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Abstract. Recently, we introduced a notion of braided Hopf crossed product which
generalizes the notion of classical Hopf crossed product defined independently by
Blattner, Cohen and Montgomery and by Doi and Takeuchi. A very much general
concept of crossed product is indebted to Brzeziński. In this paper we give a suffi-
cient condition for a Brzeziński’s crossed product be a braided Hopf crossed product.
Majid prove that the quantum double of a quasitriangular Hopf algebra is isomor-
phic to a classical Hopf crossed product. As an application of our result we obtain a
generalization of Majid’s Theorem.

Introduction

Let A be an associative and unitary algebra and let V be a vector space, endowed
with a distinguished element 1. Let A#V be an associative and unitary algebra,
with underlying vector space A⊗V . We let a#v denote the element a⊗v of A⊗V
when it is considered as an element of A#V . Following Brzeziński [Br], we say that
A#V is a crossed product of A with V if (a#1)(b#v) = ab#v for all a, b ∈ A and
v ∈ V .

This is a very general definition. When V is a Hopf algebra H, then an important
source of examples is given by the classical Hopf crossed products introduced inde-
pendently in [B-C-M] and [D-T], but there are many Brzeziński’s crossed products
that do not fit in this setting.

In [G-G2] we began the study of a type of crossed products A#fH, called braided
Hopf crossed products, which seem to have many of the properties of the classical
Hopf crossed products. Every one of these algebras A#fH is determined by the
following data: an algebra A, a braided bialgebra H, and maps s : H⊗A → A⊗H,
ρ : H ⊗ A → A and f : H ⊗H → A, satisfying suitable hypothesis (see Section 1).
The multiplication map of A#H is defined by

µA#f H := (µ⊗H) (µ⊗ f ⊗µ) (A⊗ ρ⊗∆H⊗cH) (A⊗H ⊗ s⊗H) (A⊗∆⊗A⊗H),

where c is the braid of H and ∆H⊗cH = (H ⊗ c ⊗ H) (∆ ⊗ ∆). The maps s, ρ
and f are called the transposition, the weak s-action and the cocycle of A#fH,
respectively. When H is a standard Hopf algebra and s(h⊗a) = a⊗h, for all a ∈ A
and h ∈ H, we recover the classical Hopf crossed products.
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From the definitions it is immediate that every braided Hopf crossed product
A#fH is a Brzeziński’s crossed product. At this point it is natural to ask for a char-
acterization of the Brzeziński’s crossed products A#H of this type. In Theorem 2.1
we solve this problem under the hypothesis that the map h ⊗ a 7→ (1#h)(a#1) is
compatible with the multiplication map of H, in a sense that we precise below.
As an immediate corollary, we obtain a characterization of the Brzeziński’s crossed
products that satisfy the same hypothesis and that are classical Hopf crossed prod-
ucts.

Let H be an standard Hopf algebra. A braided smash product A#H is a braided
crossed product with trivial cocycle. In Section 3 we use Theorem 2.1 to obtain
a sufficient condition for the quantum double D(H) be isomorphic to a braided
smash product of H with an algebra H∗, which is a sort of deformation of H∗.
More precisely, in [G-G3], we introduced the notion of semiquasitriangular Hopf
algebra (see Definition 3.2). These algebras, which generalize the quasitriangular
Hopf algebras, have many of the basic properties of the last ones. For instance
they have associated braided categories in a natural way. In Theorem 3.4 we prove
that if (H, R) is a semiquasitriangular Hopf algebra, then D(H) is isomorphic to a
braided smash product H∗#H. This gives a version for the setting of braided Hopf
crossed products of the following result of Majid: if (H,R) is a quasitriangular
Hopf algebra, then the quantum double D(H) is isomorphic to a classical Hopf
crossed product. Moreover, it is easy to see that if (H, R) is quasitriangular, then
the transposition of H∗#H is the flip h⊗a 7→ a⊗h. So, the result of Majid follows
from Theorem 3.4.

In this article we work in the category of vector spaces over a field k. Then
we assume implicitly that all the maps are k-linear maps. The tensor product
over k is denoted by ⊗, without any subscript. Given vector spaces U, V, W and
a map f : V → W we write U ⊗ f for idU ⊗f and f ⊗ U for f ⊗ idU . We assume
that the reader is familiar with the notions of algebra, coalgebra, module and
comodule. Unless otherwise explicitly established we assume that the algebras
are associative unitary and the coalgebras are coassociative counitary. Given an
algebra A and a coalgebra C, we let µ : A⊗A → A, η : k → A, ∆: C → C ⊗C and
ε : C → k denote the multiplication, the unit, the comultiplication and the counit,
respectively, specified with a subscript if necessary. Moreover, given k-vector spaces
V and W , we let τ : V ⊗W → W ⊗ V denote the flip τ(v ⊗ w) = w ⊗ v.

All the results in Section 2 of this paper are valid in the context of monoidal
categories. In fact, in the first two sections of this article we use the nowadays well
known graphic calculus for monoidal and braided categories. As usual, morphisms
will be composed from up to down and tensor products will be represented by
horizontal concatenation in the corresponding order. The identity map of a vector
space will be represented by a vertical line. Given an algebra A, the diagrams

»¼ ½¾ , ◦ , »¼
and

½¾

stand for the multiplication map, the unit, the action of A on a left A-module
and the action of A on a right A-module, respectively. Given a coalgebra C, the
comultiplication, the counit, the coaction of C on a right C-comodule and the
coaction of C on a left C-module will be represented by the diagrams

ÂÁ À¿ , ◦
, À¿ and ÂÁ ,
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respectively. The maps c, s, χ, F and f , which appear in Definitions 1.5, 1.7, 1.2
and 1.9 will be represented by the diagrams

??
ÄÄ

Ä?? , 55II
ÄÄ

Ä55II , , F and
»¼ ½¾
• ,

respectively. The inverse maps of c and s (when s is bijective) will be represented
by

??
?ÄÄ
ÄÄ and ??

? ªªuuªªuu .

Any other map g : V → W will be geometrically represented by the diagram

º¹¸·³´µ¶g .

Let H be a Hopf algebra. In Section 3, for the comultiplication of H we use the
Sweedler notation ∆(h) = h1 ⊗ h2, without summation symbol.

1. Preliminaries

In this section we recall some basic results about crossed products, that we will
need later

Brzeziński’s crossed products

Definition 1.1. Let V and W be vector spaces and let c : V ⊗W → W ⊗ V be a
map. If V is an algebra, then we say that c is compatible with the algebra structure
of V if c (η ⊗ W ) = W ⊗ η and c (µ ⊗ W ) = (W ⊗ µ) (c ⊗ V ) (V ⊗ c). If V is a
coalgebra, then we say that c is compatible with the coalgebra structure of V if
(W ⊗ ε) c = ε⊗W and (W ⊗∆) c = (c⊗ V ) (V ⊗ c) (∆⊗W ). Finally, if W is an
algebra or a coalgebra, then we introduce the notion that c is compatible with the
structure of W in the obvious way.

Let A be an unitary algebra and let V be a vector space equipped with a distin-
guished element 1 ∈ V .

Definition 1.2. Let χ : V ⊗A → A⊗V and F : V ⊗V → A⊗V be maps. Following
[Br] we say that χ is a twisting map if it is compatible with the algebra structure
of A and χ(1 ⊗ a) = a ⊗ 1, that F is normal if F(1 ⊗ v) = F(v ⊗ 1) = 1 ⊗ v, and
that F is a cocycle satisfying the twisted module condition if

F

F»¼ ½¾
=

F
F»¼ ½¾ and F»¼ ½¾

=
F

»¼ ½¾ , where = χ and F = F .

More precisely, the first equality says that F is a cocycle and the second one says
that F satisfies the twisted module condition.

Let A#V be an associative and unitary algebra with underlying vector space
A⊗V . As usual, we write a#v to denote an elementary tensor a⊗v ∈ A#V . Recall
that A#V is said to be a Brzeziński’s crossed product if it satisfies (a#1)(b#v) =
ab#v for all a, b ∈ A and v ∈ V .
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Theorem 1.3. If χ : V ⊗ A → A⊗ V is a twisting map and F : V ⊗ V → A ⊗ V
is a normal cocycle that satisfies the twisted module condition, then A⊗V becomes
a Brzeziński’s crossed product via the multiplication map

µA#V := (µ⊗ V ) (µ⊗F) (A⊗ χ⊗ V )

Conversely, given a Brzeziński’s crossed product A#V , the maps χ(v ⊗ a) :=
(1#v)(a#1) and F(v⊗w) := (1#v)(1#w) are a twisting map and a normal cocycle
that satisfies the twisted module condition, respectively.

Example 1.4. (Twisted tensor products) Let B be an algebra, χ : B⊗A → A⊗B
a twisting map and F : B ⊗B → A⊗B the trivial cocycle F(v ⊗ v′) = 1⊗ vv′. It
is immediate that F is normal and satisfies the cocycle condition. Moreover, the
twisted module condition reduces to (A⊗ µ) (χ⊗ B) (B ⊗ χ) = χ (µ⊗ A). Hence,
χ is a twisting map in the sense of [C-S-V] and (B, A, χ) is called a matched pair
of algebras. The crossed products A⊗χ B, constructed from these type of data are
called twisted tensor products or matched products. These algebras, which are a
direct generalization of the tensor products, were introduced in [C-S-V] and [Ta].
Examples of this construction are the Ore extensions A[X, α, δ], where α : A → A
is an endomorphism and δ : A → A is an α-derivation. In this case B = k[X] and
the twisting map χ is determined by the equality χ(X ⊗ a) = α(a)⊗X + δ(a)⊗ 1.

Braided Hopf crossed products

Braided bialgebras and braided Hopf algebras were introduced by Majid (see his
survey [M1]). In this subsection, we make a quick review of this subject following
the intrinsic presentation given by Takeuchi in [T]. Then, we review the concept
of braided Hopf crossed products introduced in [G-G2]. Let V be a vector space.
Recall that a map c ∈ Endk(V ⊗ V ) is called a braiding operator if it satisfies the
equality

(c⊗ V ) (V ⊗ c) (c⊗ V ) = (V ⊗ c) (c⊗ V ) (V ⊗ c).

Definition 1.5. A braided bialgebra is a vector space H, endowed with an algebra
structure, a coalgebra structure and a bijective braiding operator c ∈ Endk(H⊗H),
called the braid of H, such that: c is compatible with the algebra and coalgebra
structures of H, η is a coalgebra morphism, ε is an algebra morphism and ∆ µ =
(µ ⊗ µ) (H ⊗ c ⊗H) (∆ ⊗∆). Moreover, if there exists a map S : H → H, which
is the inverse of the identity in the monoid Endk(H) with the convolution product,
then we say that H is a braided Hopf algebra and we call S the antipode of H.

Usually H denotes a braided bialgebra, understanding the structure maps, and
c denotes its braid.

Remark 1.6. Assume that H is an algebra and a coalgebra and that c ∈ Autk(H ⊗
H) is a solution of the braiding equation, which is compatible with the algebra and
coalgebra structures. Then, H ⊗H is the underlying space of an algebra H ⊗c H,
with unit η⊗η and multiplication map (µ⊗µ) (H⊗ c⊗H). It is easy to check that
H is a braided bialgebra with braid c if and only if ∆: H → H ⊗c H and ε : H → k
are morphisms of algebras.

Let H be a braided bialgebra and A an algebra.
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Definition 1.7. A transposition of H on A is a twisting map s : H ⊗A → A⊗H
which is compatible with bialgebra structure of H. That is, s satisfies the equation
(s ⊗H) (H ⊗ s) (c ⊗ A) = (A ⊗ c) (s⊗H) (H ⊗ s) (compatibility of s with c) and
it is compatible with the algebra and coalgebra structures of H.

In the original definition of transposition of a braided Hopf algebra H on an
algebra A it was also required that s (S ⊗ A) = (A ⊗ S) s. But this condition is
automatically satisfied. In fact, if V is a vector space and s : H ⊗ V → V ⊗H is a
map which is compatible with the algebra and coalgebra structures of H, then

ÂÁÀ¿»¼½¾S

55II
ÄÄ

Ä55II
=

ÂÁ À¿55II
ÄÄ

ÄÂÁÀ¿»¼½¾S

55II
ÂÁ À¿55II

ÄÄ
Ä55II ÂÁÀ¿»¼½¾S

»¼ ½¾
»¼ ½¾

=

ÂÁ À¿
ÂÁ À¿ÂÁÀ¿»¼½¾S 55II

ÄÄ
Ä

55II
ÄÄ

Ä
55II

55II
ÄÄ

Ä
55II ÂÁÀ¿»¼½¾S55II »¼ ½¾
»¼ ½¾

=

ÂÁ À¿
ÂÁ À¿ 55II

ÄÄ
ÄÂÁÀ¿»¼½¾S 55II

ÄÄ
Ä

55II

55II
ÄÄ

Ä
55II ÂÁÀ¿»¼½¾S55II»¼ ½¾
»¼ ½¾

=

ÂÁ À¿
ÂÁ À¿
ÂÁÀ¿»¼½¾S 55II

ÄÄ
Ä»¼ ½¾ 55II

55II
ÄÄ

Ä ÂÁÀ¿»¼½¾S55II»¼ ½¾
=

55II
ÄÄ

Ä55II
ÂÁÀ¿»¼½¾S

,

as desired.

Definition 1.8. Let s : H ⊗A → A⊗H be a transposition. A weak s-action of H
on A is a map ρ : H ⊗A → A, that satisfies:

(1) ρ (H ⊗ µ) = µ (ρ⊗ ρ) (H ⊗ s⊗A) (∆⊗A⊗A),
(2) ρ(h⊗ 1) = ε(h)1, for all h ∈ H,
(3) ρ(1⊗ a) = a, for all a ∈ A,
(4) s (H ⊗ ρ) = (ρ⊗H) (H ⊗ s) (c⊗A).

An s-action is a weak s-action which satisfies ρ (H ⊗ ρ) = ρ (µ⊗A).

Definition 1.9. Let f : H ⊗ H → A be a map. We say that f is normal if
f(1⊗ x) = f(x⊗ 1) = ε(x) for all x ∈ H, and that f is a cocycle that satisfies the
twisted module condition if

ÂÁ À¿ ÂÁ À¿ ÂÁ À¿??
ÄÄ

Ä ??
ÄÄ

Ä????
ÄÄ

Ä
??

/// »¼ ½¾
??

/// »¼ ½¾•»¼ »¼ ½¾
•

/// »¼ ½¾
=

ÂÁ À¿ ÂÁ À¿??
ÄÄ

Ä»¼ ½¾ ??»¼ ½¾
•
/// »¼ ½¾

•»¼ ½¾
and

ÂÁ À¿ ÂÁ À¿??
ÄÄ

Ä?? 55II
ÄÄ

Ä
55II
ÄÄ

Ä
55II

??
? »¼ 55II»¼ ½¾

•»¼
²²²»¼ ½¾

=

ÂÁ À¿ ÂÁ À¿??
ÄÄ

Ä
/// ///

??»¼ ½¾
»¼ ½¾ »¼
•
/// »¼ ½¾

, where
»¼ ½¾
• = f .

More precisely, the first equality is the cocycle condition and the second one is the
twisted module condition. Finally, we say that f is compatible with s if

(f ⊗H) (H ⊗ c) (c⊗H) = s (H ⊗ f).

Let s : H ⊗ A → A⊗H be a transposition, ρ : H ⊗ A → A a weak s-action and
f : H ⊗H → A a normal cocycle compatible with s, satisfying the twisted module
condition. Let χ : H⊗A → A⊗H and F : H⊗H → A⊗H be the maps defined by
χ := (ρ⊗H) (H⊗ s) (∆⊗A) and F := (f ⊗µ) (H⊗ c⊗H) (∆⊗∆). In [G-G2] was
proved that χ is a twisting map and F is a normal cocycle satisfying the twisted
module condition.
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Definition 1.10. The crossed product A#fH, associated with (s, ρ, f), is the
algebra constructed from χ and F as in Theorem 1.3.

Let H ⊗c H be the coalgebra with underlying space H ⊗ H, comultiplication
map ∆H⊗cH := (H ⊗ c⊗H) (∆⊗∆) and counit εH⊗cH := εH ⊗ εH . An important
class of braided Hopf crossed products are those whose cocycle f : H ⊗c H → A
is convolution invertible. They are the cleft extensions (see [G-G1, Section 10]).
A particular case are the smash products A#H associated with (s, ρ), that is, the
crossed products with trivial cocycle f(h ⊗ l) = ε(h)ε(l). Note that in this case ρ
is an s-action.

2. Brzeziński’s crossed products which
are Braided Hopf crossed products

Let H be a braided Hopf algebra, A an algebra, s a transposition of H on A,
ρ : H⊗A → A a weak s-action and f : H⊗H → A a normal cocycle compatible with
s, satisfying the twisted module condition. Let A#fH be the braided Hopf crossed
product associated with (s, ρ, f). Let χ = (ρ⊗H) (H ⊗ s) (∆⊗A) be the twisting
map associated with ρ. In [G-G1, Prop. 6.5] was proved that ρ is an s-action iff
the twisting map χ satisfies the equation χ (µ ⊗ A) = (A ⊗ µ) (χ ⊗ H) (H ⊗ χ).
In this section we characterize the Brzeziński’s crossed products A#H that can be
constructed from a triple (s, ρ, f), consisting of a transposition s, an s-action ρ and
a normal cocycle f compatible with s. By the above discussion the twisting map
χ of A#H must be compatible with the multiplication of H.

Let A#fH be a braided Hopf crossed product. In [G-G1, Prop. 9.1] was proved
that the map F = (f⊗µ)∆H⊗cH satisfies the equality (F⊗µ)∆H⊗cH = (A⊗∆)F .
So, it is natural to assume this condition among the hypothesis of the next theorem.

Theorem 2.1. Let χ : H⊗A → A⊗H be a twisting map and F : H⊗H → A⊗H
a normal cocycle that satisfies the twisted module condition. Assume that χ is
compatible with the multiplication of H and that (F ⊗µ)∆H⊗cH = (A⊗∆)F . Let
s : H ⊗A → A⊗H, ρ : H ⊗A → A and f : H ⊗H → A be the maps defined by

s = (ρ⊗H) (S ⊗ χ) (∆⊗A), ρ = (A⊗ ε)χ and f = (A⊗ ε)F .

If the following conditions are satisfied:

(1) (s⊗H) (H ⊗ s) (c⊗A) = (A⊗ c) (s⊗H) (H ⊗ s),
(2) (s⊗H) (H ⊗ s) (∆⊗A) = (A⊗∆) s,
(3) (ρ⊗H) (H ⊗ s) (c⊗A) = s (H ⊗ ρ),
(4) (f ⊗H) (H ⊗ c) (c⊗H) = s (H ⊗ f),

then, s is a transposition, ρ is an s-action, f is a normal cocycle compatible with s
which satisfies the twisted module condition,

χ = (ρ⊗H) (H ⊗ s) (∆⊗A) and F = (f ⊗ µ)∆H⊗cH .

So, the Brzeziński’s crossed product constructed from (χ,F) is the braided Hopf
crossed product constructed from (s, ρ, f).

Proof. We must prove that s, ρ and f satisfy all the conditions established in
Definitions 1.7, 1.8 and 1.9, with exception of the ones assumed in the hypothesis,
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and we must check the formulas for χ and F . Using that χ(1 ⊗ a) = a ⊗ 1 and
χ(h ⊗ 1) = 1 ⊗ h for all a ∈ A and h ∈ H, it is easy to see that ρ(1 ⊗ a) = a and
ρ(h⊗ 1) = ε(h)1. From these facts it follows immediately that s(1⊗ a) = a⊗ 1 and
s(h⊗ 1) = 1⊗ h. Moreover, f is normal, since F is. Next, we check the remaining
properties.

1) ρ (H ⊗ ρ) = ρ (µ⊗A): Since χ is compatible with the multiplication map of H,

»¼ ½¾
»¼ =

»¼ ½¾

◦
= »¼ ½¾

◦

=
◦ ◦

=
»¼»¼ .

2) χ = (ρ⊗H) (H ⊗ s) (∆⊗A): Since ρ (H ⊗ ρ) = ρ (µ⊗A) and ρ(1⊗ a) = a,

ÂÁ À¿55II
ÄÄ

Ä»¼ 55II =

ÂÁ À¿
ÂÁ À¿ÂÁÀ¿»¼½¾S»¼»¼

=

ÂÁ À¿
ÂÁ À¿ÂÁÀ¿»¼½¾S»¼ ½¾
»¼

=
ÂÁ À¿
◦◦»¼

= .

3) Item (1) of Definition 1.8: Since χ = (ρ⊗H) (H⊗s) (∆⊗A) and χ is compatible
with the multiplication of A, we have

»¼ ½¾»¼ =
»¼ ½¾

◦

= »¼ ½¾
◦

= »¼
»¼ ½¾ =

ÂÁ À¿55II
ÄÄ

Ä»¼ 55II»¼
»¼ ½¾

.

4) Compatibility of s with µH : By the compatibility of χ with the multiplication
map of H, the fact that ρ (H ⊗ ρ) = ρ (µ⊗ A), and item (3) of the hypothesis, we
have

»¼ ½¾
55II
ÄÄ

Ä55II =

»¼ ½¾
ÂÁ À¿ÂÁÀ¿»¼½¾S»¼

=

ÂÁ À¿ ÂÁ À¿??
ÄÄ

Ä»¼ ½¾ ??»¼ ½¾
ÂÁÀ¿»¼½¾S»¼

=

ÂÁ À¿ ÂÁ À¿??
ÄÄ

Ä??
ÂÁÀ¿»¼½¾S ÂÁÀ¿»¼½¾S

??
ÄÄ

Ä »¼ ½¾
»¼ ½¾??
»¼

=

ÂÁ À¿ ÂÁ À¿??
ÄÄ

Ä??
ÂÁÀ¿»¼½¾S ÂÁÀ¿»¼½¾S

??
ÄÄ

Ä »¼ ½¾
??»¼»¼

=

ÂÁ À¿ ÂÁ À¿ÂÁÀ¿»¼½¾S ÂÁÀ¿»¼½¾S

??
ÄÄ

Ä
??
ÄÄ

Ä
??

»¼?? »¼ ½¾»¼
=

ÂÁ À¿ÂÁÀ¿»¼½¾S

??
ÄÄ

Ä??55II
ÄÄ

Ä»¼ »¼ ½¾55II
=

ÂÁ À¿ÂÁÀ¿»¼½¾S

??
? »¼

55II
ÄÄ

Ä55II»¼ ½¾
=

55II
ÄÄ

Ä
55II
ÄÄ

Ä
55II

55II»¼ ½¾ .

5) Compatibility of s with ε: Since ρ (H ⊗ ρ) = ρ (µ⊗A) and ρ(1⊗ a) = a,

55II
ÄÄ

Ä55II
◦ =

ÂÁ À¿ÂÁÀ¿»¼½¾S»¼
◦

=
ÂÁ À¿»¼ÂÁÀ¿»¼½¾S»¼ =

ÂÁ À¿ÂÁÀ¿»¼½¾S»¼ ½¾»¼
= ◦◦»¼ = ◦

.
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6) Compatibility of s with µA: First note that, by the discussion following Defi-
nition 1.7, s is compatible with S. Using this, the fact that χ is compatible with
the multiplication of A, item (1) of Definition 1.8, and items (2) and (3) of the
hypothesis, we obtain

»¼ ½¾
55II
ÄÄ

Ä55II =

»¼ ½¾
ÂÁ À¿ÂÁÀ¿»¼½¾S»¼ =

ÂÁ À¿ÂÁÀ¿»¼½¾S

»¼ ½¾»¼
=

ÂÁ À¿ÂÁÀ¿»¼½¾S

ÂÁ À¿55II
ÄÄ

Ä»¼ 55II»¼
»¼ ½¾

=

ÂÁ À¿
ÂÁ À¿ÂÁÀ¿»¼½¾S ÂÁÀ¿»¼½¾S

??
ÄÄ

Ä??55II
ÄÄ

Ä»¼ 55II»¼
»¼ ½¾

=

ÂÁ À¿
ÂÁ À¿ÂÁÀ¿»¼½¾S ÂÁÀ¿»¼½¾S

??
? »¼

55II
ÄÄ

Ä55II»¼
»¼ ½¾

=

ÂÁ À¿
ÂÁ À¿ÂÁÀ¿»¼½¾S ÂÁÀ¿»¼½¾S»¼

OOO 55II
ÄÄ

Ä55II»¼
»¼ ½¾

=

ÂÁ À¿55II
ÄÄ

ÄÂÁÀ¿»¼½¾S 55II

55II
ÄÄ

Ä55II»¼
»¼ ½¾

=

ÂÁ À¿55II
ÄÄ

Ä
55II
ÄÄ

Ä
55II

55II
ÂÁÀ¿»¼½¾S»¼
»¼ ½¾

=

55II
ÄÄ

Ä

²²²
55II
ÂÁ À¿ÂÁÀ¿»¼½¾S»¼
»¼ ½¾

=

55II
ÄÄ

Ä55II55II
ÄÄ

Ä»¼ ½¾ 55II .

7) F = (f ⊗ µ)∆H⊗cH : Since (F ⊗ µ)∆H⊗cH = (A⊗∆)F ,

(f ⊗ µ)∆H⊗cH = ((A⊗ ε)F ⊗ µ)∆H⊗cH = (A⊗ (ε⊗H)∆)F = F .

8) f is a cocycle: By item (4) of the hypothesis, and the facts that F is a cocycle,
χ = (ρ⊗H) (H ⊗ s) (∆⊗A) and F = (f ⊗ µ)∆H⊗cH , we have

ÂÁ À¿ ÂÁ À¿ ÂÁ À¿??
ÄÄ

Ä ??
ÄÄ

Ä????
ÄÄ

Ä
??

/// »¼ ½¾
??

/// »¼ ½¾•»¼ »¼ ½¾
•

/// »¼ ½¾
=

ÂÁ À¿ ÂÁ À¿??
ÄÄ

Ä»¼ ½¾ ??»¼ ½¾ÂÁ À¿ •55II
ÄÄ

Ä»¼ 55II»¼ ½¾
•»¼ ½¾

=

F

F»¼ ½¾
◦

=
F
F»¼ ½¾
◦

=

ÂÁ À¿ ÂÁ À¿??
ÄÄ

Ä»¼ ½¾ ??»¼ ½¾
•
/// »¼ ½¾

•»¼ ½¾
.

9) f satisfies the twisted module condition: By item (3) of the hypothesis, the fact
that F satisfies the twisted module condition, χ = (ρ ⊗ H) (H ⊗ s) (∆ ⊗ A) and
F = (f ⊗ µ)∆H⊗cH , we have

ÂÁ À¿ ÂÁ À¿??
ÄÄ

Ä?? 55II
ÄÄ

Ä
55II
ÄÄ

Ä
55II

??
? »¼ 55II»¼ ½¾

•»¼
²²²»¼ ½¾

=

ÂÁ À¿55II
ÄÄ

Ä»¼ 55II

ÂÁ À¿55II
ÄÄ

Ä»¼ 55II»¼ ½¾
•»¼ ½¾

= F»¼ ½¾ =
F

»¼ ½¾ =

ÂÁ À¿ ÂÁ À¿??
ÄÄ

Ä
/// ///

??»¼ ½¾
»¼ ½¾ »¼
•
/// »¼ ½¾

.

This completes the proof. ¤
Corollary 2.2. Let H be a standard Hopf algebra. Let χ : H ⊗ A → A ⊗H be a
twisting map and F : H ⊗ H → A ⊗ H a normal cocycle that satisfies the twisted
module condition. Assume that χ is compatible with the multiplication of H and
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that (F ⊗ µ)∆H⊗H = (A ⊗∆)F . Let ρ : H ⊗ A → A and f : H ⊗H → A be the
maps defined by

ρ = (A⊗ ε)χ and f = (A⊗ ε)F .

If (ρ⊗H) (S ⊗ χ) (∆⊗A) is the flip, then ρ is an action in the sense of [B-C-M],
f is a normal cocycle which satisfies the twisted module condition and

χ = (ρ⊗H) (H ⊗ τ) (∆⊗A) and F = (f ⊗ µ)∆H⊗H .

So, the Brzeziński’s crossed product constructed from (χ,F) is the standard crossed
product constructed from (ρ, f).

In the next section we will apply Theorem 2.1 in order to obtain a property of
the quantum double of semiquasitriangular Hopf algebras (see Definition 3.2). In
the following examples we give more immediate applications.

Example 2.3. Let A[X,α, δ] be an Ore extension (see Example 1.4). Consider the
polynomial ring k[X] endowed with the usual structure of Hopf algebra. Applying
Theorem 2.1 it is easy to check that A[X, α, δ] is an smash product A#k[X] if and
only if α δ = δ α. This is the most simple way that we know to prove the main
assertion of [G-G1, Example 3.10].

Example 2.4. Let H be the algebra k[X]/〈X2〉, endowed with the braided Hopf
algebra structure given by ∆(X) = 1⊗X + X ⊗ 1 and c(X ⊗X) = −X ⊗X. Let
A be an algebra. Consider maps χ : H ⊗ A → A ⊗ H and F : H ⊗ H → A ⊗ H
and write χ(X ⊗ a) = α(a)⊗X + δ(a)⊗ 1 and F(X ⊗X) = aX ⊗ 1 + bX ⊗X. A
direct computation shows that χ is a bijective twisting map compatible with the
multiplication of H if and only if

(1) α : A → A is an automorphism,

(2) δ : A → A is an α-derivation,

(3) δ α + α δ = 0,

(4) δ2 = 0,

and that in this case F is a normal cocycle satisfying the twisting module condition
if and only if

(5) aX = α(aX) + δ(bX),

(6) bXaX = δ(aX) + α(bX)aX ,

(7) α2(a)aX = aXa + bXδ(a),

(8) bXa = α(a)bX .

It is easy to see that (F ⊗ µ)∆H⊗cH = (A ⊗ ∆)F if and only if bX = 0. Under
this condition, items (5)–(8) become

(5’) aX = α(aX),

(6’) δ(aX) = 0,

(7’) α2(a)aX = aXa.

Now, let s : H⊗A → A⊗H, ρ : H⊗A → A and f : H⊗H → A as in Theorem 2.1.
A direct computation shows that s(X ⊗ a) = α(a) ⊗ X, ρ(X ⊗ a) = δ(a) and
f(X ⊗ X) = aX . It is easy to see that under conditions (1)–(4), (5’)–(7’) and
bX = 0, the hypothesis of Theorem 2.1 are satisfied. Hence, s is a transposition, ρ
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is an s-action, f is a normal cocycle compatible with s which satisfies the twisted
module condition,

χ = (ρ⊗H) (H ⊗ s) (∆⊗A) and F = (f ⊗ µ)∆H⊗cH .

So, the Brzeziński’s crossed product constructed from (χ,F) is the braided Hopf
crossed product constructed from (s, ρ, f).

A concrete example of this situation is obtained taking A = k[Y ], α(Y n) =
(−1)nY n,

δ(Y n) =
{

Y n−1 if n is odd,
0 if n is even,

and f(X ⊗X) = P (Y 2), where P is an arbitrary polinomial.

An immediate corollary of the next result is that s is bijective if and only if χ is.

Proposition 2.5. Let H be a braided Hopf algebra and V a left H-module. Let
θ : H ⊗ V → H ⊗ V be the map defined by θ := (H ⊗ ρ) (c−1 ⊗ V ) (∆⊗ V ), where
ρ : H ⊗ V → V denotes the action of H on V . Then, θ is bijective. Moreover, for
each map s : H ⊗ V → V ⊗H satisfying s (H ⊗ ρ) = (ρ⊗H) (H ⊗ s) (c⊗ V ), it is
true that

s θ = (ρ⊗H) (H ⊗ s) (∆⊗ V ).

Proof. Let θ̃ := (H ⊗ ρ) (H ⊗ S ⊗ V ) (c−1 ⊗ V ) (∆ ⊗ V ), where S denotes the
composition inverse of S. We claim that θ̃ is the composition inverse of θ. In
fact, since c is compatible with the coalgebra structure of H, c is a solution of the
braiding equation and V is an H-module, we have

θ̃ θ =

ÂÁ À¿
??

?ÄÄ
ÄÄ »¼ÂÁ À¿
??

?ÄÄ
ÄÄ
ÂÁÀ¿»¼½¾
S»¼

=

ÂÁ À¿
ÂÁ À¿

??
?ÄÄ
ÄÄ

??
?ÄÄ

??
?ÄÄÄÄ
ÄÄ
ÂÁÀ¿»¼½¾
S »¼»¼

=

ÂÁ À¿
ÂÁ À¿

??
?ÄÄ

??
?ÄÄÄÄ
ÄÄ

??
?ÄÄ
ÄÄ
ÂÁÀ¿»¼½¾
S »¼»¼

=

ÂÁ À¿
??

?ÄÄ
ÄÄÄÄÂÁ À¿

??
?ÄÄ
ÄÄ
ÂÁÀ¿»¼½¾
S »¼»¼

=

ÂÁ À¿
??

?ÄÄ
ÄÄÄÄÂÁ À¿

??
?ÄÄ
ÄÄ
ÂÁÀ¿»¼½¾
S»¼ ½¾
»¼

= idH⊗A,

and in a similar way we can check that θ θ̃ = idH⊗A. Finally, by the hypothesis
about s,

s θ =
ÂÁ À¿

??
?ÄÄ

??
?ÄÄ »¼

55II
ÄÄ

Ä55II
=

ÂÁ À¿
??

?ÄÄ
ÄÄ??
ÄÄ

Ä??55II
ÄÄ

Ä»¼ 55II
=
ÂÁ À¿55II

ÄÄ
Ä»¼ 55II .

This completes the proof. ¤

3. Quantum double of semiquasitriangular Hopf algebras

In [M2] it has been proven that if (H, R) is a quasitriangular Hopf algebra, then
the quantum double D(H) is isomorphic to a classical Hopf crossed product. In
this section we recall the notion of semiquasitriangular Hopf algebra introduced in
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[G-G3] and we prove that if (H,R) is a finite-dimensional semiquasitriangular Hopf
algebra, then the quantum double D(H) is isomorphic to a Hopf crossed product
in the sense of [G-G2]. This is our version for this setting of the above mentioned
theorem.

Before beginning we establish some notations. Let H be a Hopf algebra and
R =

∑
i R

(1)
i ⊗R

(2)
i an invertible element of H⊗H. We will write R = R(1)⊗R(2),

understanding the summation symbol and the index i. Similarly R−(1) ⊗ R−(2)

denotes R−1. When it is necessary we let R
′(1)⊗R

′(2), R
(1)⊗R

(2)
, etcetera denote

copies of R.

Definition 3.1. A Hopf algebra H is called semicocommutative if the right adjoint
coaction factorizes through H ⊗ Z(H), where Z(H) denotes the center of H. That
is, if h2 ⊗ S(h1)h3 ∈ H ⊗ Z(H) for all h ∈ H.

For instance, the commutative and cocommutative Hopf algebras are semico-
commutative Hopf algebras. Moreover, the class of these algebras is closed under
the operations of taking tensor products, subHopfalgebras and quotients.

Definition 3.2. A semiquasitriangular Hopf algebra is a pair (H, R), where H is
a Hopf algebra with bijective antipode and R ∈ H ⊗ H is an invertible element
satisfying

(1) R
(1)
1 ⊗R

(1)
2 ⊗R(2) = R(1) ⊗R′(1) ⊗R(2)R′(2),

(2) R(1) ⊗R
(2)
1 ⊗R

(2)
2 = R(1)R′(1) ⊗R′(2) ⊗R(2),

(3) R(1) ⊗R
(2)
2 R′(1) ⊗R

(2)
1 R′(2) = R(1) ⊗R′(1)R(2)

1 ⊗R′(2)R(2)
2 ,

(4) R
(1)
2 R′(1) ⊗R

(1)
1 R′(2) ⊗R(2) = R′(1)R(1)

1 ⊗R′(2)R(1)
2 ⊗R(2),

(5) ν(h) := R(2)h2R
′(2) ⊗ S(h1)S(R(1))h3R

′(1) ∈ H ⊗ Z(H) for all h ∈ H,

If (H, R) is a semiquasitriangular Hopf algebra, we say that R is a semiquasitri-
angular structure for H.

For instance, every quasitriangular Hopf algebra is semiquasitriangular. More-
over (H, 1H⊗H) is a semiquasitriangular Hopf algebra if and only if H is semico-
commutative.

Recall that the quantum double D(H), of a finite-dimensional Hopf algebra H,
is the tensor product H∗ ⊗H, endowed with the multiplication

(φ⊗ h)(ϕ⊗ l) = ϕ2φ⊗ h2l〈ϕ1, S(h1)〉〈ϕ3, h3〉,

and the codiagonal comultiplication. This is a Hopf algebra with unit ε⊗ 1, counit
ε(φ⊗ h) = φ(1)ε(h) and antipode S(φ⊗ h) = S−1(φ2)⊗ S(h2)〈φ1, h1〉〈φ3, S(h3)〉.

Let (H,R) be a finite-dimensional semiquasitriangular Hopf algebra and let
f : D(H) → H∗ ⊗H be the map

f(φ⊗ h) = φ1〈φ2, R
−(1)〉 ⊗R−(2)h.

Note that f is bijective, with inverse given by f−1(φ ⊗ h) = φ1〈φ2, R
(1)〉 ⊗ R(2)h.

In this section B denotes H∗⊗H, endowed with the unique Hopf algebra structure
making f an isomorphism of Hopf algebras.
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Lemma 3.3. If (H, R) is a finite-dimensional semiquasitriangular Hopf algebra,
then the vector space H∗ is an associative algebra with multiplication

φ ¦ ϕ = ϕ2φ1〈φ3, R
(1)〉〈ϕ1, S(R(2))〉〈φ2, R

(1)〉〈ϕ3, R
(2)〉

and unit ε. Let H∗ denote this algebra. The algebra B introduced above is a twisted
tensor product H∗ ⊗χ H, of H∗ and H, in the sense of Example 1.4. The map χ
is given by

χ(h⊗ φ) = φ2 ⊗R−(2)h2R
(2)〈φ3, R

−(1)〉〈φ5, R
(1)〉〈φ1, S(h1)〉〈φ4, h3〉.

Proof. It is immediate that ε is the unit of H∗ and that (ε⊗ h)(ε⊗ l) = ε⊗ hl, for
all h, l ∈ H, where the multiplication in the left side of this equality is made out in
B. Moreover, the multiplication (φ⊗ 1)(ϕ⊗ 1) in B, is given by

(φ⊗ 1)(ϕ⊗ 1) = f
(
(φ1〈φ2, R

(1)〉 ⊗R(2))(ϕ1〈ϕ2, R
(1)〉 ⊗R

(2)
)
)

= f
(
ϕ2φ1 ⊗R

(2)
2 R

(2)〈ϕ1, S(R(2)
1 )〉〈ϕ3, R

(2)
3 〉〈φ2, R

(1)〉〈ϕ4, R
(1)〉)

= f
(
ϕ2φ1 ⊗R′(2)R

(2)〈ϕ1, S(R′′(2))〉〈ϕ3, R
(2)〉〈φ2, R

(1)R′(1)R′′(1)〉〈ϕ4, R
(1)〉)

= f
(
ϕ2φ1 ⊗R′(2)R

(2)〈ϕ1, S(R′′(2))〉〈φ2, R
(1)R′(1)〉〈φ3, R

′′(1)〉〈ϕ3, R
(2)R

(1)〉)

= f
(
ϕ2φ1 ⊗R(2)R′(2)〈ϕ1, S(R′′(2))〉〈φ2, R

′(1)R
(1)〉〈φ3, R

′′(1)〉〈ϕ3, R
(1)R

(2)〉)

= f
(
ϕ2φ1 ⊗R(2)〈ϕ1, S(R′′(2))〉〈φ2, R

(1)
2 R

(1)〉〈φ3, R
′′(1)〉〈ϕ3, R

(1)
1 R

(2)〉)

= f
(
ϕ2φ1〈ϕ3φ2, R

(1)〉 ⊗R(2)
)〈ϕ1, S(R′′(2))〉〈φ3, R

(1)〉〈φ4, R
′′(1)〉〈ϕ4, R

(2)〉
= φ ¦ ϕ⊗ 1,

where the third equality follows from [G-G2, Prop. 1.2 (2)], the fifth one follows
from [G-G2, Prop. 1.4], the sixth one follows from item (1) of Definition 3.2 and the
other equalities follow by direct computations. Hence, H and H∗ are subalgebras
of B, which implies that H∗ is an associative algebra and B is a twisted tensor
product H∗ ⊗χ H of H∗ and H. It remains to check the formula of χ. But,

χ(h⊗ φ) = (ε⊗ h)(φ⊗ 1)

= f
(
(ε⊗ h)(φ1〈R(1), φ2〉 ⊗R(2))

)

= f
(
φ2 ⊗ h2R

(2)
)〈φ4, R

(1)〉〈φ1, S(h1)〉〈φ3, h3〉
= f

(
φ2 ⊗R−(2)h2R

(2)
)〈φ3, R

−(1)〉〈φ5, R
(1)〉〈φ1, S(h1)〉〈φ4, h3〉,

as we claim. ¤

Note that if (H,R) is a finite-dimensional semiquasitriangular Hopf algebra, then
H is a left H∗-module via hφ := φ(S(h1)R−(1)h3R

(1))R−(2)h2R
(2), for all h ∈ H

and φ ∈ H∗. In fact, this is the left action associated to the right coaction ν of
[G-G2, Prop. 2.3].
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Theorem 3.4. If (H, R) is a finite-dimensional semiquasitriangular Hopf algebra,
then the map s : H⊗H∗ → H∗⊗H, defined by s(h⊗φ) = φ1⊗hφ2 is a transposition
of H on H∗, the map ρ : H ⊗H∗ → H∗, given by

ρ(h⊗ φ) = h2 ⇀ φ ↼ S(h1),

is an s-action, and the algebra B introduced before Lemma 3.3 is the smash product
associated with (s, ρ).

Proof. We are going to apply Theorem 2.1 with χ as in Lemma 3.3 and F the trivial
cocycle. By Lemma 3.3 we know that χ is compatible with the multiplication of H
and, from the fact that F is trivial, it follows immediately that (F ⊗ µ)∆H⊗H =
(H∗⊗∆)F . It is clear that f := (H∗⊗ε)F is the trivial cocycle and so Condition (4)
of Theorem 2.1 is clearly satisfied. Hence, it suffices to check that ρ = (H∗ ⊗ ε) χ,
s = (ρ⊗H) (S ⊗χ) (∆⊗H∗) and Conditions (1)–(3) of that theorem are satisfied.
Since (H ⊗ ε)(R) = (H ⊗ ε)(R−1) = 1, we have

(H∗ ⊗ ε)χ(h⊗ φ) = φ2〈φ3, 1〉〈φ5, 1〉〈φ1, S(h1)〉〈φ4, h2〉
= h2 ⇀ φ ↼ S(h1)

and

(ρ⊗H) (S ⊗ χ) (∆⊗H∗)(h⊗ φ)=
(
S(h1) ⇀ φ2 ↼ S2(h2)

) 〈φ1, S(h3)〉
⊗R−(2)h4R

(2)〈φ3, R
−(1)〉〈φ5, R

(1)〉〈φ4, h5〉
= φ1 ⊗ φ2

(
S(h1)R−(1)h3R

(1)
)
R−(2)h4R

(2)

= φ1 ⊗ hφ2 ,

for all h ∈ H and φ ∈ H∗, as we need. Next, we check Conditions (1)–(3) of
Theorem 2.1.

Condition (1): Let h, l ∈ H and φ ∈ H∗. By item (5) of Definition 3.2,

φ1 ⊗ lφ2 ⊗ hφ3 = φ1 ⊗ φ2

(
S(l1)R−(1)l3R

(1)S(h1)R
−(1)

h3R
(1))

T

= φ1 ⊗ φ2

(
S(h1)R

−(1)
h3R

(1)
S(l1)R−(1)l3R

(1)
)
T

= φ1 ⊗ lφ3 ⊗ hφ2 ,

where T = R−(2)l2R
(2) ⊗R

−(2)
h2R

(2)
.

Condition (2): By items (2) and (5) of Definition 3.2,

(H∗ ⊗∆) s(h⊗ φ) = (H∗ ⊗∆)
(
φ1 ⊗ φ2

(
S(h1)R−(1)h3R

(1)
)
R−(2)h2R

(2)
)

= φ1 ⊗ φ2

(
S(h1)R−(1)h4R

(1)
)
R
−(2)
1 h2R

(2)
1 ⊗R

−(2)
2 h3R

(2)
2

= φ1 ⊗ φ2

(
S(h1)R−(1)R̃−(1)h4R̃

(1)R(1)
)
R−(2)h2R

(2) ⊗ R̃−(2)h3R̃
(2)

= φ1 ⊗ φ2

(
S(h1)R−(1)h3S(h4)R̃−(1)h6R̃

(1)R(1)
)
R−(2)h2R

(2) ⊗ R̃
−(2)
2 h5R̃

(2)

= φ1 ⊗ φ2

(
S(h1)R−(1)h3R

(1)S(h4)R̃−(1)h6R̃
(1)

)
R−(2)h2R

(2) ⊗ R̃−(2)h5R̃
(2)

= φ1 ⊗ φ2

(
S(h1)R−(1)h3R

(1)
)
R−(2)h2R

(2) ⊗ φ3

(
S(h4)R̃−(1)h6R̃

(1)
)
R̃−(2)h5R̃

(2)

= φ1 ⊗ hφ2
1 ⊗ hφ3

2

= (s⊗H) (H ⊗ s)(∆⊗H∗)(h⊗ φ),
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for all h ∈ H and φ ∈ H∗.

Condition (3): Let c : H ⊗H → H ⊗H be the flip. By item (5) of Definition 3.2,

s (H ⊗ ρ)(h⊗ l ⊗ φ) = s
(
h⊗ l2 ⇀ φ ↼ S(l1

)

= (l2 ⇀ φ ↼ S(l1)1 ⊗ h(l2⇀φ↼S(l1))2

= l2 ⇀ φ1 ↼ S(l1)⊗ hl4⇀φ2↼S(l3)

= l2 ⇀ φ1 ↼ S(l1)⊗ φ2

(
S(l3)S(h1)R−(1)h3R

(1)l4
)
R−(2)h2R

(2)

= l2 ⇀ φ1 ↼ S(l1)⊗ φ2

(
S(l3)l4S(h1)R−(1)h3R

(1)
)
R−(2)h2R

(2)

= l2 ⇀ φ1 ↼ S(l1)⊗ φ2

(
S(h1)R−(1)h3R

(1)
)
R−(2)h2R

(2)

= (ρ⊗H) (H ⊗ s) (c⊗H∗)(h⊗ l ⊗ φ),

for all h, l ∈ H and φ ∈ H∗. ¤
Let T : H → H be the map defined by T (h) = R(2)h2R

′(2)S(h1)S(R(1))h3R
′(1)

and let u = S(R(2))R(2) the Drinfeld element of (H, R). In [G-G2, Prop. 3.2] was
proved that u is invertible and that S2(h)u = uT (h) for all h ∈ H. We will need
the following result

Lemma 3.5. The following equality holds:

R
(1)
1 ⊗ S−1(R(1)

2 )⊗R(2) = R
(1)
1 ⊗ T (S−1(R(1)

2 ))⊗R(2).

Proof. By Propositions 1.2(4) and 1.3 of [G-G3], we have

R
(1)
1 ⊗ T (S−1(R(1)

2 ))⊗R(2)

= R
(1)
1 ⊗R′′(2)S−1(R(1)

3 )R′(2)R(1)
4 S(R′′(1))S−1(R(1)

2 )R′(1) ⊗R(2)

= R
(1)
1 ⊗R′′(2)S−1(R′(2)R(1)

3 )R(1)
4 S(R′′(1))S−1(R′(1)R(1)

2 )⊗R(2)

= R
(1)
1 ⊗R′′(2)S−1(R(1)

2 R′(2))R(1)
4 S(R′′(1))S−1(R(1)

3 R′(1))⊗R(2)

= R
(1)
1 ⊗R′′(2)R′(2)S−1(R(1)

2 )R(1)
4 S(R′′(1))R′(1)S−1(R(1)

3 )⊗R(2)

= R
(1)
1 ⊗ S−1(R(1)

2 )R(1)
4 S−1(R(1)

3 )⊗R(2)

= R
(1)
1 ⊗ S−1(R(1)

2 )⊗R(2),

as we want. ¤
Proposition 3.6. The comultiplication and the antipode of B = H∗#H are given
by

∆(φ#h) =
(
φ1#R(2)h1

)
⊗

(
(R(1) . φ2)#h2

)

and

S(φ#h) = (ε#S(h))
(
S−1(φ3)⊗ 〈φ2, R

′(1)
1 〉〈φ1, R

′′(2)〉〈φ4, S(R′(1)2 )uR′′(1)〉R′(2)
)

,
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where . : H ⊗H∗ → H∗ is the left coadjoint action h . φ := φ2〈S(φ1)φ3, h〉.
Proof. We prove the second formula and leave the first one to the reader. Let h ∈ H
and φ ∈ H∗. It is sufficient to see that S(ε#h) = ε#S(h) and

S(φ⊗ 1) = S−1(φ3)⊗ 〈φ2, R
′(1)
1 〉〈φ1, R

′′(2)〉〈φ4, S(R′(1)2 )uR′′(1)〉R′(2).
The first equality is immediate and for the second one we have

S(φ⊗ 1) = f(S(f−1(φ⊗ 1)))

= f(S(φ1 ⊗ 〈φ2, R
(1)〉R(2)))

= f(S−1(φ2)⊗ 〈φ1, R
(2)
1 〉〈φ3, S(R(2)

3 )〉〈φ4, R
(1)〉S(R(2)

2 ))

= S−1(φ3)⊗ 〈S−1(φ2), R
−(1)〉〈φ1, R

(2)
1 〉〈φ4, S(R(2)

3 )〉〈φ5, R
(1)〉R−(2)

S(R(2)
2 )

= S−1(φ3)⊗ 〈φ2, R
(1)〉〈φ1, R

(2)
1 〉〈φ4, S(R(2)

3 )〉〈φ5, R
(1)〉R(2)

S(R(2)
2 )

= S−1(φ3)⊗ 〈φ2, R
(1)〉〈φ1, R

′′(2)〉〈φ4, S(R(2))〉〈φ5, R
(1)R′(1)R′′(1)〉R(2)

S(R′(2))

= S−1(φ3)⊗ 〈φ2, R
(1)〉〈φ1, R

′′(2)〉〈φ4, S(R(2))〉〈φ5, R
(1)S−1(R′(1))R′′(1)〉R(2)

R′(2)

= S−1(φ3)⊗ 〈φ2, R
′(1)
1 〉〈φ1, R

′′(2)〉〈φ4, S(R(2))〉〈φ5, R
(1)S−1(R′(1)2 )R′′(1)〉R′(2)

= S−1(φ3)⊗ 〈φ2, R
′(1)
1 〉〈φ1, R

′′(2)〉〈φ4, uS−1(R′(1)2 )R′′(1)〉R′(2)

= S−1(φ3)⊗ 〈φ2, R
′(1)
1 〉〈φ1, R

′′(2)〉〈φ4, uT (S−1(R′(1)2 ))R′′(1)〉R′(2)

= S−1(φ3)⊗ 〈φ2, R
′(1)
1 〉〈φ1, R

′′(2)〉〈φ4, S(R′(1)2 )uR′′(1)〉R′(2),
where the fifth and seventh equalities follow from [G-G2, Prop. 1.3], the sixth and
eighth ones follow from [G-G2, Prop. 1.2], the tenth equality follows from Lemma 3.5
and the last one follows from [G-G2, Prop. 3.2].

Remark 3.7. The Hopf algebra B is a bialgebra cross product H∗ νl
µl

./νr
µr

H in the
sense of [B-D1, Definition and Proposition 2.15], where

µl(h⊗ φ) = φ2〈φ1, S(h1)〉〈φ3, h3〉, µr(h⊗ φ) = h2〈φ1, S(h1)〉〈φ2, h3〉,
νl(φ) = R(2) ⊗ φ2〈S(φ1)φ3, R

(1)〉, νr(h) = h⊗ εH .

However, if the map s : H ⊗H∗ → H∗ ⊗H is not the flip, then the smash product
associated with (s, ρ) is not the algebra cross product underlying to a Hopf product
bialgebra in the sense of [B-D1] and [B-D2]. Indeed, assume that there exists a
braided category C containing H and H∗ and such that:

(1) H is an algebra and a coalgebra in C,
(2) H∗ is an algebra and a coalgebra in C,
(3) cHH∗ : H ⊗H∗ → H∗ ⊗H is s.

Then s(h⊗ φ) = φ⊗ h for all h ∈ H and φ ∈ H∗, since

cHH∗(h⊗ φ) = (H∗ ⊗ εH ⊗ εH∗ ⊗H) cBB((εH#h)⊗ (φ#1H))

and cBB is the flip.

Remark 3.8. It is easy to check that if (H,R) is a finite-dimensional quasitriangular
Hopf algebra, then the transposition s of Theorem 3.4 is the flip. So, this result
implies [M2, Theorem 7.4.5].
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