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Abstract Studies of patchily distributed insect

populations have made clear the importance of host

patch size and degree of isolation in determining the

distribution of these populations. For such popula-

tions, patch connectivity will have an effect on

patterns of patch occupancy and regional dynamics.

In the present study we performed a series of

observations to estimate the effect of landscape

structure on the abundance of Delphacodes kuscheli

(Homoptera: Delphacidae), vector of ‘‘Mal de Rı́o

Cuarto’’ disease to maize. Actively dispersing

D. kuscheli individuals were collected in 19 sampling

sites during the spring of 2004, using sticky traps

placed at 2 m above ground level. Land use and

landscape pattern were quantified, using Landsat 5

TM images for the area where each sampling site was

placed. Four land use categories were considered in

the analysis; winter pastures, winter cereals, perennial

pasture and stubble. The spatial pattern analysis

program FRAGSTATS was employed to estimate the

patch area, patch proximity index, Total Class Area

and the Mean Proximity Index for each of the land

use categories in those sites where insect samples

were taken. Partial Least Squares Regression analysis

techniques were employed to relate the mean abun-

dance of D. kuscheli and the landscape measures.

Eighty percent of the variation of the mean insect

abundance was explained by two first PLSR compo-

nents. The proximity index of the local host patches,

the amount of area left to stubble, local host patch

area and total area of winter pastures were the most

important variables affecting the abundance of

dispersing D. kuscheli individuals. We found that

the abundance of the dispersive fraction of the

population of D. kuscheli is affected mostly by the

surrounding landscape, particularly by the proximity

of other host patches, and the permeability of the

matrix represented by the stubble.
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Introduction

Insect herbivore populations within an agroecosystem

tend to be spatially structured into discrete local

populations, depending on the distribution of their

habitat patches in the landscape (Fahrig and Jonsen

1998; Grilli and Bruno 2007). For these populations,

the transfer of individuals between patches is a key

process that will finally influence their spatial
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structure and regional dynamics (Tilman and Kareiva

1997; Hanski 1999; Cronin 2003). This transfer of

individuals between patches is the main reason for

the persistence of populations in poor quality habitats

as they receive immigrants from good, productive

ones. This is the basis of source-sink dynamics theory

(Shmida and Ellner 1984; Pulliam 1988; Pulliam and

Danielson 1991), which has been empirically dem-

onstrated (Pulliam 1996), and is considered one of the

mechanistic foundations for landscape ecology

(Wiens et al. 1993).

A landscape consists of several types of elements.

The matrix is the most extensive and most connected

landscape element, playing a dominant role in the

exchange of energy, materials and species. However,

when observing the landscape it is sometimes diffi-

cult to estimate the role each landscape element plays

(Forman and Godron 1986).

Among all the delphacids species present in

Argentina, Delphacodes kuscheli is the economically

most important because of its ability to transmit what

was initially thought to be a local strain of the Maize

Rough Dwarf Virus (MRDV–RC) named Rı́o Cuarto

Disease (Conci and Marzachi 1993; March et al.

1995). This insect has a limited range of hosts, and

can breed on winter cereals such as rye (Secale

cereale L.) or wheat (Triticum aestivum L.) and

winter pastures such as oats (Avena sativa L.). The

latter are the most important overwintering hosts as

they are sown by the end of the summer and not

harvested until spring, becoming the main source

from which D. kuscheli migrates to maize fields, as it

does not reproduce in this crop (Tesón et al. 1986;

Virla and Remes Lenicov 1991; Ornaghi et al. 1993;

Garat et al. 1999; Remes Lenicov et al. 1999).

Delphacodes kuscheli has two wing forms: mac-

ropters, which can fly, and brachipters, which are

flightless, and, as observed in other delphacids

species, the production of migratory forms is a

density-dependent process, related to crowded con-

ditions and intensified by nutritionally inadequate

host plants (Denno et al. 1991; Ornaghi et al. 1993).

High population densities are strongly associated

with land use management and the presence, condi-

tion, and distribution of host vegetation (Grilli and

Gorla 1997, 1998). The abundance of planthoppers is

related to the distribution and abundance of host

plants: the higher the environmental diversity in

terms of crop species per unit area, the lower the

abundance of individual planthopper species (Grilli

and Gorla 1999). Dispersive individuals are particu-

larly affected by the configuration of host patches in

the surrounding landscape (Grilli and Bruno 2007).

For patchily distributed populations, patch con-

nectivity is a critical factor affecting patterns of patch

occupancy and regional population dynamics (Hanski

1994, 1999; Stacey et al. 1997). The composition of

the matrix will influence not only the among-patch

distribution of insects, but also the within-patch

abundance by affecting the movement pattern of

individuals (Haynes and Cronin 2003) and can

surpass patch quality in its effect on individuals’

dispersal (Haynes et al. 2007). In those species that

show different movement response depending on the

matrix cover type, the movement paths of individuals

through the landscape will depend on the occurrence

and pattern of these cover types (Bender and Fahrig

2005).

Planthoppers and grasshoppers dominate the insect

herbivore fauna of gramineous ecosystems (Haddad

et al. 2001; Cronin 2003). Our own previous studies

showed that D. kuscheli regional abundance is

affected not only by the host area in a region, but

also by the phenology and fragmentation of the

different host species, but no attention was put on the

role of other landscape elements (Grilli 2006; Grilli

and Bruno 2007). In this study, we made a series of

observations to evaluate the effect of the configura-

tion of host patches and surrounding elements of the

landscape on the abundance of the dispersive fraction

of populations of this planthopper species.

Methods

Study area

The study was carried out in the western area of

Argentina’s central plain (Fig. 1). The area is flat

agricultural land with almost uniform farming activ-

ity. The most abundant delphacid species is

D. kuscheli (Grilli and Gorla 1998). Insect abundance

and disease incidence vary from 1 year to the next,

and is mainly affected by the land use of the area and

the presence and abundance of host plants patches

(Grilli and Gorla 1997; Grilli and Gorla 1998; Grilli

2006; Grilli and Bruno 2007). It is not completely
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clear what the local mechanisms are that affect

abundance of the vector at a regional level.

Delphacodes kuscheli data collection

Macropterous, actively dispersing D. kuscheli indi-

viduals were collected in 19 gramineous patches

randomly distributed in the central region of Córdoba

province (Argentina) in an area of 16,000 km2. Insect

sampling was performed using sticky traps that were

placed inside the host patches (focal patches). Indi-

viduals collected in the sticky traps are formed by

those that emigrate from and immigrate to the focal

patch. Nevertheless our own previous results indicate

that the individuals inhabiting focal patches have a

relative minor effect on sticky traps captures (Grilli

2008). The traps were made from a metal cylinder

with a 30 cm base diameter and 36 cm in height,

supporting a plastic film coated with lithium grease

(YPF� EP 62) as an adhesive, and were placed at 2 m

above ground level. The plastic film was replaced with

a clean one every 10 days from mid-September to the

end of October 2004. All traps were painted yellow.

Sampling dates were the same for all sites, and all the

traps were replaced simultaneously. Films were

transported to the laboratory, where D. kuscheli

individuals were identified according to Remes

Lenicov and Virla’s identification key (1999). Insect

abundance was expressed as insects/trap/day for each

of the 19 sampling sites (Fig. 2).

Host patches assessment

The spatial position of host patches was established

using a GPS. Afterwards in the lab, each of the 19

patches was identified on a Landsat 5 TM image.

Nineteen Landsat 5 Thematic Mapper (TM) scenes

provided by CONAE (National Aerospace Commis-

sion of Argentina) path/row 229/82, 229/81, 228/82

of May, June and November 2004 were used to

estimate the spatial distribution of the host patches in

which dispersing individuals were sampled. For this

purpose, a supervised classification was used to

determine land use based on spectral brightness, for

six spectral bands in the visible and reflected infrared

regions of the electromagnetic spectrum. 27,384

training sites were identified from site visits and four

classes were considered in the analysis: winter

pastures, winter cereals (host patches), perennial

pasture and stubble. Training site areas were digitized

and signatures were created, describing each infor-

mational class. Images were classified using Fisher’s

Linear Discriminant classifier (Landgrebe 2003).

Finally, accuracy was assessed by generating a

random set of locations for verifying the true land

cover type. An error matrix was applied to compare

Fig. 1 Sampling sites in

the study area (Cordoba

Province, Argentina). Each

site has been identified by a

number
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the classes obtained with the real classes found in the

field and to tabulate the overall proportional error

(Congalton and Green 1999).

The Thematic Mapper Imaging System is a cross-

track scanner with an oscillating scan mirror and

arrays of 16 detectors for each of the visible and

reflected IR bands. Data are recorded on both

eastbound and westbound sweeps of the mirror,

which allows a slower scan rate, longer dwell time,

and higher signal-to-noise ratio than with MSS

images (MSS was the primary imaging system in

the first generation of Landsat) (Sabins 1997). A

major advantage of Landsat 5 TM over the MSS

imaging system is not only its spectral resolution but

also its spatial resolution, which is of 30 m in TM.

Each of the Landsat images was georeferenced to the

latitude/longitude reference system and atmospheric

and radiometrically corrected. Georeferencing was

performed applying a quadratic algorithm for geo-

metric rectification to modify the plane geometry of

Site 1

Site 5

Site 4Site 3Site 2

Site 8Site 7Site 6

Site 11Site 10Site 9

Site 15Site 14Site 13

Site 12

Site 19Site 18Site 17

Site 16

Winter  Pastures

Winter Cereals

Perennial Pastures

Stubble 

Scale 

2000 m 

Fig. 2 Areas around the

sampling site with host

patches extracted from

Landsat 5 TM classified

images. Different land uses

are identified by different

colours
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the original images to a latitude/longitude grid using

57 ground control points obtained from the terrain

(Eastman 2006).

Atmospheric and radiometric calibrations were

performed and consisted in the transformation of the

Digital Numbers of the original Landsat images to

reflectance values in order to make comparable the

classification of different scenes and different dates.

All the image processing was performed using Idrisi

Andes� (Eastman 2006).

Landscape metrics

Each of the agricultural plots where traps were placed

was identified in the field using a GPS and these were

defined as focal patches. Later in the lab their area in

hectares was measured from the Landsat images.

Using this information, the most representative of

composition and configuration metrics for each of the

landscape component that could have an effect on

planthopper dynamics were estimated (Grilli and

Gorla 1997; Grilli 2006; Grilli and Bruno 2007). All

the landscape metrics were estimated using FRAG-

STATS 3.3 (McGarigal and Marks 1995).

Focal patch proximity index

The Proximity Index, a patch-based metric, was

estimated to test for the effect of landscape config-

uration on the abundance of dispersing D. kuscheli

individuals in the study area. This metric was

calculated for the focal patch (the patch where the

traps were placed), identifying the other surrounding

host patches from the classified images (Fig. 2). The

Proximity Index discriminates isolated patches from

aggregated patches and is focused on the host patch

studied. This index will equal 0 if the focal patch has

no neighbours of the same patch type; in our case the

proximity index increases as the number of neighbour

patches of the same class within the 1,500 m

searching radius increases, and as those patches

become closer and more contiguous. It is estimated

by:

PROX ¼
Xn

s¼1

aijs

h2
ijs

ð1Þ

where:aijs = area (m2) of patch ijs within the spec-

ified neighborhood (m) of patch ij.hijs = distance (m)

between patch ijs and patch ijs, based on patch edge-

to-edge distance, computed from cell centre to cell

centre.

We obtained one Proximity Index per focal patch,

based on the proximity of the other surrounding

patches of the same class (Fig. 1).

Class metrics

Four Class metrics were estimated for each of the

land covers identified from the Landsat Images. Each

of these class metrics represents different landscape

pattern properties.

Total class area

Total Class Area is a metric that is affected by the

number and size of patches and the amount of edge

generated by these patches. It is a direct measure of

the amount of landscape comprised of a particular

patch type. This metric approaches zero as the patch

type becomes increasingly rare in the landscape

(McGarigal and Marks 1995).It is estimated by:

TCA ¼
Xn

j¼1

aij

1

10000

� �
ð2Þ

where;aij = area (m2) of the patch ij

Mean proximity index

Mean Proximity Index (MPI) is based on the spatial

and temporal context of habitat patches. This index

discriminates isolated patches from those that are part

of a complex of patches. It is equal to zero if a patch

has no neighbours of the same class within a 3,000 m

diameter area and increases as this neighbourhood is

more occupied by patches of the same class, and as

those patches become closer and more contiguous.

The index is dimensionless, so the absolute value of

the index has little interpretive value; it is used as a

comparative index (Gustafson and Parker 1992). MPI

is estimated by;

MPI ¼

Pm

j¼1

Pn

s¼1

aijs

h2
ijs

� �

N
ð3Þ

where;aijs = area (m2) of patch ijs within the spec-

ified neighborhood (m) of patch ij.hijs = distance (m)
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between patch ijs and patch ijs, based on patch edge-

to-edge distance, computed from cell centre to cell

centre.N = Total number of patches.

Data analysis

Partial Least Squares Regression (PLS) analysis

techniques (Martens and Naes 1989) were employed

to relate the mean abundance of D. kuscheli with the

landscape measures obtained with FRAGSTATS 3.3.

All the statistical analyses were performed using

Statistica 7.0 software (StatSoft, Inc. 2001). Ten

landscape metrics were the independent variables

(Table 1) and the insect mean abundance during the

sampling period was the dependent variable.

Partial Least Squares Regression is a recently

developed generalization and combination of multi-

ple lineal regression and principal component anal-

ysis (Wold et al. 1982; Tenenhaus 1998). It is

particularly useful because, unlike multiple lineal

regression, it can analyze data with strongly corre-

lated, noisy and numerous independent variables, and

also simultaneously model several dependent vari-

ables (Wold et al. 2001). In empirical models it is

fundamental to establish the correct complexity of the

model. The inclusion of excessive factors will

certainly increase the accuracy of description but

may decrease the predictivity because the model

starts to represent not just the true pattern of relation

between independent and dependent variables but

also random noise. In PLSR analysis both, the

independent and the dependent variables (X and Y)

are reduced to principal components. The compo-

nents of X are used to predict the scores on the Y

component, and the predicted Y component scores are

used to predict the scores on the Y variable. The main

output of PLSR analysis is the model coefficients for

the variables, called PLS weights or loadings. X

weights, denoted w, indicate how much they partic-

ipate in the modelling of Y. The weights for the

Y-variables, denoted by c, indicate which Y-variables

are modelled in the respective PLS model dimen-

sions. When these coefficients are plotted in a w 9 c

plot, we obtain a picture showing the relationships

between X and Y, those X-variables that are impor-

tant, and which Y-variables are related to which X

(Wold et al. 2001).

When determining how many principal compo-

nents to include in the model it is important to take

into account not only the goodness of fit but also the

complexity taken to achieve that fit. The trade off

between model complexity and the goodness of fit is

deeply rooted in the Lex parsimoniae, which states

that if two models with different complexities

explained the data equally well, the simpler one

should be taken. In this case the quantity used to find

the optimal complexity of a model is the predicted

variation Q2. The value of Q2 will increase as more

Table 1 Landscape metrics estimated from the Landsat images for the whole area and land uses

Metric Unit Description

Area Hectares Measures the area of the host patch where the individuals were collected

ProxPatch Dimensionless Measures the proximity of other patches of the same class of the patch where

individuals were collected

WPastCA Hectares Indicates how much of the landscape is comprised winter pastures

WPastProx Dimensionless Is the mean value of all the proximity indexes estimated for all the winter pastures in the

studies area

WCerCA Hectares Indicates how much of the landscape is comprised by winter cereals

WCerProx Dimensionless Is the mean value of all the proximity indexes estimated for all the winter cereal in the

studies area

StubCA Hectares Indicates how much of the landscape is comprised by stubble

StubProx Dimensionless Is the mean value of all the proximity indexes estimated for all the stubble patches in

the studies area

PPastCA Hectares Indicates how much of the landscape is comprised perennial pastures

PPastProx Dimensionless Is the mean value of all the proximity indexes estimated for all the perennial pastures in

the studies area

Metric: Landscape metric used; Unit: Spatial unit of the landscape metric; Description: Characteristic of the landscape metric
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components are added to the model until a point in

which this trend will eventually give way to a

decrease in Q2. This point of inflection in the value of

Q2 provides an estimate of how many principal

components to include in the model. A way to make

this estimation is by a method called cross-validation

that determines if a principal component is significant

or not. In this procedure calculation is repeated in

times and a sample of observations is not used in the

model construction. The activity is predicted for

excluded compounds using such partial model. Each

compound is excluded exactly once, and normalized

total error of prediction for them serves as a measure

of predictivity for the full model (Wold et al. 2001).

In this case the amount of Y predicted is represented

by Q2 and represents the cross-validated R2.

Results

Land use in this area of the country has changed little

in the last 20 years. Estimations from Landsat 5 TM

showed that there is considerable local variability in

land management, in particular as regards the

proportion and spatial distribution of host patches

(Fig. 2). Mean abundance of D. kuscheli appears to

be variable in the different host patches during the

study period. Values ranged from 0.017 insects/trap/

day in host patch 3, to 1.39 insects/trap/day in host

patch 8 (Fig. 3).

Classification of land use by Fisher’s Linear

Discriminant classifier proved very precise. The error

matrix accounted for 97% of overall accuracy of the

land use classification for the period studied. Host

and non-host areas were seen to be very variable

between sites. Land use classification showed that

49% of the study area was classified as stubble, 33%

classified as host (winter cereals and winter pastures)

and 18% classified as perennial pastures (Fig. 2). The

area of host patches where dispersing individuals

were collected was also very variable, ranging from

33.32 to 7.74 ha.

Partial least squares regression analysis

Based on the dependent matrix and the explanatory

matrix obtained, PLSR was used to analyze the

relationship between mean insect abundance during

the sampling period (September–October) period, and

the group of 10 landscape metrics described in

Methods (Table 1).

The first PLSR component explained 38% of the

explanatory matrix (landscape elements) and 74% of

the dependent matrix (Q2 = 0.65). The second com-

ponent explained 19% of the explanatory matrix and

6% of the dependent matrix (Q2 = 0.57). Overall,

80% variation of the mean insect abundance through-

out the study period was explained by the first and

second PLSR components (Table 2).

PLSR loadings analysis

The loadings plot shows the first PLS component

dominated by the proximity of other host patches to

the focal patch, the total area of stubble surrounding

the focal patch and the mean proximity winter cereals

and stubble patches (ProxPatch and StubCA on the

positive side and WCerProx and StubProx on then-

gative). The second component is dominated by patch
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Fig. 3 Mean D. kuscheli abundance during the study period

(spring 2004) in each of the sampling sites. Each site has been

identified by its number

Table 2 Partial least squares analysis summary

Comp. R2

X
R2 X
(Cumul.)

R2

Y
R2 Y
(Cumul.)

Q2 Significance

1 0.38 0.38 0.74 0.74 0.65 S

2 0.19 0.58 0.06 0.80 0.57 S

Comp: Principal Component; R2 X: Amount of the independent

variable explained by the principal component; R2 Y: Amount of

the dependent variable explained by the principal component;

Q2: Amount of Y predicted by the principal component; Signif-

icance: Significance of the principal component (S =

Significant). Number of significant components is 2, 80% of

sum of squares of the dependent variables has been explained by

all the independent variables
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metrics, the proximity of other host patches to the

focal patch where the individuals were collected

(ProxPatch) on the positive (high) side and the area of

the focal patch (Area) on the negative (low) side. The

c-values of the dependent variable, y, are proportional

to the linear variation of Y explained by the corre-

sponding dimensions, this is R2. They define one

point per response, in our case having a single

response this point (D. kuscheli mean abundance) sits

approximately in the centre of the first quadrant of the

plot. The importance of a given X-variable for Y is

proportional to its distance from the origin in the

loading space (Fig. 4).

PLSR scores analysis

X scores (t) show object similarities and dissimilar-

ities (Wold et al. 2001). The plot of the X scores

(Fig. 5), shows three clear groups of the sampling

sites; the most distinctive group placed in the first

quadrant formed by sites 6, 7 and 8; a second group

formed by sites 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14,

15, 16 in the second and third quadrant; and a third

group in the fourth quadrant formed by sites 17, 18

and 19 (Fig. 5).

Partial Least Squares Regression coefficients indi-

cate the importance of an independent variable (X)

for the dependent variable (Y) in the model (Wold

et al. 2001). It can be considered as the directions in

the explanatory variables space that result in the

largest increase in the dependent attribute (Cheng and

Sun 2005).

Our results show that the variable that had the

greatest influence on the abundance of dispersing

D. kuscheli individuals was the proximity of the patch

where individuals were collected to other host

patches (ProxPatch), followed by the amount of area

left to stubble, host patch area and winter pasture

total area (SubCA, Area and WPastCA). Winter

cereals mean proximity also shows an important

influence, but with negative PLSR coefficients

(WCerProx,) (Fig. 6).

Discussion

The study area is a typical agricultural and cattle-

breeding region. The estimation of the distribution of

host patches in each of the sampling sites showed that

the spatial distribution and size of these patches is

very variable. Regional abundance of D. kuscheli is

affected not only by the condition and distribution of
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the vegetation at a regional scale (Grilli and Gorla

1997), but also by regional host area (Grilli 2006) and

patch isolation (Grilli and Bruno 2007). Plants, in

natural systems, are distributed forming discrete

patches. In agricultural systems, this situation is

more evident, and every year the pattern of distribu-

tion of these patches will change modifying the

landscape, which will finally affect the distribution

and abundance of the insects that develop in those

patches.

Spatial structure of landscapes will influence the

abundance and distribution of species in several ways

(Forman and Godron 1986; Wiens 1997). For

specialist herbivorous insects, habitat in an agricul-

tural landscape will be distributed in patches (crop

fields) of different sizes, at varying distances from

each other and with varying frequencies of distur-

bance (Hanski and Gilpin 1997; Fahrig and Jonsen

1998).

We analyzed the abundance of individuals dis-

persing over host patches at very low altitude from

the ground (only 2 m). Although D. kuscheli popu-

lations are formed of long-winged and short-winged

individuals, only the macropterous ones are capable

of active flying (Ornaghi et al. 1993; Grilli and Gorla

1997) and are those mainly responsible for Rio

Cuarto Disease Epidemics as almost 90% of the

populations are formed of macropterous individuals

(Ornaghi et al. 1993). In a previous work we found

that only 36% of the variation of the abundance of

D. kuscheli registered in traps placed above 1.5 m

from the ground can be explained by the abundance

of the individuals living in the patch immediately

bellow the trap (Grilli 2008). So 64% of the variation

of the individuals caught in the traps are arriving to

the trap from other source, this is host patches

surrounding the trap.

Planthopper density in a particular habitat patch

will depend on the area, isolation, quality, and

surrounding landscape structure of the patch (Bieder-

mann 2002; Grilli and Bruno 2007). Studies of

patchily distributed insect populations made clear

the importance of host patch size and degree of

isolation in determining the distribution of insect

populations (Hanski 1999). We described the land-

scape using metrics with different characteristics,

some of which quantify landscape composition, while

others quantify landscape configuration. Configura-

tion and composition of the landscape will affect

ecological processes independently and interactively

(Gustafson 1998). Four aspects of landscape pattern

were considered when deciding which class metrics to

use; the spatial context of focal patches (Proximity

Index); the area of the focal patch (Area); the total

area of a particular class (TCA) and the general

context of patches in the landscape (Mean Proximity

Index; McGarigal and Marks 1995).

The abundance of dispersing D. kuscheli individ-

uals is positively correlated with the proximity of

host patches (ProxPatch), the total area left with

stubble surrounding the host patch (StubCA) and the

area of the host patch where the dispersing individ-

uals were collected (Area). The regression coeffi-

cients of the predicting model also show that the

proximity of host patches (ProxPatch) is the most

influential variable, followed by the total area left

with stubble in the landscape (StubCA) and the area

of the host patch (Area) in the third place. This means

that the abundance of the dispersive fraction of the

population of D. kuscheli over a host patch is mostly

driven by the surrounding landscape, particularly by

the proximity of other host patches, and the total area

of the matrix, represented by the stubble. Short

distances between host patches and the focal patch,

high area of stubble in the surrounding landscape and

big focal patches will bring an increase in the amount

of dispersing individuals over a particular focal patch.

All the other variables show little effect on the insect

abundance, except for the mean proximity index of

winter cereals patches that show a negative relation-

ship. This is, as mean proximity of winter cereals

patches increase, D. kuscheli mean abundance

decrease.

Patch connectivity is a critical factor affecting

patterns of patch occupancy and regional dynamics in

patchily distributed populations (Hanski 1994, 1999;

Stacey et al. 1997). Patch isolation is frequently

predicted to have a negative effect on population

density since isolated patches will have lower immi-

gration, reducing rescue and recolonization rates

(Sjögren Gulve 1994; Dunning et al. 1995; Enoksson

et al. 1995; Hinsley et al. 1995). Isolation of habitat

patches is relative (Wiens 1992) and the character-

istics of the matrix between other host patches plays

an important role in the connectivity of fragmented

landscapes (Taylor et al 1993; Ricketts 2001; Bender

and Fahrig 2005). The isolation of host patches by

distance is still an influential factor of dispersal
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among animal populations in fragmented habitats.

But distance is not independent of the nature of the

matrix in fragmented landscapes. In those cases

where the matrix is very different to the primary

habitat, the distance between host patches, will have a

strong effect on the colonization of fragmented

habitats (Goodsel and Connell 2008). Considering

the high dispersal capacity if D. kuscheli a possible

explanation for the role of the matrix is the ‘‘nearest

refuge hypothesis’’ that states that mobile inverte-

brates disperse over areas of non habitat and then

concentrate in isolated host patches because habitats

in isolation are the nearest available refugee (Virn-

stein and Curran 1986). Movement paths of plant-

hoppers are more linear on simplex matrices than on

complex ones (Haynes and Cronin 2003), and their

populations often escape natural enemy controls

when the dispersal ability of the predator is limited

and their aggregative response hampered (Döbel and

Denno 1994; Denno et al. 2002). This explanation

may be also applicable to the negative relationship

found between dispersal individuals and most of the

winter cereals metrics coefficients. These individuals

are probably attracted to winter cereal patches as

these patches are at the peak of their greenness

because they have been sown at the beginning of the

winter (end of June). Winter cereal patches are

probably acting as ecological traps, with an increase

of predation probability for the individuals that arrive

in them. Patches that are perceived as stepping stones

can become ecological traps. Corridors or stepping

stones can function as traps or drift fences for

specialist insects moving through the matrix, driving

the individuals toward connected or very close

habitat patches (Haddad and Baum 1999; Tewksbury

et al. 2002). Therefore, as in our case, corridors and

stepping stones may be enhanced if embedded in a

low resistance matrix (Roland et al. 2000; Ricketts

2001; Haynes and Cronin 2003).

The measurement of landscape connectivity needs

not only a species approach (Hansen and Urban 1992)

but also has to be site specific. Our results show that

landscape structure and D. kuscheli response is not

regionally determined. Similarities in response

between sites, represented by the t scores, showed

that in some cases, sites that are on opposite sides of

the study region, have many more similarities

between them than with sites that are spatially closer.

For most metapopulation studies, patch size and

isolation are driving variables in the determination of

immigration or colonization events (Hanski 1999).

Most of the empirical studies suggest that immigra-

tion increases with patch size and decreases with

increasing isolation (Hanski 1999). These studies

generally ignore the effect of the matrix in this

process (Taylor et al. 1993; Wiens 1997; Tischendorf

and Fahrig 2000). Our results suggest that patch size

and isolation alone are not good predictors of the

interpatch movement without considering the role of

the matrix (Ricketts 2001; Cooper et al. 2002; Gobeil

and Villard 2002; Goodwin and Fahrig 2002; Tis-

chendorf et al. 2003; Bender and Fahrig 2005),

making it at least difficult to generalize results

obtained from models that ignore these aspects.
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Jöreskog, H. Wold (Eds.), Systems under indirect obser-

vation, vols. I and II, North-Holland, Amsterdam, 1982,

pp 177–207, Chapter 8
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