving any extra
approximation, Eq. (A1) can be rewritten as

p(μ) 	 t δ/2

Cq

⊗q expq[−tηϕ(μ)], (A2)

where the exponent η reads

η = δ
(3 − q

2

)
. (A3)

Written is this way, given that limt→∞ lnq[t δ/2/Cq]/tη = 0,

the function ϕ(μ) can be obtained as

ϕ(μ) = lim
t→∞

−1

tη
lnq[p(μ)]. (A4)

Hence, it can be read as the probability’s LDF [20].
Another LDF can be defined from the asymptotic time

behavior of Zq(λ). Its structure can be obtained from the
definition Eq. (23), after taking into account the probability
asymptotic behavior Eq. (A1). In general, the resulting integral
cannot be obtained exactly. Nevertheless, it can be worked out
through a steepest descent approximation. In Appendix B we
derive the asymptotic expression

Zq(λ) 	 expq̃

[
−

(
3 − q

2

)
t δC1−q

q �(λ)

]
, (A5)

where the index of the q exponential reads

q̃ = 1 + q

3 − q
. (A6)

Hence, the LDF associated to Zq(λ) can be defined as

�(λ) = lim
t→∞

−1

t δ

2

(3 − q)
Cq−1

q lnq̃[Zq(λ)]. (A7)

The steepest descent approximation establishes a link
between both LDFs (Appendix B). They are related by the
Legendre-Fenchel transformation

�(λ) = min
μ

[ϕ(μ) + λμ], (A8)

jointly with the inverse equation

ϕ(μ) = max
λ

[�(λ) − λμ]. (A9)

These relations also arise from a standard LDP, where the
asymptotic behavior of the probability and its characteristic
function scales with standard exponential functions. Remark-
ably, this Legendre structure remains valid even when the
distributions develop power-law tails.

a. Symmetries of the LDFs

After establishing a large deviationlike principle [Eqs. (A2)
and (A5)], we investigate the symmetries that the LDFs must
satisfy when the generalized FR is valid in the long time
regime. A probability p(μ), with the asymptotic structure
Eq. (A2), satisfies the FR Eq. (21) if the LDF ϕ(μ) fulfills
the condition

− ϕ(μ) + ϕ(−μ) = αμ. (A10)

Furthermore, the characteristic function Eq. (A5) satisfies the
symmetry Eq. (24) if the LDF �(λ) satisfies

�(λ) = �(−λ + α). (A11)

Both conditions are consistent between them. In fact, one can
be derived from the other by using the Legendre structure
defined by Eqs. (A8) and (A9). The demonstration is exactly
the same as in the standard case [4,10].
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b. q-Gaussian distribution

It is very instructive to exemplify the previous results with
an arbitrary q-Gaussian distributed variable. Let consider a
stochastic variable xst(t) whose long time statistics is given by
Eq. (13) under the replacements x0 → x0(t) and β → β(t).
Furthermore, we assume that asymptotically these objects
behave as

x0(t) 	 μ0t
κ , β(t) 	 �0

tκ
′ . (A12)

Both κ and κ ′ are positive exponents, while μ0 and �0 are
characteristic constants. Notice that both the average (strictly
the most probable value) and the characteristic width of the
distribution p(x) grow with time.

By defining μst(t) = xst(t)/tκ [Eq. (20)], using the change
of measures p(μ)dμ = p(x)dx, from Eq. (13) we obtain the
distribution

p(μ) 	
√

�0t2κ−κ ′

Nq

expq[−�0t
2κ−κ ′

(μ − μ0)2]. (A13)

Hence, by comparing with Eq. (A1) it results

δ = 2κ − κ ′, Cq = Nq√
�0

. (A14)

The probability LDF reads

ϕ(μ) = (�0)
3−q

2

N 1−q
q

(μ − μ0)2. (A15)

In order to be consistent with a LDP, the exponent δ must be
positive, 2κ > κ ′. Hence, the width of the distribution p(μ)
diminishes with time. This property is expected for a time-
scaled variable, Eq. (20). A common situation corresponds to
κ = κ ′ = 1 giving δ = 1. Even in this case, the exponent η,

Eq. (A3), which defines the limit Eq. (A4), is different from
the one for q 
= 1.

The q-characteristic function Eq. (23) associated to the
distribution Eq. (A13) can be obtained exactly by using the
previous result Eq. (17). After a simple change of variables,
we get

Zq(λ) 	 expq̃

{(
3 − q

2

)
t δC1−q

q

[
λ2N 1−q

q

4(�0)
3−q

2

− λμ0

]}
,

(A16)

where q̃ is given by Eq. (18), δ and Cq are given by Eq. (A14).
We notice that this structure corresponds to that obtained
from a steepest descent integration, Eq. (A5). In fact, that
approximation is exact for a q-Gaussian distribution.

By comparing Eqs. (A5) and (A16), we obtain the LDF
�(λ). It reads

�(λ) = − λ2N 1−q
q

4(�0)
3−q

2

+ λμ0. (A17)

It is straightforward to prove that ϕ(μ) [Eq. (A15)] and �(λ)
[Eq. (A17)] are related by the Legendre-Fenchel transforma-
tions Eqs. (A8) and (A9). Furthermore, both LDFs satisfy,
respectively, the symmetries Eqs. (A10) and (A11) with the

same constant α, which reads

α = 4μ0
(�0)

3−q

2

N 1−q
q

. (A18)

As expected, when q → 1 the expressions Eqs. (A15), (A17),
and (A18) reduce to those corresponding to a normal Gaussian
distribution.

2. Normalized scheme

Equations (A10) and (A11) are equivalent to the un-
normalized FR Eq. (21). The normalized FR Eq. (25) can
also be expressed through a set of renormalized LDFs. We
define

ϕph(μ) = lim
t→∞

−1

t δ

( ∫ ∞

−∞
dμ[p(μ)]q

)
lnq[p(μ)], (A19)

and similarly

�ph(λph) = lim
t→∞

−1

t δ
lnq̃

[
Zph

q (λph)
]
. (A20)

In the asymptotic regime, the relation Eq. (26) is equivalent to
λph = λ limt→∞ 1

t δ−η

∫ ∞
−∞ dμ[p(μ)]q . In fact, it is possible to

demonstrate that

D1−q
q ≡ lim

t→∞
1

t δ−η

∫ ∞

−∞
dμ[p(μ)]q =

(
3 − q

2

)
C1−q

q ,

(A21)
where (δ − η) = (q − 1)δ/2. Hence, η is the same exponent
defined in Eq. (A3). The last equality in Eq. (A21) fol-
lows by calculating the integral through a steepest descent
approximation, where p(u) is given by Eq. (A1). In the
derivation we used the result Eq. (B9) and the equality
3−q

2 = �( 1
q−1 )�( 1+q

2(q−1) )/[�( q

q−1 )�( 3−q

2(q−1) )]. By comparing the
LDFs corresponding to the un-normalized [Eqs. (A4) and
(A7)] and normalized [Eqs. (A19) and (A20)] schemes, from
Eq. (A21) we have the relations

ϕph(μ) = ϕ(μ)

D
q−1
q

, �ph(λph) = �
(
λphD

q−1
q

)
D

q−1
q

. (A22)

Taking into account the Legendre-Fenchel transformations
Eqs. (A8) and (A9), Eq. (A22) implies that

�ph(λph) = min
μ

[ϕph(μ) + λphμ], (A23)

jointly with the inverse relation

ϕph(μ) = max
λph

[�ph(λpj) − λphμ]. (A24)

Therefore, the normalized definitions Eqs. (A19) and (A20)
also maintain the Legendre structure associated to a large
deviation theory.

a. Symmetries of the LDFs

The (un-normalized) symmetries Eqs. (A10) and (A11),
added to the relations Eq. (A22), lead to the equivalent relations

− ϕph(μ) + ϕph(−μ) = αphμ, (A25)

and consistently

�ph(λph) = �ph(−λph + αph), (A26)
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where the constant αph reads

αph = α

D
q−1
q

. (A27)

b. q-Gaussian distribution

For the previous example, defined by the q-Gaussian
distribution Eq. (A13), we obtain the LDF

ϕph(μ) =
(

3 − q

2

)
�0(μ − μ0)2. (A28)

The q-characteristic function Eq. (A16) leads to

Zph
q (λph) 	 expq̃

{
t δ

[
λ2

ph

4( 3−q

2 )�0

− λphμ0

]}
. (A29)

Therefore, we get

�ph(λph) = − λ2
ph

4( 3−q

2 )�0

+ λphμ0. (A30)

The constant αph reads

αph = 4μ0�0

(
3 − q

2

)
. (A31)

Notice that all dependences of the LDFs with the parameter q

can be absorbed in the coefficient �0.

APPENDIX B: STEEPEST DESCENT APPROXIMATION

Here we develop a set of approximations that allow us to
calculate the long time behavior of Zq(λ) from the asymptotic
behavior of p(μ). The procedure is similar to that given in
Appendix C of Ref. [10] and in Ref. [20].

By introducing Eq. (A1) in Eq. (23), after some calculations
steps, we get

Zq(λ) 	 t δ/2

Cq

∫ ∞

−∞
dμ expq

{ − t δC1−q
q [ϕ(μ) + λμ]

}
. (B1)

This integral cannot be performed in an exact way. In order
to proceed, we introduce an integral representation of the q-
exponential function (q > 1) [29,35]

e−z
q = 1

�
(

1
q−1

) ∫ ∞

0
dττ

2−q

q−1 e−τ [1+(q−1)z], (B2)

where z > 0. Hence, after inverting the order of the integrals,
we write

Zq(λ) 	 t δ/2

�
(

1
q−1

)
Cq

∫ ∞

0
dττ

2−q

q−1 e−τ

∫ ∞

−∞
dμ (B3)

× exp{−t δτ [ϕ(μ) + λμ]C1−q
q (q − 1)}.

At long times t, the integral in the μ variable can be worked
out with a steepest descent integration method. The main
contribution to the integral comes from the value of μ,

μ∗, that minimizes the exponential. Defining μ∗ = μ∗(λ)
by the condition ϕ̇(μ∗) = −λ, [ϕ̇(z) = (d/dz)ϕ(z)], we can
approximate

ϕ(μ) + λμ ≈ ϕ(μ∗) + λμ∗ + 1

2
ϕ̈(μ∗)(μ − μ∗)2. (B4)

By assuming that ϕ(μ) is a convex function to have a minimum,
ϕ̈(μ∗) > 0, and using the integral

∫ ∞
−∞ dμe−aμ2 = (π/a)1/2,

it follows that

Zq(λ) 	 1

�
(

1
q−1

)
C

3−q

2
q

√
2π√

(q − 1)ϕ̈(μ∗)
(B5)

×
∫ ∞

0
dττ

( 2−q

q−1 − 1
2 )
e{−τ [1+t δ�(λ)C1−q

q (q−1)]}.

Here, �(λ) denotes the function

�(λ) = ϕ(μ) + λμ, (B6)

where the value of μ follows from the condition

ϕ̇(μ) = −λ. (B7)

By using again the integral representation Eq. (B2), we arrive
at the expression

Zq(λ) 	 Aq expq̃

[
−

(
3 − q

2

)
t δC1−q

q �(λ)

]
, (B8)

where q̃ is given by Eq. (A6), q̃ = (1 + q)/(3 − q). The
constant Aq is

Aq =
�( 1

q̃−1 )
√

2π

�( 1
q−1 )C

3−q

2
q

√
(q − 1)ϕ̈(μ∗)

= Nq

C
3−q

2
q

√
2

ϕ̈(μ∗)
�1.

(B9)

Therefore, Eq. (B8) leads to the expression Eq. (A5). In the
previous expression, the second equality follows from Eq. (14),
while the last estimation follows by applying a steepest descent
approximation to the condition

∫ +∞
−∞ dμp(u) 	 1, where p(u)

is given by Eq. (A1), jointly with the condition that the
LDF ϕ(μ) vanishes at its minimum μmin, ϕ(μmin) = 0, which
consistently implies �(0) = 0, Zq(0) 	 1.

Equations (B6) and (B7) show that �(λ) is the Legendre
transform of ϕ(μ), which in turn can be written as in Eq. (A8).
On the other hand, the derivative of �(λ) with respect to λ is

�̇(λ) = ϕ̇(μ)
dμ

dλ
+ μ + λ

dμ

dλ
, (B10)

which from Eq. (B7) leads to

�̇(λ) = μ. (B11)

This shows that ϕ(μ) is given by the inverse Legendre
transform of �(λ):

ϕ(μ) = �(λ) − λμ. (B12)

Here the value of λ follows from the condition Eq. (B11),
leading to Eq. (A9). In fact, by taking the derivative of
Eq. (B11) with respect to λ and using the derivative of
Eq. (B7) with respect to μ we can confirm that ϕ(μ) is convex
because �(λ) is concave, ϕ̈(μ) = −1/�̈(λ).
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