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Abstract The random walk to be considered takes place in the δ-spherical dual of the
group U(n + 1), for a fixed finite dimensional irreducible representation δ of U(n). The tran-
sition matrix comes from the three-term recursion relation satisfied by a sequence of matrix
valued orthogonal polynomials built up from the irreducible spherical functions of type δ of
SU(n + 1). One of the stochastic models is an urn model and the other is a Young diagram
model.
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1 Introduction

Around 1770 D. Bernoulli studied a model for the exchange of heat between two bodies.
This model can also be seen as a description of the diffusion of a pair of incompressible
gases between two containers. This model was independently analyzed by S. Laplace around
1810, see the references in [2]. Another model of similar characteristics was introduced by
P. and T. Ehrenfest in 1907 in connection with the controversies surrounding the work of
L. Boltzmann in the kinetic theory of gases dealing with reversibility and convergence to
equilibrium. Boltzmann had apparentlly deduced his H-theorem dictating convergence to
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448 F. A. Grünbaum et al.

equilibrium starting from the time reversible equations of Newton. For a nice account of
this, see [8]. Both of these models are instances of discrete time Markov chains with fairly
explicit tridiagonal one-step transition probability matrices which are obtained by consider-
ing carefully the underlying stochastic mechanism that connects the state of the system at
two consecutive values of time.

The second model features two urns, I and II, that share a total of N balls. The state of the
system at time n is the number of balls in urn I. Each ball has a different label from the set
1, 2, . . . , N . At time n, a number j in the set 1, 2, . . . , N is chosen with equal probabilities
and the ball with this label is moved from the urn where it sits to the other urn. This gives the
state of the system at time n + 1. Writing down the one-step transition probability matrix is
now a matter of counting carefully.

While it had been possible to obtain interesting answers for these two models for quite
some time, it is only much more recently that some very nice connections have been noticed
between these models and some basic sets of discrete orthogonal polynomials, namely the
Krawtchouk and the dual Hahn polynomials. Moreover, although there are many ways of
arriving at these polynomials, it is relevant to mention here that they can be realized as the
“spherical functions” for certain finite bihomogeneous spaces. A very good reference for this
material is [16]. We stress the remarkable fact that these two models of old vintage and clear
physical significance can be solved in terms of the simplest of all hypergeometric functions,
namely 2 F1 and 3 F2.

As many readers certainly know, many of the classical special functions of mathematical
physics, such as the Legendre, the Hermite and the Laguerre polynomials, could have been
obtained for the first time as spherical functions for certain symmetric spaces. A good basic
reference here is [19]. The way that things developed historically is, of course, completely
different.

The interplay between important physical problems and certain tools that arise naturally
in group representation theory constitutes the theme of this paper. The situation described
here is the reverse of what has been discussed above for the Bernoulli–Laplace and the Eh-
renfest models: we will go from group representation theory to some concrete models that
might be of some physical interest. We will start from a matrix that is obtained from group
representation theory and try to build a model that goes along with it. The models constructed
here are certainly not the only possible ones. More natural ones might be lurking around.

In a series of papers including [3–6,10–14,17,18], one considers matrix valued spherical
functions associated with a pair (G, K ) arriving at sequences of matrix valued polynomials
of one real variable satisfying a three-term recursion relation whose semi-infinite block tri-
diagonal matrix is stochastic, i.e. the entries are non-negative and the sum of the elements in
any row is 1. This matrix depends on a number of free parameters that have a very definite
group theoretic meaning. The important point is that the tools developed in the papers just
mentioned allow one to give explicit expressions, in terms of some definite integrals, of all
the entries of any power of the original matrix. This means that if one could think of a nice
Markov chain with this matrix as its one-step transition probability matrix, one would have
an explicit form for the entries of the n-step transition probability matrix. Many readers will
recognize that this is exactly what Karlin and McGregor, see [9], proposed as a way of exploit-
ing orthogonal polynomials and the role they play in the spectral analysis of certain finite
or semi-infinite tridiagonal matrices. The method advocated in [9] starts with a so-called
birth-and-death process whose one-step tridiagonal transition matrix is easily constructed
from the given model and one has to look for the corresponding spectral information: the
eigenfunctions and the spectral measure. Here, we travel this road in the opposite direction
in a more elaborate set-up.

123



Two stochastic models of a random walk 449

Fig. 1 Û(n + 1)(k),
n = 1, k1 = 3

The relation between matrix valued orthogonal polynomials, block tridiagonal matrices,
and Quasi-Birth and Death processes has been first exploited independently in [1,7] as well
as in later papers by these authors.

We will consider several random walks whose configuration spaces are subsets of
Û(n + 1)(k), the so-called k-spherical dual of U(n + 1), and whose one-step transition
matrices come from the stochastic matrix that appears in [10,15], see also [14]. The dual
of U(n + 1) is the set Û(n + 1) of all equivalence classes of finite dimensional irreducible
representations of U(n + 1). These equivalence classes are parametrized by the n + 1-tuples
of integers m = (m1, . . . ,mn+1) subject to the conditions m1 ≥ · · · ≥ mn+1.

If k = (k1, · · · , kn) ∈ Û(n), the k-spherical dual of U(n + 1) is the subset Û(n + 1)(k)
of Û(n + 1) of the representations of U(n + 1) whose restriction to U(n) contains the repre-
sentation k. Then it is well known, see [19], that Û(n + 1)(k) corresponds to the set of all
m′s as above that satisfy the extra constraints

mi ≥ ki ≥ mi+1, for all i = 1, . . . , n. (1)

In other words, Û(n + 1)(k) can be visualized as the subset of all points m of the integral
lattice Z

n+1 in the set

[k1,∞)× [k2, k1] × · · · × [kn−1, kn] × (−∞, kn].
An example is given in the figure above (Fig. 1).

We can now state more precisely the point of this paper: starting from the stochastic matrix
M that appears in [10,15], we describe a random mechanism that gives rise to a Markov chain
whose state space is the subset of Û(n + 1)(k) of all m ∈ Û(n + 1)(k) such that sm = sk
and kn ≥ 0 (sm = m1 + · · · + mn+1, sk = k1 + · · · + kn), and whose one-step transition
matrix coincides with the one we started from. The construction in [3,12] deals with the case
of (SU(3),U(2)) but in [10,13] this was extended to the case of (SU(n + 1),U(n)).

One step of the Markov evolution will consist of two substeps taken in succession. In the
first substep, one of the values of mi increases by one, subject to the constraints (1). In the
second substep, one of the new values of our mi

′s decreases by one, again this is subject to
the same constraints. Thus, from the configuration m, one could for instance go to m−ei +e j

or one could stay put at m. We use the notation ei for the vector with its i th component equal
to 1 and all the others equal to 0. Any state has a total of at most n(n +1)+1 positions where
it can move in one complete step of our process consisting of two simpler steps. It should be
kept in mind that the two successive simpler steps can end up with our random walker in the
initial state. We will analyze in detail the simpler substeps that constitute one full step of our
process. This will take up most of the analysis in the next sections.

We now describe the contents of the paper.
In Sect. 2, we collect the necessary material to state and explain a three-term recursion

relation (with matrix coefficients) for a sequence of matrix valued orthogonal polynomi-
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Fig. 2 m = (6, 4, 4, 3)

als, built up from irreducible spherical functions of a fixed type associated with the pair
(SU(n + 1),U(n)). This should help the reader make the connection between [10,12] and
the present paper.

In Sect. 3, we construct a factorization of the stochastic matrix that defines the three-term
recursion relation for the sequence of matrix valued orthogonal polynomials given in the
previous section. This factorization into two stochastic matrices leads to the two substeps
mentioned above.

Before starting the analysis of our general urn model in Sect. 5 for one of the substeps,
we describe in detail in Sect. 4 an urn model for n = 2.

The definition of the stochastic matrix M alluded above, as well as its factorization, makes
sense for any m ∈ Û(n + 1)(k).

To each configuration m1 ≥ m2 ≥ · · · ≥ mn ≥ 0 of n integer numbers, we associate its
Young diagram, a combinatorial object which has m1 boxes in the first row, m2 boxes in the
second row, and so on down to the last row which has mn boxes. For example, the Young
diagram associated with the configuration 6 ≥ 4 ≥ 4 ≥ 3 is given in Fig. 2.

Young diagrams and their relatives the Young tableaux are very useful in representation
theory. They provide a convenient way to describe the group representations of the symmetric
and general linear groups and to study their properties. In particular, Young diagrams are in
one-to-one correspondence with the irreducible representations of the symmetric group over
the complex numbers and the irreducible polynomial representations of the general linear
groups. They were introduced by Alfred Young in 1900. They were then applied to the study
of the symmetric group by Georg Frobenius in 1903. Their theory and applications were fur-
ther developed by many mathematicians and there are numerous and interesting applications,
beyond representation theory, in combinatorics and algebraic geometry.

If we consider the subset all m ∈ Û(n+1)(k) such that mn+1 ≥ 0, it is natural to represent
such a state of our Markov chain by its Young diagram, see Sect. 6. Then in the last two
sections, we describe a random mechanism based on Young diagrams that gives rise to a
random walk in the set of all Young diagrams of 2n +1 rows and whose 2 j row has k j boxes
1 ≤ j ≤ n, and whose transition matrix is M̃1, see (31).

2 Spherical functions of (SU(n + 1), U(n))

Let G be a locally compact unimodular group, and let K be a compact subgroup of G. Let
K̂ denote the set of all equivalence classes of complex finite dimensional irreducible repre-
sentations of K ; for each δ ∈ K̂ , let ξδ denote the character of δ, d(δ) the degree of δ, i.e.,
the dimension of any representation in the δ, and χδ = d(δ)ξδ . We choose the Haar measure
dk on K normalized by

∫
K dk = 1. We shall denote by V a finite dimensional vector space

over the field C of complex numbers and by End(V ) the space of all linear transformations
of V into V .

A spherical function � on G of type δ ∈ K̂ is a continuous function on G with values in
End(V ) such that
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Two stochastic models of a random walk 451

i) �(e) = I . (I = identity transformation).
ii) �(x)�(y) = ∫

K χδ(k
−1)�(xky) dk, for all x, y ∈ G.

If � : G −→ End(V ) is a spherical function of type δ then �(kgk′) = �(k)�(g)�(k′),
for all k, k′ ∈ K , g ∈ G, and k �→ �(k) is a representation of K such that any irreducible
subrepresentation belongs to δ.

Spherical functions of type δ arise in a natural way upon considering representations of
G. If g �→ U (g) is a continuous representation of G, say on a finite dimensional vector space
E , then

P(δ) =
∫

K

χδ(k
−1)U (k) dk

is a projection of E onto P(δ)E = E(δ). The function � : G −→ End(E(δ)) defined by

�(g)a = P(δ)U (g)a, g ∈ G, a ∈ E(δ)

is a spherical function of type δ. In fact, if a ∈ E(δ), we have

�(x)�(y)a = P(δ)U (x)P(δ)U (y)a =
∫

K

χδ(k
−1)P(δ)U (x)U (k)U (y)a dk

=
⎛

⎝
∫

K

χδ(k
−1)�(xky) dk

⎞

⎠ a.

If the representation g �→ U (g) is irreducible, then the associated spherical function � is
also irreducible. Conversely, any irreducible spherical function on a compact group G arises
in this way from a finite dimensional irreducible representation of G.

The aim of this section is to collect the necessary material to state and explain a three-term
recursion relation for a sequence of matrix valued orthogonal polynomials, built up from irre-
ducible spherical functions of the same type associated with the pair (SU(n + 1),S(U(n)×
U(1))).

The irreducible finite dimensional representations of SU(n + 1) are restriction of irreduc-
ible representations of U(n + 1), which are parameterized by (n + 1)-tuples of integers

m = (m1,m2, . . . ,mn+1)

such that m1 ≥ m2 ≥ · · · ≥ mn+1.
Different representations of U(n + 1) can restrict to the same representation of

G = SU(n + 1). In fact the representations m and p of U(n + 1) restrict to the same
representation of SU(n + 1) if and only if mi = pi + j for all i = 1, . . . , n + 1 and some
j ∈ Z.

The closed subgroup K = S(U(n)× U(1)) of G is isomorphic to U(n); hence, its finite
dimensional irreducible representations are parameterized by the n-tuples of integers

k = (k1, k2, . . . , kn)

subject to the conditions k1 ≥ k2 ≥ · · · ≥ kn .
Let k be an irreducible finite dimensional representation of U(n). Then k is a subrepre-

sentation of m if and only if the coefficients ki satisfy the interlacing property

mi ≥ ki ≥ mi+1, for all i = 1, . . . , n.

Moreover, if k is a subrepresentation of m, it appears only once. (See [20]).
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The representation space Vk of k is a subspace of the representation space Vm of m and
it is also K -stable. In fact, if A ∈ U(n), a = (det A)−1 and v ∈ Vk, we have

(
A 0
0 a

)

· v = a

(
a−1 A 0

0 1

)

· v = asm−sk

(
A 0
0 1

)

· v,

where sm = m1 + · · · + mn+1 and sk = k1 + · · · + kn . This means that the representation
of K on Vk obtained from m by restriction is parameterized by

(k1 + sk − sm, . . . , kn + sk − sm). (2)

Let �m,k be the spherical function associated with the representation m of G and to the
subrepresentation k of K . Then (2) says that the K -type of�m,k is k + (sk − sm)(1, . . . , 1).

Proposition 2.1 The spherical functions�m,k and�m′,k′
of the pair (G, K ) are equivalent

if and only if m′ = m + j (1, . . . , 1) and k′ = k + j (1, . . . , 1).

Proof The spherical functions �m,k and �m′,k′
are equivalent if and only if m and m′ are

equivalent and the K -types of both spherical functions are the same, see the discussion in p.
85 of [17]. We know that m 	 m′ if and only if

m′ = m + j (1, . . . , 1) for some j ∈ Z.

Besides, the K types are the same if and only if

ki + sk − sm = ki
′ + sk′ − sm′ for all i = 1, . . . , n.

Therefore, k′ = k + p(1, . . . , 1), and now it is easy to see that p = j . 
�

The standard representation of U(n + 1) on C
n+1 is irreducible and its highest weight is

(1, 0, . . . , 0). Similarly, the representation of U(n +1) on the dual of C
n+1 is irreducible and

its highest weight is (0, . . . , 0,−1). Therefore, we have that

C
n+1 = V(1,0,··· ,0) and (Cn+1)∗ = V(0,...,0,−1).

For any irreducible representation m of U(n +1), the tensor product Vm ⊗C
n+1 decomposes

as a direct sum of U(n + 1)-irreducible representations in the following way

Vm ⊗ C
n+1 	 Vm+e1 ⊕ Vm+e2 ⊕ · · · ⊕ Vm+en+1 , (3)

and

Vm ⊗ (Cn+1)∗ 	 Vm−e1 ⊕ Vm−e2 ⊕ · · · ⊕ Vm−en+1 , (4)

where {e1, . . . , en+1} is the cannonical basis of C
n+1, see [20].

Remark The irreducible modules on the right-hand side of (3) and (4) whose parameters
(m′

1,m′
2, . . . ,m′

n+1) do not satisfy the conditions m1
′ ≥ m2

′ ≥ · · · ≥ mn+1
′ have to be

omitted.

Starting from (3) and (4), the following theorem is proved in [10].
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Theorem 2.2 Let φ and ψ be, respectively, the one-dimensional spherical functions associ-
ated with the standard representation of G and its dual. Then

φ(g)�m,k(g) =
n+1∑

i=1

a2
i (m,k)�m+ei ,k(g)

ψ(g)�m,k(g) =
n+1∑

i=1

b2
i (m,k)�m−ei ,k(g).

The constants ai (m,k) and bi (m,k) are given by

ai (m,k) =
∣
∣
∣
∣
∣

∏n
j=1(k j − mi − j + i − 1)
∏

j �=i (m j − mi − j + i)

∣
∣
∣
∣
∣

1/2

,

bi (m,k) =
∣
∣
∣
∣
∣

∏n
j=1(k j − mi − j + i)

∏
j �=i (m j − mi − j + i)

∣
∣
∣
∣
∣

1/2

.

(5)

Moreover
n+1∑

i=1

a2
i (m,k) =

n+1∑

i=1

b2
i (m,k) = 1. (6)

Our Lie group G has the following polar decomposition G = K AK , where the abelian
subgroup A of G consists of all matrices of the form

a =
⎛

⎝
cos θ 0 sin θ

0 In−1 0
− sin θ 0 cos θ

⎞

⎠ , θ ∈ R. (7)

(Here, In−1 denotes the identity matrix of size n − 1).
Since an irreducible spherical function � of G of type δ satisfies �(kgk′) = �(k)�(g)

�(k′) for all k, k′ ∈ K and g ∈ G, and �(k) is an irreducible representation of K in the
class δ, it follows that � is determined by its restriction to A and its K -type. Hence, from
now on, we shall consider its restriction to A.

Let M be the group consisting of all elements of the form

m =
⎛

⎝
1 0 0
0 B 0
0 0 1

⎞

⎠ , B ∈ U(n − 1).

Thus, M is isomorphic to U(n − 1) and its finite dimensional irreducible representations are
parameterized by the (n − 1)-tuples of integers

t = (t1, t2, . . . , tn−1)

such that t1 ≥ t2 ≥ · · · ≥ tn−1.
If a ∈ A, then �m,k(a) commutes with �m,k(m) for all m ∈ M . In fact, we have

�m,k(a)�m,k(m) = �m,k(am) = �m,k(ma) = �m,k(m)�m,k(a).

The representation of U(n) in Vk ⊂ Vm, k = (k1, . . . , kn) restricted to U(n−1) decomposes
as the following direct sum

Vk =
⊕

t∈M̂

Vt, (8)
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where the sum is over all the representations t = (t1, . . . , tn−1) ∈ M̂ such that the coefficients
of t interlace the coefficients of k, that is ki ≥ ti ≥ ki+1, for all i = 1, . . . , n − 1. Since each
Vt ⊂ Vk appears only once, by Schur’s Lemma, it follows that �m,k(a)|Vt = φ

m,k
t (a)Id|Vt ,

where φm,k
t (a) ∈ C for all a ∈ A.

By using Proposition 2.1, given a spherical function�m,k we can assume that sk−sm = 0.
In such a case, the K -type of�m,k is k, see (2). Now it is easy to see that if (m,k) is one of
such a pair then

m = m(w, r) = (w + k1, r1 + k2, . . . , rn−1 + kn,−(w + r1 + · · · + rn−1)), (9)

where 0 ≤ w, kn ≥ −(w + r1 + · · · + rn−1) and 0 ≤ ri ≤ ki − ki+1 for i = 1, . . . n − 1.
Thus if we assume w ≥ max{0,−kn} and 0 ≤ ri ≤ ki − ki+1 for i = 1, . . . n − 1 all the
conditions are satisfied.

We observe that the representations t of M appearing in the right-hand side of (8) are of
the form t = r + k′, where k′ = (k2, . . . , kn) and r is in the following set

	 = {r = (r1, . . . , rn−1) : 0 ≤ ri ≤ ki − ki+1}.
In particular, the number of M-modules in the decomposition of Vk is

N =
n−1∏

i=1

(ki − ki+1 + 1).

We will identify �m,k(a) with the column vector (�m,k
r (a))r∈	 of N complex valued

functions �m,k
r (a) indexed by 	, where �m,k

r (a) = φ
m,k
r+k′(a), a ∈ A.

From now on, we fix k ∈ K̂ and take m = m(w, r) as in (9) for all w ≥ max{0,−kn}
and r ∈ 	. Also in the open subset {a(θ) ∈ A : 0 < θ < π/2} of A, we introduce the
coordinate t = cos2(θ) and define on the open interval (0, 1) the complex valued function
Fr,s(w, t) = �

m(w,r),k
s (a(θ)) and the corresponding matrix function

F(w, t) = (Fr,s(w, t))(r,s)∈	×	.

For each w ≥ max{0,−kn}, we also define the following matrices of type 	×	

Aw = ((Aw)r,s), Bw = ((Bw)r,s), Cw = ((Cw)r,s), (10)

where

(Aw)r,s =

⎧
⎪⎨

⎪⎩

a2
n+1(m(w, r))b2

1(m(w, r)+ en+1) if s = r

a2
j+1(m(w, r))b2

1(m(w, r)+ e j+1) if s = r + e j

0 otherwise

(Cw)r,s =

⎧
⎪⎨

⎪⎩

a2
1(m(w, r))b2

n+1(m(w, r)+ e1)) if s = r

a2
1(m(w, r))b2

j+1(m(w, r)+ e1) if s = r − e j

0 otherwise

(Bw)r,s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

1≤ j≤n+1

a2
j (m(w, r))b2

j (m(w, r)+ e j )) if s = r

a2
j+1(m(w, r))b2

n+1(m(w, r)+ e j+1) if s = r + e j

a2
n+1(m(w, r))b2

j+1(m(w, r)+ en+1) if s = r − e j

a2
j+1(m(w, r))b2

i+1(m(w, r)+ e j+1) if s = r + e j − ei

0 otherwise
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Two stochastic models of a random walk 455

where 1 ≤ i, j ≤ n −1, and a2
i (m(w, r)) = a2

i (m,k), b2
i (m(w, r)+e j ) = b2

i ((m+e j ,k))
for 1 ≤ i, j ≤ n + 1, see (5).

Theorem 2.3 For each fixed K -type k = (k1, . . . kn), for all integersw ≥ max{0,−kn} and
all 0 < t < 1 we have

t F(w, t) = AwF(w − 1, t)+ BwF(w, t)+ CwF(w + 1, t). (11)

Proof This result is a consequence of Theorem 2.2 and of the appropriate definitions of
Aw, Bw,Cw given in (10), when we take g = a(θ).

We recall that φ(g) andψ(g) are the one-dimensional spherical functions associated with
the G-modules C

n+1 and (Cn+1)∗, respectively. A direct computation gives

φ(a(θ)) = 〈a(θ)en+1, en+1〉 = cos θ.

and

ψ(a(θ)) = 〈a(θ)λn+1, λn+1〉 = cos θ.

Then φ(a(θ))ψ(a(θ)) = cos2(θ) = t . 
�
If g ∈ G = SU(n + 1) let A(g) denote the n × n left upper corner of g, and let A be

the dense open subset of all g ∈ G such that A(g) is nonsingular. In [13] in order to deter-
mine all irreducible spherical functions of G of type k = (k1, . . . , kn), an auxiliary function
�k : A −→ End(Vk) is introduced. It is defined by �k(g) = π(A(g)) where π stands
for the unique holomorphic representation of GL(n,C) corresponding to the parameter k. It
turns out that if kn ≥ 0 then �k = �m,k where m = (k1, . . . , kn, 0).

Then instead of looking at a general spherical function �w,r = �m(w,r),k of type k, we
look at the function Hw,r(g) = �w,r(g)�k(g)−1 which is well defined on A.

As before, we construct the matrix function

H̃(w, t) = (H̃r,s(w, t))(r,s)∈	×	.

where H̃r,s(w, t) = Hw,r
s (a(θ)), t = cos θ ∈ (0, 1).

Let �(t) = (�r,s(t))(r,s)∈	×	 be the transpose of H̃(0, t), i.e. �r,s(t) = H̃s,r(0, t). In
[13], the following crucial theorem is proved.

Theorem 2.4 If kn ≥ 0, then H̃r,s(w, t), H̃(w, t) and

P̃w(t) = H̃(w, t)�(t)−1

are polynomial functions on the variable t whose degrees are

deg H̃r,s(w, t) = w +
n−1∑

i=1

min{ri , si },

deg H̃(w, t) = w + k1 − kn,

deg P̃w(t) = w.

(12)

It is important to point out that {P̃w}w≥0 is a sequence of matrix orthogonal polynomials with
respect to a matrix weight function W = W (t) supported in the interval (0, 1) and given in
[13]. From (11), it easily follows that {P̃w}w≥0 satisfies the following three-term recursion
relation

t P̃w(t) = Aw P̃w−1(t)+ Bw P̃w(t)+ Cw P̃w+1(t). (13)
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The above three-term recursion relation which hold for all w ≥ 0 can be written in the
following way

t

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

P̃0

P̃1

P̃2

P̃3

·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

B0 C0 0
A1 B1 C1 0
0 A2 B2 C2 0

0 A3 B3 C3 0
· · · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

P̃0

P̃1

P̃2

P̃3

·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (14)

Now we observe that the semi-infinite matrix M on the right-hand side is a stochastic
matrix, that is, all the entries are nonnegative and the sum of the elements in any row is one.
In fact, the elements in the r row of thew blocks are either zero or (Aw)r,s, (Bw)r,s, (Cw)r,s
which are given in (10). Their sum is

∑

s∈	
(Aw)r,s + (Bw)r,s + (Cw)r,s = a2

n+1(m)b
2
1(m + en+1)+

n∑

j=2

a2
j (m)b

2
1(m + e j )

+
n+1∑

j=1

a2
j (m)b

2
j (m + e j )+

n∑

j=2

a2
j (m)b

2
n+1(m + e j )

+ a2
n+1(m)

n∑

j=2

b2
j (m + en+1)

+
∑

2≤i �= j≤n

a2
j (m)b

2
i (m + e j )+ a2

1(m)b
2
n+1(m + e1)

+ a2
1(m)

n∑

j=2

b2
j (m + e1),

where we replaced m(w, r) by m. The right-hand side can be rewritten to obtain

∑

s∈	
(Aw)r,s+(Bw)r,s+(Cw)r,s = a2

n+1(m)
n+1∑

j=1

b2
j (m + en+1)+

n∑

j=2

a2
j (m)

n+1∑

i=1

b2
i (m + e j )

+ a2
1(m)

n+1∑

j=1

b2
n+1(m + e1)=

n+1∑

j=1

a2
j (m)

n+1∑

i=1

b2
i (m + e j ).

Now by using (6) the assertion

∑

s∈	
(Aw)r,s + (Bw)r,s + (Cw)r,s = 1

follows, proving that the semi-infinite matrix M is stochastic.

3 The substeps of the random walk

In what follows, we will construct a factorization of the stochastic matrix M appearing in
(14) into the product of two stochastic matrices of the form
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M =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Y0 X0 0
0 Y1 X1 0

0 Y2 X2 0
0 Y3 X3 0

· · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

S0 0
R1 S1 0
0 R2 S2 0

0 R3 S3 0
· · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (15)

While the random process given by the matrix M leaves invariant the set P introduced
below, see (28), this is not true for its substeps going along with this factorization. This
section deals with this complication in great detail.

The multiplication formulas given in Theorem 2.2 restricted to g = a(θ) give

cos(θ)�m,k
s (a(θ)) =

n+1∑

j=1

a2
j (m,k)�

m+e j ,k
s (a(θ)),

cos(θ)�m,k
s (a(θ)) =

n+1∑

j=1

b2
j (m,k)�

m−e j ,k
s (a(θ)).

(16)

We recall that we fixed k with kn ≥ 0 and we took m = m(w, r) as in (9). Also making the
change of variables t = cos(θ) we defined Fr,s(w, t) = �

m(w,r),k
s (a(θ)). Now we make the

following important observation

m(w, r)± e j =

⎧
⎪⎨

⎪⎩

m(w ± 1, r)± en+1 if j = 1,

m(w, r ± e j−1)± en+1 if j = 2, . . . , n,

m(w, r)± en+1 if j = n + 1.

(17)

Introduce the following scalar functions

F+
r,s(w, t) = �

m(w,r)+en+1,k
s (a(θ)),

and the matrix function

F+(w, t) = (F+
r,s(w, t))(r,s)∈	×	.

Then the first identity in (16) becomes

√
t Fr,s(w, t) = a2

1(m(w, r))F+
r,s(w + 1, t)+

n−1∑

j=1

a2
j+1(m(w, r))F+

r+e j ,s(w, t)

+ a2
n+1(m(w, r))F+

r,s(w, t). (18)

For each w ≥ 0, we define the following matrix of type 	×	

Xw = ((Xw)r,s), Yw = ((Yw)r,s), (19)

where

(Xw)r,s =
{

a2
1(m(w, r)) if s = r,

0 otherwise,

(Yw)r,s =

⎧
⎪⎨

⎪⎩

a2
n+1(m(w, r)) if s = r,

a2
j+1(m(w, r)) if s = r + e j ,

0 otherwise.
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Now the set of scalar identities (18) with (r, s) ∈ 	×	 can be written as a matrix identity
in the following more convenient way

√
t F(w, t) = XwF+(w + 1, t)+ YwF+(w, t). (20)

For each w ≥ 0, we define the following matrix of type 	×	

Rw = ((Rw)r,s), Sw = ((Sw)r,s), (21)

where

(Rw)r,s =
{

b2
1(m(w, r)+ en+1) if s = r,

0 otherwise,

(Sw)r,s =

⎧
⎪⎨

⎪⎩

b2
n+1(m(w, r)+ en+1) if s = r,

b2
j+1(m(w, r)+ en+1) if s = r − e j ,

0 otherwise.

If we multiply (20) by
√

t and use the second multiplication formula given in (16), we obtain

t F(w, t) =Xw(Rw+1 F(w, t)+ Sw+1 F(w + 1, t))

+ Yw(RwF(w − 1, t)+ SwF(w, t))

=(XwRw+1 + YwSw)F(w, t)+ XwSw+1 F(w + 1, t)

+ YwRwF(w − 1, t),

(22)

since we claim that

√
t F+(w, t) = RwF(w − 1, t)+ SwF(w, t). (23)

Indeed we have

√
t F+

r,s(w, t) = √
t�m(w,r)+en+1,k

s (a(θ))

=
n+1∑

j=1

b2
j (m(w, r)+ en+1)�

m(w,r)+en+1−e j ,k
s (a(θ))

= b2
1(m(w, r)+ en+1)�

m(w−1,r),k
s (a(θ))

+
n∑

j=2

b2
j (m(w, r)+ en+1)�

m(w,r−e j−1,k
s (a(θ))

+b2
n+1(m(w, r)+ en+1)�

m(w,r),k
s (a(θ)),

where we used (17).
On the other hand,

(RwF(w − 1, t))r,s =
∑

q∈	
(Rw)r,q Fq,s(w − 1, t)

= b2
1(m(w, r)+ en+1)Fr,s(w − 1, t),
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and

(SwF(w, t))r,s =
∑

q∈	
(Sw)r,q Fq,s(w, t)

= b2
n+1(m(w, r)+ en+1)Fr,s(w, t)

+
n−1∑

j=1

b2
j+1(m(w, r)+ en+1)Fr−e j ,s(w, t).

Then (23) follows easily.
Finally, if we compare (22) with (11) in Theorem 2.3 we obtain

Aw = YwRw, Bw = XwRw+1 + YwSw, Cw = XwSw+1

which is equivalent to the factorization (15).
We end by checking that both matrices in the right-hand side of (15) are stochastic:

∑

s∈	
(Yw)r,s +

∑

s∈	
(Xw)r,s = a2

n+1(m(w, r))+
∑

1≤ j≤n−1

a2
j+1(m(w, r))+ a2

1(m(w, r)) = 1,

∑

s∈	
(Rw)r,s +

∑

s∈	
(Sw)r,s = b2

1(m(w, r)+ en+1)+ b2
n+1(m(w, r)+ en+1)

+
∑

1≤ j≤n−1

b2
j+1(m(w, r)+ en+1) = 1,

where we used that
∑n+1

i=1 a2
i (m,k) = ∑n+1

i=1 b2
i (m,k) = 1, see (6).

Now we want to consider the random walks associated with the probability matrices
appearing in (15),

M =

∣
∣
∣
∣
∣
∣
∣
∣
∣

B0 C0 0

A1 B1 C1 0

0 A2 B2 C2 0

· · · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣

= M1 M2,

M1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

Y0 X0 0

0 Y1 X1 0

0 Y2 X2 0

· · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣

, M2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

S0 0

R1 S1 0

0 R2 S2 0

· · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (24)

Let Fw and F+
w denote, respectively, the polynomial functions Fw = Fw(t) and F+

w =
F+
w (t). Then (23) can be written as follows

√
t

∣
∣
∣
∣
∣
∣
∣
∣
∣

F+
0

F+
1

F+
2

·

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

S0 0

R1 S1 0

0 R2 S2 0

· · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

F0

F1

F2

·

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (25)
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Similarly (20) gives

√
t

∣
∣
∣
∣
∣
∣
∣
∣
∣

F0

F1

F2

·

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

Y0 X0 0

0 Y1 X1 0

0 Y2 X2 0

· · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

F+
0

F+
1

F+
2

·

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (26)

We can now rewrite (22) in matrix form,

t

∣
∣
∣
∣
∣
∣
∣
∣
∣

F0

F1

F2

·

∣
∣
∣
∣
∣
∣
∣
∣
∣

= √
t M1

∣
∣
∣
∣
∣
∣
∣
∣
∣

F+
0

F+
1

F+
2

·

∣
∣
∣
∣
∣
∣
∣
∣
∣

= M1 M2

∣
∣
∣
∣
∣
∣
∣
∣
∣

F0

F1

F2

·

∣
∣
∣
∣
∣
∣
∣
∣
∣

= M

∣
∣
∣
∣
∣
∣
∣
∣
∣

F0

F1

F2

·

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (27)

The state space of the random walks W,W1,W2 associated, respectively, to the stochastic
matrices M,M1,M2 is the set N≥0 ×	, and W is equal to the composition W1 ◦ W2.

We recall that the map (w, r) �→ m(w, r) defined in (9) is an injection of N≥0 × 	 into
the k-spherical dual Û(n + 1)(k) of U(n + 1), and its image is

P = {m ∈ Û(n + 1)(k) : sm = sk}, (28)

where sm = m1 + · · · + mn+1, sk = k1 + · · · + kn .
Let us now consider the random walk W1 associated with the stochastic matrix M1. Below

we display the entries of M1 at the different sites of its (w, r)-row,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a2
n+1(m(w, r)) if m(w, s)-site = m(w, r),

a2
j+1(m(w, r)) if m(w, s)-site = m(w, r + e j ),

a2
1(m(w, r)) if m(w, s)-site = m(w + 1, r),

0 in other sites.

The appearance of the plus sign in the right-hand side of (26) makes it natural to consider
instead the random walk W +

1 obtained from W1 by applying a shift by en+1. Thus, if the
system is at state m(w, r) at time t , then at time t + 1 it can move in the following ways

W +
1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m(w, r) → m(w, r)+ en+1, with probability a2
n+1(m(w, r)),

m(w, r) → m(w, r)+ e j+1, with probability a2
j+1(m(w, r)),

m(w, r) → m(w, r)+ e1, with probability a2
1(m(w, r)),

m(w, r) → other states, with probability 0,

because m(w, r+e j )+en+1 = m(w, r)+e j+1 for 1 ≤ j ≤ n−1, and m(w+1, r)+en+1 =
m(w, r) + e1. This is in accordance with the following formula derived by looking at the
((w, r), s)-entry of (26),

cos(θ)�m(w,r),k
s (a(θ)) =

n+1∑

j=1

a2
j (m(w, r))�

m(w,r)+e j ,k
s (a(θ)).

Now it is worth to observe that W +
1 does not leave invariant the subset P but extends to a

random walk W̃1 in Û(n + 1)(k) defined by

W̃1 : m → m + e j , with probability a2
j (m,k). (29)
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We proceed similarly with the random walk W2 associated to the stochastic matrix M2.
Below we display the entries of M2 at the different sites of its (w, r)-row,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b2
n+1(m(w, r)+ en+1) if m(w, s)-site = m(w, r),

b2
j+1(m(w, r)+ en+1) if m(w, s)-site = m(w, r − e j ),

b2
1(m(w, r)+ en+1) if m(w, s)-site = m(w − 1, r),

0 in other sites.

The appearance of the plus sign in the left-hand side of (25) makes it natural to consider
instead the random walk W −

2 obtained from W2 by applying a shift by −en+1. Thus, if the
system is at state m(w, r) at time t , then at time t + 1 it can move in the following ways

W −
2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m(w, r) → m(w, r)− en+1, with prob. b2
n+1(m(w, r)+ en+1),

m(w, r) → m(w, r)− e j+1, with prob. b2
j+1(m(w, r)+ en+1),

m(w, r) → m(w, r)− e1, with prob. b2
1(m(w, r)+ en+1),

m(w, r) → other states, with prob. 0,

because m(w, r−e j )−en+1 = m(w, r)−e j+1 for 1 ≤ j ≤ n−1, and m(w−1, r)−en+1 =
m(w, r) − e1. This is in accordance with the following formula derived by looking at the
((w, r), s)-entry of (25),

cos(θ)�m(w,r)+en+1,k
s (a(θ)) =

n+1∑

j=1

b2
j (m(w, r)+ en+1)�

m(w,r)+en+1−e j ,k
s (a(θ)).

Then W −
2 does not leave invariant the subset P but extends to a random walk W̃2 in

Û(n + 1)(k) defined by

W̃2 : m → m − e j , with probability b2
j (m + en+1,k), (30)

for 1 ≤ j ≤ n + 1.
The transition matrices of W̃1 and W̃2 are, respectively, the following block bidiagonal

matrices

M̃1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Ỹ0 X̃0 0

0 Ỹ1 X̃1 0

0 Ỹ2 X̃2 0

· · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, M̃2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

S̃0 0

R̃1 S̃1 0

0 R̃2 S̃2 0

· · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (31)

with

(X̃w)m,n =
{

a2
1(m) if n = m,

0 otherwise,

(Ỹw)m,n =

⎧
⎪⎨

⎪⎩

a2
n+1(m) if n = m,

a2
j+1(m) if n = m + e j ,

0 otherwise,

(R̃w)m,n =
{

b2
1(m + en+1) if n = m,

0 otherwise,
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(S̃w)m,n =

⎧
⎪⎨

⎪⎩

b2
n+1(m + en+1) if n = m,

b2
j+1(m + en+1) if n = r − e j ,

0 otherwise.

where m,n ∈ Û(n + 1)(k) are such that w = m1 − k1 = n1 − k1, and 1 ≤ j ≤ n − 1.
Moreover, the stochastic matrix M̃ corresponding to the composition W̃ = W̃1 ◦ W̃2 is

equal to M̃1 M̃2, and it is given by

M̃ =

∣
∣
∣
∣
∣
∣
∣
∣

B̃0 C̃0 0
Ã1 B̃1 C̃1 0
0 Ã2 B̃2 C̃2 0

· · · · ·

∣
∣
∣
∣
∣
∣
∣
∣

,

with

( Ãw)m,n =

⎧
⎪⎨

⎪⎩

a2
n+1(m)b

2
1(m + en+1) if n = m

a2
j+1(m)b

2
1(m + e j+1) if n = m + e j

0 otherwise

(C̃w)m,n =

⎧
⎪⎨

⎪⎩

a2
1(m)b

2
n+1(m + e1)) if n = m

a2
1(m)b

2
j+1(m + e1) if n = m − e j

0 otherwise

(B̃w)m,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

1≤ j≤n+1

a2
j (m)b

2
j (m + e j )) if n = m

a2
j+1(m)b

2
n+1(m + e j+1) if n = m + e j

a2
n+1(m)b

2
j+1(m + en+1) if n = m − e j

a2
j+1(m)b

2
i+1(m + e j+1) if n = m + e j − ei

0 otherwise

where m,n ∈ Û(n + 1)(k) are such that w = m1 − k1 = n1 − k1, and 1 ≤ i, j ≤ n − 1.
The coefficients a2

i (m), b2
i (m) for 1 ≤ i ≤ n + 1 are those defined in (5).

If we identify N≥0 × 	 with the subset P , defined in (28), by (w, r) ≡ m(w, r), then
clearly W = W̃|P , because M become a submatrix of M̃ . Therefore

W1 ◦ W2 = W = W̃|P = (W̃1 ◦ W̃2)|P .

To conclude, the analysis of the random walk W associated with the stochastic matrix
M is simplified by looking at the decomposition W = (W̃1 ◦ W̃2)|P instead of considering
W = W1 ◦ W2.

4 An urn model for U(3)

We now give a concrete probabilistic mechanism that goes along with the random walk W̃1

constructed in Sect. 3 by group theoretic means, see (29). An entirely similar construction
going with W̃2 can be considered for the other substep of our process.

This section is included for the benefit of the reader. It describes in detail, for the simple
case of n = 2 going along with the pair (U(3),U(2)), a construction that will be given in
general in Sect. 5.
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A configuration, or state of our system, is now a triple of integers m = (m1,m2,m3)

subject to the constrains m1 ≥ k1 ≥ m2 ≥ k2 ≥ m3 with two fixed integers k1 ≥ k2, see (1).
We describe a stochastic mechanism whereby one of the three values of the mi is increased
by one with the following probabilities, see (5)

a2
1(m,k) = (m1 − k1 + 1)(m1 − k2 + 2)

(m1 − m2 + 1)(m1 − m3 + 2)
,

a2
2(m,k) = (k1 − m2)(m2 − k2 + 1)

(m1 − m2 + 1)(m2 − m3 + 1)
,

a2
3(m,k) = (k1 − m3 + 1)(k2 − m3)

(m1 − m3 + 2)(m2 − m3 + 1)
.

In the general scheme to be considered later, this case corresponds to the value n = 2, and
thus, we start with two urns B1, B2. In urn B j , j = 1, 2, place m j − k j + 1 balls of color
c j and k j − m j+1 balls of color d j . These four colors are all different. Notice that we could
have no balls of colors d1 or d2 and that the total number of balls in urn B j is m j −m j+1 +1.

It will be useful to consider the following ordered set of urns

B1, B2, B1 ∪ B2.

In view of the notation to be introduced in the general case, we denote these urns as

B1,1, B2,2, B1,2.

We will introduce later on an order among certain collections of urns that will yield, in
this particular case,

B1,1 < B2,2 < B1,2.

Now perform a total of three consecutive experiments. Each experiment consists of draw-
ing one ball at random (i.e. with the uniform distribution) from an urn in the ordered set of
urns above, record the outcome as a letter in a word, and continue to the next experiment
making sure to return the ball that has been drawn to its original urn after this experiment
has been performed.

The first experiment consists of picking one ball from urn B1,1 = B1. This can give a ball
of color c1 or d1. Record the outcome c1 or d1 as the first letter in a word of three letters, and
return the ball to its original urn, B1,1.

The second experiment consists of picking one ball from urn B2,2 = B2. This can result
in a ball of color either c2 or d2. Record the result as the second letter in a word that will
have a total of three letters (the colors of the balls chosen in experiments 1,2,3), and return
the ball to its original urn, B2,2.

The last experiment consists of picking one ball from the union of the urns B1,1 and B2,2,
that is, urn B1,2. The color of the ball in question c1, d1, c2 or d2 is the last letter in our word.
This last ball, that is, drawn from B1,2 = B1 ∪ B2 is then returned to the urn B1 or B2 where
it came from.

There is a total of sixteen (= 2 × 2 × 4) possible words that can arise in this fashion from
an alphabet of four letters. These words constitute the set of all possible outcomes of the
experiment made up of these three successive and properly ordered ones.

Since we return the chosen ball at the end of each one of these experiments to its original
urn, we have that the state of the system has not yet changed. This is about to happen now.

We need a rule to decide which of the three values m1,m2,m3 will be increased by one
unit as the result of our experiment. To this end, we break up the set of sixteen words into
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three disjoint and exhaustive sets. These sets will be denoted by S1,3, S2,3 and S3,3, and the
sample space S3 of cardinality 16 is given by

S3 =
3⋃

j=1

S j,3.

Each set S j,3 consisting of words with three letters will be obtained by a “growth process”
starting from the sets we would have if we had considered the previous case, namely n = 1,
when we have only one box and we were dealing with U(2). In that case, the sets are made
up of words of one letter, either c1 or d1. To make the connection with the general case,
we will denote these sets in the case of one urn by S1,2 and S2,2, and the sample space by
S2 = S1,2 ∪ S2,2. Explicitly S1,2 = {c1}, S2,2 = {d1}.

Let us come back to the case n = 2. The class S1,3 is formed by including all three letter
words that start as those of S1,2 and whose remaining two letters are such that the last one is
not d2, that is, either c1, d1 or c2. Thus,

S1,3 = {(c1, c2, c1), (c1, c2, d1), (c1, c2, c2), (c1, d2, c1), (c1, d2, d1), (c1, d2, c2)}.
The class S2,3 is formed by including all three-letter words that start as those of S2,2 and

whose remaining two letters are such that the first one is not d2. Explicitly S2,3 is

S2,3 = {(d1, c2, c1), (d1, c2, d1), (d1, c2, c2), (d1, c2, d2)}.
It should be noticed that the meaning of the requirement “not d2” is quite different when

it applies to the second urn B2,2 as above, or to the third urn B1,2 as in the previous case.
Finally S3,3 is obtained by taking the union of all three- letter words that start as in S1,2

and have d2 as their last letter, together with all words that start as in S2,2 and have d2 as the
second letter. It should be noticed that S3,3 is obtained by going over all the classes already
built, S1,3 and S2,3, and replacing the condition not d2 by d2. The class S3,3 is thus made up
of two sets of words, namely

S3,3 = {(c1, c2, d2), (c1, d2, d2)} ∪ {(d1, d2, c1), (d1, d2, d1), (d1, d2, c2), (d1, d2, d2)}.
It takes almost no effort to see that all these 6 + 4 + 6 = 16 words have been classified

into three disjoint and exhaustive classes.
Now we compute the total probability of getting a result that belongs to each class. For

the first class S1,3, we have

(m1 − k1 + 1)(m1 − k2 + 2)

(m1 − m2 + 1)(m1 − m3 + 2)
= a2

1(m,k).

For the second class S2,3, we have that the probability is

(k1 − m2)(m2 − k2 + 1)

(m1 − m2 + 1)(m2 − m3 + 1)
= a2

2(m,k).

Finally, the total probability of the third class S3,3 is,

(m1 − k1 + 1)(k2 − m3)

(m1 − m2 + 1)(m1 − m3 + 2)
+ (k1 − m2)(k2 − m3)

(m1 − m2 + 1)(m2 − m3 + 1)

= (k2 − m2)(k1 − m3 + 1)

(m1 − m3 + 2)(m2 − m3 + 1)
= a2

3(m,k).

We are ready to give a rule for changing the state of the system in one unit of time. A
result belonging to the subset S j,3, j = 1, 2, 3, will lead to a transition to a new state m+e j ,
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where m j is increased by one. In terms of balls, this will be achieved by removing from each
urn containing a ball of color d j−1 one of these balls, and adding to each urn containing a
ball of color c j one ball of this color from the bath. When j = 1 we do no removal.

5 An urn model for every U(n + 1)

In this section, we describe a random mechanism that gives rise to a Markov chain whose
one-step transition matrix is

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Y0 X0 0

0 Y1 X1 0

0 Y2 X2 0

0 Y3 X3 0

· · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

appearing in the factorization (15) and where the matrices Xi , Yi are defined in (19).
A configuration is a set of n + 1 values of the integers mi , 1 ≤ i ≤ n + 1, subject to

the constrains m1 ≥ k1 ≥ m2 ≥ · · · ≥ mn ≥ kn ≥ mn+1 where the integers ki remain
unchanged throughout time. We will construct a stochastic process whereby in one unit of
time one of the m j is increased by one with probability given by

a2
j (m,k) =

∣
∣
∣
∣
∣

∏n
i=1(ki − m j − i + j − 1)
∏

i �= j (mi − m j − i + j)

∣
∣
∣
∣
∣
. (32)

Consider n urns B1, . . . , Bn . In urn B j place m j − k j + 1 balls of color c j and k j − m j+1

balls of color d j . We assume that the colors c j , d j are all different. It should be noticed that in
urn B j may be no ball of color d j , and that the total number of balls in B j is m j − m j+1 + 1.

Consider the following ordered set of urns

B1, B2, B1 ∪ B2, B3, B2 ∪ B3, B1 ∪ B2 ∪ B3, . . . , Bn, Bn−1 ∪ Bn, . . . , B1 ∪ · · · ∪ Bn .

The union of urns is an urn whose content is the union of the set of balls in each urn in the
union. Observe that the total number of urns under consideration is n(n + 1)/2. Let

Bk, j = Bk ∪ Bk+1 ∪ · · · ∪ B j , 1 ≤ k ≤ j.

Clearly B j, j = B j , and the set of all urns

{Bk, j : 1 ≤ k ≤ j ≤ n}
is ordered lexicographically according to: (k, j) < (r, s) if j < s or if j = s and r < k.

We will perform a total of n(n + 1)/2 consecutive experiments. Each experiment con-
sists of drawing one ball at random (i.e., with the uniform distribution) from each urn in
the ordered set of urns, record the outcome as a letter in a word, and continue to the next
experiment making sure to return the ball to the original urn after this experiment has been
performed. One should think of a complete experiment as consisting of these n(n + 1)/2
individual experiments. The transition from the present state of the system to the next one
takes place after the complete experiment is carried out.

The first experiment consists of picking one ball from urn B1,1, this can give a ball of color
c1 or d1. The result is recorded and the ball is put back in urn B1,1. The second experiment
consists of picking one ball from urn B2,2, this can result in either a ball of color c2 or d2.
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Record the result as the second letter in a word that will have a total of n(n + 1)/2 letters.
Put the ball back in urn B2,2. Keep on going by taking successively at random a ball from an
urn Bk, j and adding the letter corresponding to its color to the right of the word obtained in
the previous step. The process finishes once a ball of the last urn B1,n is picked and a final
word of n(n + 1)/2 letters is obtained.

The alphabet is the set {c j , d j : 1 ≤ j ≤ n} of 2n letters. Then the sample space Sn+1

consists of all words w of n(n + 1)/2 letters that can be written with such an alphabet with
the restriction that the letters allowed in the place (k, j) correspond to the color of any ball
in urn Bk, j . The cardinality of the sample space is

|Sn+1| =
∏

1≤k≤ j≤n

2( j − k + 1).

Now by induction on n ≥ 1, we define a partition of Sn+1 into n + 1 disjoint subsets

Sn+1 =
n+1⋃

j=1

S j,n+1.

For the benefit of the reader, the construction will be spelled out in detail for small values
of n after we describe it in the general case and prove Proposition 5.2.

We start with S2 = S1,2 ∪ S2,2 where

S1,2 = {�d1}, S2,2 = {d1}, �d1 = c1.

Then

|S1,2| = |S2,2| = 1, |S2| = 2.

We make the following convention: the symbol �d j in the (k, j)-place of a word stands
for any color of a ball in urn Bk, j different from d j , and the letter x in the (k, j)-place of a
word stands for any possible color of a ball in urn Bk, j .

If n ≥ 2 we set

S1,n+1 = {w1,n+1 = w1,n x · · · x �dn ∈ Sn+1 : w1,n ∈ S1,n}.
Observe that the number of letters in the word w1,n+1 to the right of the word w1,n is n.
Similarly we define

S2,n+1 = {w2,n+1 = w2,n x · · · x �dn x ∈ Sn+1 : w2,n ∈ S2,n}.
More generally for 1 ≤ j ≤ n, we let

S j,n+1 = {w j,n+1 = w j,n x · · · x �dn x · · · x ∈ Sn+1 : w j,n ∈ S j,n}
where the number of x ′s to the right of �dn is j − 1.

The definition of Sn+1,n+1 is more interesting, namely

Sn+1,n+1 ={wn+1,n+1 = w1,n x · · · xdn ∈ Sn+1 : w1,n ∈ S1,n}
∪ {wn+1,n+1 = w2,n x · · · xdn x ∈ Sn+1 : w2,n ∈ S2,n}
∪ · · · ∪ {wn+1,n+1 = wn,ndn x · · · x ∈ Sn+1 : wn,n ∈ Sn,n}.
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Proposition 5.1 Let n ≥ 2. Then for 1 ≤ j ≤ n we have

|S j,n+1| = |S j,n |(2(n − j)+ 1)
∏

1≤k≤n, k �= j

2(n − k + 1),

|Sn+1,n+1| =
∑

1≤ j≤n

|S j,n |
∏

1≤k≤n, k �= j

2(n − k + 1).

Proposition 5.2 {S j,n+1 : 1 ≤ j ≤ n + 1} is a partition of the sample space Sn+1.

Proof The proof is by induction on n ≥ 1. For n = 1, we have

S2 = {�d1, d1}, S1,2 = {�d1}, S2,2 = {d1}.
Thus, the statement is true for n = 1. Now assume that Sn = ⋃n

j=1 S j,n is a partition of Sn

for n ≥ 1. If w ∈ Sn+1, then w = w j,n x · · · x where w j,n ∈ S j,n for a unique j . The x in the
j-place of the last n letters is either dn or of the form �dn . In the first case w ∈ Sn+1,n+1 and
in the second case w ∈ S j,n+1. Thus, Sn+1 = ⋃n+1

j=1 S j,n+1. At the same time we saw that
w ∈ S j,n+1 for a unique 1 ≤ j ≤ n + 1. This completes the proof. 
�

The construction above is now made explicit for small values of n.
1) n = 2.

S1,3 = {�d1x �d2}, S2,3 = {d1 �d2x}, S3,3 = {�d1xd2} ∪ {d1d2x},
|S1,3| = 6, |S2,3| = 4, |S3,3| = 6, |S3| = 16.

2) n = 3.

S1,4 = {�d1x �d2xx �d3}, S2,4 = {d1 �d2xx �d3x},
S3,4 = {�d1xd2 �d3xx} ∪ {d1d2x �d3xx},

S4,4 ={�d1x �d2xxd3} ∪ {d1 �d2xxd3x} ∪ {�d1xd2d3xx} ∪ {d1d2xd3xx},

|S1,4| = 240, |S2,4| = 144, |S3,4| = 144, |S4,4| = 240, |S4| = 768.

3) n = 4.

S1,5 = {�d1x �d2xx �d3xxx �d4}, S2,5 = {d1 �d2xx �d3xxx �d4x},
S3,5 = {�d1xd2 �d3xxx �d4xx} ∪ {d1d2x �d3xxx �d4xx},

S4,5 ={�d1x �d2xxd3 �d4xxx} ∪ {d1 �d2xxd3x �d4xxx}
∪ {�d1xd2d3xx �d4xxx} ∪ {d1d2xd3xx �d4xxx},

S5,5 ={�d1x �d2xx �d3xxxd4} ∪ {d1 �d2xx �d3xxxd4x}
∪ {�d1xd2 �d3xxxd4xx} ∪ {d1d2x �d3xxxd4xx}
∪ {�d1x �d2xxd3d4xxx} ∪ {d1 �d2xxd3xd4xxx}
∪ {�d1xd2d3xxd4xxx} ∪ {d1d2xd3xxd4xxx},

|S1,5| = 80640, |S2,5| = 46080, |S3,5| = 41472,

|S4,5| = 46080, |S5,5| = 80640, |S5| = 294912.

Theorem 5.3 The probability to obtain a wordw ∈ S j,n+1 is a2
j (m,k) for all 1 ≤ j ≤ n+1.
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Proof Given (m,k), let m′ = (m1, . . . ,mn) and k′ = (k1, . . . , kn−1). Then from (32), we
get

a2
j (m,k) = a2

j (m
′,k′)

m j − kn + n − j + 1

m j − mn+1 + n − j + 1
,

for all 1 ≤ j ≤ n. This result allows us to prove the theorem by induction on n ≥ 1. When
n = 1, we have only one urn B1 with m1 − k1 + 1 balls of color c1 and k1 − m2 balls of
color d1. Thus, the probability to obtain a word in S1,2 is

m1 − k1 + 1

m1 − m2 + 1
= a2

1(m,k),

where m = (m1,m2) and k = (k1). Similarly the probability to obtain a word in S2,2 is

k1 − m2

m1 − m2 + 1
= a2

2(m,k).

Thus, the theorem holds for n = 1. Now assume that the theorem is true for n ≥ 1. If
1 ≤ j ≤ n, we have

S j,n+1 = {w j,n+1 = w j,n x · · · x �dn x · · · x ∈ Sn+1 : w j,n ∈ S j,n}
where the number of x ′s to the right of �dn is j − 1. Thus, the probability to obtain a word
w ∈ S j,n+1 is equal to a2

j (m
′,k′) times the probability to obtain the symbol �dn from the urn

B j,n . Now we recall the composition of urn B j,n . By definition

B j,n = B j ∪ B j+1 ∪ · · · ∪ Bn,

the total number of balls |B j,n | = m j − mn+1 + n − j + 1 and the number of balls of color
dn is kn − mn+1. Therefore, the probability to obtain the symbol �dn from urn B j,n is

m j − kn + n − j + 1

m j − mn+1 + n − j + 1
.

Hence, the probability to obtain a word w ∈ S j,n+1 is

a2
j (m

′,k′)
m j − kn + n − j + 1

m j − mn+1 + n − j + 1
= a2

j (m,k),

which establishes the theorem for all 1 ≤ j ≤ n. Since
∑

1≤ j≤n+1 a2
j (m,k) = 1 (see (6))

and Sn+1 = ⋃
1≤ j≤n+1 S j,n+1 is a partition of Sn+1 it follows that the statement of the

theorem is also true for j = n + 1. 
�
Since we return the chosen ball at the end of each individual experiment to its original

urn, we have that the state of the system has not yet changed. This is about to happen now.
The outcome of a complete experiment produces a word that belongs to one of the sub-

sets S j,n+1 in the partition of the sample space Sn+1. Depending on which subset turns
up, we take a different action, thus obtaining a random walk in the space of configurations
m = (m1, . . . ,mn+1) which satisfy the constraints m1 ≥ k1 ≥ · · · ≥ mn ≥ kn ≥ mn+1

imposed by the fixed n-tuple k = (k1, . . . , kn). This simple process will give for each con-
figuration m a total of at most n + 1 possible nearest neighbors to which we can jump in one
transition.

A result belonging to the subset S j,n+1, j = 1, . . . , n + 1, will lead to a transition to a
new state m + e j , where m j is increased by one. In terms of balls, this will be achieved by
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Fig. 3 m = (8, 5, 1), k = (6, 3)

removing from each urn containing a ball of color d j−1 one of these balls, and adding to each
urn containing a ball of color c j one ball of this color from the bath.

It should be noticed that all these transitions keep the values of k1, . . . , kn unchanged and
any transition that would violate the constrains does not occur because the corresponding
probability a2

j (m,k) vanishes.

6 A Young diagram model for U(3)

To each configuration m1 ≥ k1 ≥ m2 ≥ · · · ≥ mn ≥ kn ≥ mn+1 ≥ 0, we associate its
Young diagram which has m1 boxes in the first row, k1 boxes in the second row, and so on
down to the last row which has mn+1 boxes (Fig. 3).

We will construct a stochastic process whereby in one unit of time, one of the mi is
increased by one with probability a2

i (m,k) see (5). As in Sect. 5, this will require running
some auxiliary experiments.

We start with the case n = 1. We perform the following experiment to decide if we will
increase m1 or m2: we choose to insert a box among one of the m1 − k1 last boxes of the
first row or to delete a box from the k1 − m2 last boxes of the second row. An insertion can
occur either to the left or to the right of one of the m1 − k1 last boxes. We observe that there
are m1 − k1 + 1 possibilities of an insertion and k1 − m2 possibilities of a deletion. All these
are assigned the same probability.

As an output of the experiment, we get either a diagram with m1 + 1 boxes in the first
row, or a diagram with k1 − 1 boxes in the second row. Here, we are implicitly assuming that
k1 > m2. If k1 were equal to m2, we would get no Young diagram. Thus, the sample space S
of our auxiliary experiment consists of two (or one) Young diagrams which are obtained from
the original one by adding one box to its first row or deleting one from its second row. Let S1

be the subset of S consisting of the diagram with one more box in the first row, and let S2 be
the subset of S consisting of the diagram with one less box in the second row (or the empty
set). Then the probability to obtain a diagram in S1 after the experiment is performed is

m1 − k1 + 1

m1 − m2 + 1
= a1(m,k)2.

Similarly, the probability to obtain a diagram in S2 is

k1 − m2

m1 − m2 + 1
= a2(m,k)2,

as we wished. In the first case, we go from the state (m,k) to (m + e1,k), and in the
second case, we go from the state (m,k) to (m + e2,k).

Now let us assume that n = 2. In this case, we will perform three consecutive auxiliary
experiments. The first experiment consists of inserting a box among one of the m1 − k1 last
boxes of the first row or of deleting a box from the k1 − m2 last boxes of the second row.
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Fig. 4 m = (9, 5, 1), k = (6, 3)

Fig. 5 m = (8, 5, 1), k = (5, 3)

The second experiment consists of inserting a box among one of the m2 − k2 last boxes of
the third row or of deleting a box from the k2 − m3 last boxes of the fourth row. Finally, the
third experiment consists of inserting or deleting a box in one of the first four rows of the
diagram as we did in the previous experiments; odd rows go along with insertion and even
rows with deletion. If k1 > m2 and k2 > m3 the complete experiment gives rise to a triple
(D1, D2, D3) of Young diagrams: D1 is obtained from the original one by adding one box
to its first row or by deleting one box from the second row, D2 is obtained from the original
one by adding one box to its third row or by deleting one box from the fourth row, and D3

is obtained by adding one box to the first or to the third rows of the original diagram or by
deleting one box from the second or the fourth rows.

In what follows, we use the following notation: D denotes the Young diagram corre-
sponding to the original configuration (m,k) and D′ = D ± e j denotes, respectively, the
diagram obtained from D by adding or deleting one box to the j-row of D, j = 1, 2, 3, 4.
Observe that the sample space consists of all triples of Young diagrams (D1, D2, D3) with
D1 = D + e1, D − e2, D2 = D + e3, D − e4, and D3 = D + e1, D − e2, D + e3, D − e4

(Figs. 4, 5).
Thus, our sample space S3 has generically 2 × 2 × 4 = 16 elements. The cardinality of

S3 can be smaller, for example if k1 = m2 and k2 �= m3, then |S3| = 6.
Let us partition the sample space S3 into the following three classes.

S1,3 = {(D1, D2, D3) : D1 = D+e1; D2 = D+e3, D−e4; D3 = D+e1, D+e3, D−e2},
S2,3 = {(D1, D2, D3) : D1 = D − e2; D2 = D + e3;

D3 = D + e1, D + e3, D − e2, D − e4},
S3,3 = {(D1, D2, D3) : D1 = D + e1; D2 = D + e3, D − e4; D3 = D − e4}

∪ {(D1, D2, D3) : D1 = D − e2; D2 = D − e4;
D3 = D + e1, D − e2, D + e3, D − e4}.

(33)

We have |S1,3| = 6, |S2,3| = 4 and |S3,3| = 2 + 4 = 6. By simple inspection, we see that
S3 is the disjoint union of S1,3, S2,3 and S3,3.

Then the probability to obtain a diagram in S1,3 after a complete experiment is performed
is

(m1 − k1 + 1)

(m1 − m2 + 1)

(m1 − k2 + 2)

(m1 − m3 + 2)
= a2

1(m,k).
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Similarly, the probability to obtain a diagram in S2,3 is

(k1 − m2)

(m1 − m2 + 1)

(m2 − k2 + 1)

(m2 − m3 + 1)
= a2

2(m,k).

Finally, the probability to obtain a diagram in S3,3 is

(m1 − k1 + 1)

(k2 − m3)

(m1 − m2 + 1)

(m1 − m3 + 2)
+ (k1 − m2)

(k2 − m3)

(m1 − m2 + 1)

(m2 − m3 + 1)

= (k2 − m2)(k1 − m3 + 1)

(m1 − m3 + 2)(m2 − m3 + 1)
= a2

3(m,k),

as desired.
If k1 = m2 and k2 �= m3 then |S1,3| = 4, S2,3 = ∅ and |S3,3| = 2. The probability to

obtain a diagram in S1,3 is

m1 − k2 + 2

m1 − m3 + 2
= a2

1(m,k).

The probability to obtain a diagram in S2,3 is 0 = a2
2(m,k), and the probability to obtain a

diagram in S3,3 is

k2 − m3

m1 − m3 + 2
= a2

3(m,k),

as expected.
Now the state of our random walk is modified in one unit of time as follows: if the

outcome of the complete experiment above belongs to S j,3, then we go from (m,k) to
(m + e j ,k), j = 1, 2, 3. In terms of diagrams we move from D to D + e2 j−1, j = 1, 2, 3.

7 A Young diagram model for every U(n + 1)

Given a Young diagram D corresponding to the original configuration (m,k), D′ = D ± e j

denotes, respectively, the diagram obtained from D by adding or deleting one box to the
j-row of D, j = 1, . . . , 2n + 1. The stochastic process we are going to construct will have
a transition mechanism determined by first performing a sequence of auxiliary experiments
Ek, j to be described now. We start by considering the following set of consecutive pairs of
rows of the diagram D,

{(1, 2), (3, 4), . . . , (2n − 1, 2n)}.
The experiment Ek, j , 1 ≤ k ≤ j ≤ n, consists of inserting at random a box in an odd

row i among the last mi − ki last boxes of such a row, or deleting at random a box in an even
row i from the last ki − mi+1 last boxes of such a row. The row i is also chosen at random
in the set of consecutive rows

{2k − 1, 2k, . . . , 2 j}.
The sequence of experiments is obtained by ordering them by the lexicographic order

Ek, j < Er,s if j < s or j = s and r < k. Thus, our sequence is the following one

E1,1, E2,2, E1,2, E3,3, E2,3, E1,3, . . . , En,n, En−1,n, . . . , E1,n .

The symbol D ± � ei in the place corresponding to the experiment Ek, j of an n(n + 1)/2-
tuple of diagrams, will stand for any possible outcome of Ek, j except the diagram D ± ei ,
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respectively. While an X in such a place stands for any outcome of Ek, j . For example in the
case n = 2 considered before, see (33), we can write

S1,3 = {(D − � e2, X, D − � e4)},
S2,3 = {(D − e2, D − � e4, X)},
S3,3 = {(D − � e2, X, D − e4}) ∪ {(D − e2, D − e4, X)}.

Now we have a convenient notation to define inductively, for n ≥ 2, a growth process sim-
ilar to the one introduced in Sect. 5, to break up the outcomes of the sample space Sn+1 into
sets S j,n+1 ( j = 1, . . . , n + 1) starting from the partition of Sn into sets S j,n ( j = 1, . . . , n).
Let D j,n denote any n-tuple in the set S j,n , then we set

S1,n+1 = {D1,n+1 = (D1,n, X, · · · , X, D − � e2n) ∈ Sn+1 : D1,n ∈ S1,n}.
It is to be observed that the number of diagrams in the (n + 1)(n + 2)/2-tuple D1,n+1 to the
right of the n(n + 1)/2-tuple D1,n is n. Similarly we define

S2,n+1 = {D2,n+1 = (D2,n, X, · · · , X, D − � e2n, X) ∈ Sn+1 : D2,n ∈ S2,n}.
More generally for 1 ≤ j ≤ n, we let

S j,n+1 = {D j,n+1 = (D j,n, X, · · · , X, D − � e2n, X, · · · , X) ∈ Sn+1 : D j,n ∈ S j,n}
where the number of X ′s to the right of D − � e2n is j − 1.

The definition of Sn+1,n+1 is (as in Sect. 5) more interesting, namely

Sn+1,n+1 = {Dn+1,n+1 = (D1,n, X, · · · , X, D − e2n) ∈ Sn+1 : D1,n ∈ S1,n}
∪ {Dn+1,n+1 = (D2,n, X, · · · , X, D − e2n, X) ∈ Sn+1 : D2,n ∈ S2,n}
∪ · · · ∪ {Dn+1,n+1 = (Dn,n, D − e2n, X, · · · , X) ∈ Sn+1 : Dn,n ∈ Sn,n}.

Now by induction on n ≥ 2, it is easy to prove that {S j,n+1 : 1 ≤ j ≤ n + 1} is a partition
of Sn+1. Also by induction on n ≥ 2 it is possible, as we did to established Theorem 5.3, to
prove the following main result.

Theorem 7.1 The probability to obtain an n(n + 1)/2-tuple of diagrams D j,n+1 ∈ S j,n+1

is a2
j (m,k) (see (32)) for all 1 ≤ j ≤ n + 1.

The outcome of a complete experiment produces an n(n + 1)/2-tuple of Young diagrams
that belongs to one of the partition subsets S j,n+1 of the sample space Sn+1. Depending on
which subset turns up, we take a different action, thus obtaining a random walk in the space
of configurations m = (m1, . . . ,mn+1) which satisfy the constraints

m1 ≥ k1 ≥ · · · ≥ mn ≥ kn ≥ mn+1 ≥ 0,

imposed by the fixed n-tuple k = (k1, . . . , kn). This simple process will give for each con-
figuration m a total of at most n + 1 possible nearest neighbors to which we can jump in one
transition.

A result belonging to the subset S j,n+1, j = 1, . . . , n + 1 will lead to a transition to a
new state m + e j , where m j is increased by one.

It should be noticed that all these transitions keep the values of k1, . . . , kn unchanged, and
any transition that would violate the constrains does not occur because the corresponding
probability a2

j (m,k) vanishes.
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