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Abstract We study the copointed Hopf algebras attached to the Nichols al-
gebra of the a�ne rack Aff(F4, ω), also known as tetrahedron rack, and the
2-cocycle −1. We investigate the so-called Verma modules and classify all the
simple modules. We conclude that these algebras are of wild representation
type and not quasitriangular, also we analyze when these are spherical.

1 Introduction

We work over an algebraically closed �eld k of characteristic zero. Let G be
a �nite non-abelian group and let kG denote the algebra of functions on G. A
Hopf algebra with coradical isomorphic to kG for some G is called copointed.
Nicolás Andruskiewitsch and the second author began the study of the co-
pointed Hopf algebras by classifying those �nite-dimensional with G = S3 in
[AV1] and by analyzing the representation theory of them in [AV2].

Since kG is a commutative semisimple algebra, the representation theory
of a copointed Hopf algebra over kG is studied in [AV2] by analogy with
the representation theory of semisimple Lie algebras, with kG playing the
role of the Cartan subalgebra and the induced modules from the simple one-
dimensional kG-modules as Verma modules.
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There are few examples of Nichols algebras of �nite-dimension over non-
abelian groups, see for instance [G2,HLV]. In particular, those arising from
a�ne racks are only seven, including the tetrahedron rack. If X is one of these
a�ne racks, then all the liftings of the Nichols algebra B(−1, X) over kG were
classi�ed in [GIV], where G is any group admitting a principal YD-realization
of X with constant 2-cocycle −1. Also the liftings of B(X,−1) over the group
algebra kG were classi�ed in [GIV].

The notation used in the following is explained in Section 3. Let G be a

�nite group and V ∈ kG
kGYD a faithful principal YD-realization of the tetrahe-

dron rack with constant 2-cocycle −1. The Nichols algebra B(V ) has dimension
72. The ideal of relations of B(V ) is generated by four quadratic elements and
only one of degree six called z. By [GIV], the liftings of B(V ) over kG are the
copointed Hopf algebras {AG,λ}λ∈k, in which the quadratic relations of B(V )
still hold and the 6-degree relation z = 0 deforms to z = λ(1− χ−1

z ) ∈ kG.
The goal of this paper is to investigate the representation theory of the

family {AG,λ}λ∈k following the strategy of [AV2]. We conclude that there are
essentially two kinds of Verma modules. Here is an account of our main results
which apply to any group G admitting a faithful principal YD-realization of
the tetrahedron rack with constant 2-cocycle −1:

• Let g ∈ G. If the element z = λ(1−χ−1
z ) annihilates the generator of the

Verma modules Mg, then Mg inherits a structure of B(V )-module such that
it is a free B(V )-module of rank 1, see Lemma 14. Hence Mg has a unique
simple quotient of dimension 1 called kg.

• Otherwise Mg is the direct sum of six 12-dimensional non isomorphic
simple projective modules Lg

i , see Lemma 15. Tables 1�6 in the Appendix de-
scribe the simple modules Lg

i .

• We prove that AG,λ is of wild representation type, Proposition 17.

• We give a necessary condition for a copointed Hopf algebra to be quasitri-
angular, Lemma 8. As a consequence AG,λ is not quasitriangular, Proposition
12.

• We characterize those AG,λ which are spherical Hopf algebras, see Propo-
sition 18.

The other copointed Hopf algebras classi�ed in [GIV] are de�ned by similar
relations to AG,λ, roughly speaking a set of quadratic ones and other single
relation of bigger degree, but their dimension are much bigger than dimAG,λ =
72|G|. To extend this work to the other copointed Hopf algebras in [GIV], a
better understanding of the corresponding Nichols algebras is needed. We hope
that our work will be useful for this purpose.

The paper is organized as follows. In Section 2 we analyze the representa-
tion theory of copointed Hopf algebras with emphasis in the weight spaces of
the modules, we characterize the one-dimensional modules and describe the
subalgebra corresponding to the homogeneous elements of degree e ∈ G. In
Section 3, we present our main object of study: the algebras B(V ) and AG,λ.
In Section 4 we concentrate our attention on representations of the algebras
{AG,λ}λ∈k. A description of the simple AG,λ-modules is in the Appendix.
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1.1 Conventions and notation

We set k∗ = k \ {0}. If X is a set, kX denotes the free vector space over X.
Let A be a Hopf algebra. Then ∆, ε, S denote respectively the comultipli-

cation, the counit and the antipode. The group of group-like elements is G(A).
Let A

AYD be the category of Yetter-Drinfeld modules over A. The Nichols al-
gebra B(V ) of V ∈ A

AYD is the graded quotient T (V )/J where J (V ) is the
largest Hopf ideal of T (V ) generated as an ideal by homogeneous elements of
degree ≥ 2 [AS, 2.1].

Let {A[n]}n≥0 denote the coradical �ltration of A. Assume A[0] = H is
a Hopf subalgebra. Let grA be the graded Hopf algebra associated to the
coradical �ltration. Then grA ≃ R#H where R ∈ H

HYD is called the diagram
of A and V = R[1] ∈ H

HYD is the in�nitesimal braiding [AS, De�nition 1.15].
If R = B(V ), then A is said to be a lifting of B(V ) (over H).

Recall that two idempotents e, ẽ ∈ A are orthogonal if eẽ = 0 = ẽe.
An idempotent is primitive if it is not possible to express it as the sum of two
nonzero orthogonal idempotents. A set {ei}i∈I of idempotents of A is complete
if 1 =

∑
i∈I ei.

Assume dimA < ∞. Then A is a Frobenius algebra, see e. g. [FMoS,
Lemma 1.5]. Let e be a primitive idempotent ofA. Then top(Ae) = Ae/rad(Ae)
and the socle soc(Ae) of Ae are simple modules [CR, Theorems 54.11 and
58.12]. Moreover, Ae is the injective hull of soc(Ae) and the projective cover
of top(Ae), see e. g. [CR, page 400 and Theorem 58.14]. We denote by IrrA
a set of representative of simple A-modules.

2 Representations of copointed Hopf algebras

LetG be a �nite group, kG the group algebra and kG the algebra of functions
on G. Let {g : g ∈ G} and {δg : g ∈ G} be the dual basis of kG and kG,
respectively; e denotes the identity element of G.

If M is a kG-module, then M [g] = δg · M is the isotypic component of
weight g ∈ G. We denote by kg the one-dimensional kG-module of weight g.
We de�ne

M× = ⊕g ̸=eM [g] and SuppM = {g ∈ G : M [g] ̸= 0}.

Let A be a �nite-dimensional copointed Hopf algebra over kG, i. e. its
coradical is isomorphic to kG. We consider A as a left kG-module via the left
adjoint action

ad δt(a) =
∑
s∈G

δsaδt−1s ∀t ∈ G, a ∈ A.

By [AV1, Lemma 3.1], A = ⊕g∈GA[g] is a G-graded algebra and

δtas = asδs−1t ∀as ∈ A[s], s, t ∈ G. (1)
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If M is an A-module, then M is a kG-module by restriction. Hence

A[g] ·M [h] ⊆ M [gh] ∀g, h ∈ G by (1). (2)

That is, M is a G-graded A-module.
We denote by AkG = A as right kG-module via the right multiplication.

Its isotypic components are (AkG)[g] = Aδg for all g ∈ G. Note that A is a
kG-bimodule with the above actions since kG ⊆ A[e].

Let R ∈ kG
kGYD be the diagram of A. Then the multiplication in A induces

an isomorphism R⊗kG −→ A of kG-bimodules [AAGMV, Lemma 4.1]. Hence
we can think of R as a left kG-submodule of A and therefore

A[g] = R[g] kG and (AkG)[g] = Rδg ∀g ∈ G. (3)

As in [AV2], we de�ne the Verma module of A of weight g ∈ G as the
induced module

Mg = IndAkG kg = A⊗kGkδg.

ThenMg is projective, being induced from a module over a semisimple algebra,
and hence injective, because A is Frobenius. By (1) and (3), the weight spaces
satisfy Mg[h] = R[hg−1]δg for all h ∈ G. Also, Mg = Aδg = Rδg and A =
⊕g∈GMg.

Notice that if L is a simple A-module and 0 ̸= v ∈ L[g], then L is a quotient
of Mg via δg 7→ δg · v = v.

Let e ∈ A be an idempotent. We say that e is a g-idempotent if e ∈ R[e]δg.
A set {ei}i∈I of g-idempotents is called complete if δg =

∑
i∈I ei. Next lemma

ensures that there always exists a complete set of orthogonal primitive g-
idempotents.

Lemma 1. Let g ∈ G, e be a g-idempotent and Eg = {ei}i∈I be a set of
orthogonal idempotents of A such that δg =

∑
i∈I ei.

(a) Eg is a complete set of g-idempotents.

(b) e is primitive if and only if it is not possible to express e as a sum of
orthogonal g-idempotents.

(c) There is a complete set of orthogonal primitive g-idempotents in A.

(d) e ·M = e ·M [g] ⊆ M [g] for any A-module M .

(e) If #Eg = dimR[e], then ei is primitive for all i ∈ I. Moreover, if e is
primitive, then e = ei for some i ∈ I.

(f) If #Eg = dimR[e], then Aei ̸≃ Aej if i ̸= j.

Proof (a) Fix i ∈ I and set α = ei and β =
∑

i ̸=j∈I ej . If t ∈ G and t ̸= g,
then 0 = δgδt = αδt + βδt. Since α and β are orthogonal, αδt = 0. Hence
α = αδg because 1 =

∑
g∈G δg. Similarly α = δgα. Let as ∈ R[s] such that

α =
∑

s∈G asδg. Then α = δgα =
∑

s∈G δgasδg =
∑

s∈G asδs−1gδg = aeδg.
That is, α = ei is a g-idempotent.
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(b) The �rst implication is obvious. For the second implication, we proceed
as in (a). (c) follows from (a) and (b). (d) holds because e ∈ R[e]δg.

(e) is a consequence of the fact that Eg is a basis of R[e]δg. Indeed, pick
α = ei ∈ Eg and suppose α = a+ b with a and b orthogonal g-idempotents of
A. Then (Aa)[e] ⊕ (Ab)[e] = (Aα)[e] = (kEg)α = kα and therefore a = 0 or
b = 0. For the second statement, we write e =

∑
i∈I aiei with ai ∈ k, i ∈ I.

Since e2 = e, ai = 0 or 1 for all i ∈ I and hence e = ei for some i ∈ I.
(f) (Aei)[e] = kei ̸= (Aej)[e] = kej if i ̸= j. Hence Aei ̸≃ Aej .

Given a set of idempotents E and an A-module M , we write

SuppE M = {e ∈ E : e ·M ̸= 0}.

By [CR, Theorem 54.16] if L is a simple A-module and e ∈ SuppE L, then

top(Ae) ≃ L.

This allows us to analyze the dimension of the weight spaces of the simple
A-modules using g-idempotents.

Lemma 2. Let g ∈ G and Eg = {ei}i∈I be a complete set of orthogonal
primitive g-idempotents. Let L be a simple A-module.

(a) dimL[g] = #SuppEg
L.

(b) If #Eg = dimR[e] or 1, then dimL[g] = 1 or 0.

(c) Eg =
∪

L∈IrrA SuppEg
L is a partition.

(d) dimR[e] ≥
∑

L∈IrrA(dimL[g])2 =
∑

L∈IrrA(#SuppEg
L)2 ≥ #Eg.

Proof (a) By [CR, Theorem 54.16], dim ei · L = 1 for all ei ∈ SuppEg
L. Pick

wi ∈ ei · L − {0} for each i ∈ I. Then {wi : i ∈ I} is a basis of L[g] since
v = δg · v =

∑
ei∈SuppEg

L ei · v for all v ∈ L[g].

(b) If #Eg = 1, then dimL[g] = 1 or 0 by (a). If #Eg = dimR[e], the
statement follows from (a) and Lemma 1 (f).

(c) is clear. (d) follows from (a) and (c) since

R[e]δg = ⊕i∈IR[e]ei = ⊕L∈IrrA ⊕ei∈SuppEg
L R[e]ei.

In some cases, the simple A-modules can be distinguished by their weight
spaces.

Lemma 3. Let g ∈ G and Eg = {ei}i∈I be a complete set of orthogonal primi-
tive g-idempotents and assume that top(Aei) and top(Aej) are not isomorphic
as kG-modules for all i ̸= j. Let L be a simple A-module. Then L ≃ top(Aei)
as A-modules if and only if L ≃ top(Aei) as kG-modules.

Proof If L ≃ top(Aei) as kG-modules, then g ∈ SuppL. Hence L ≃ top(Aej)
for some j. Then i = j because top(Aei) and top(Aej) are not isomorphic as
kG-modules for i ̸= j. The other implication is obvious.
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For each g ∈ G, let Eg be a complete set of orthogonal primitive g-
idempotents. If e, ẽ ∈ Eg and eAẽ ̸= 0, it is said that e and ẽ are linked.
This is an equivalence relation [CR, De�nition 55.1]. Let Eg =

∪
i∈Ig

Bi be

the corresponding partition. The subalgebra A[e] = R[e]kG can be used to
compute the simple A-modules, see for instance [NaVO, Theorem 2.7.2].

Lemma 4. Let Eg =
∪

i∈Ig
Bi be as above. Then

⊕
e∈Bi

A[e]e is a subalgebra
such that {

L[g] : L ∈ IrrA and Bi ∩ SuppEg
L ̸= ∅

}
is a set of representative simple modules. Moreover as algebras

A[e] =
∏

g∈G, i∈Ig

⊕
e∈Bi

A[e]e

Proof By (1), eẽ = 0 = ẽe if either e ∈ Eg and ẽ ∈ Eh with g ̸= h or e, ẽ ∈
Eg but are not linked. Clearly, Bi is a complete set of orthogonal primitive
idempotents of

⊕
e∈Bi

A[e]e. Also top(A[e]e) = L[g] since L[g] = top(Ae)[g] =

A[e]e for all e ∈ Eg.

For g ∈ G, we de�ne the linear map χg : A 7→ k by

χg(rf) = ε(r)f(g) ∀ rf ∈ A = R kG. (4)

If χg is an algebra map, then kg is also an A-module. Notice that Nichols
algebras satisfy the hypothesis of the next lemma by [AV1, Lemma 3.1 (f)].

Lemma 5. Let G be a �nite group, A a �nite-dimensional copointed Hopf

algebra over kG with diagram R ∈ kG
kGYD and χ : A 7→ k an algebra map. If R

is generated by R× as an algebra, then χ = χg for some g ∈ G and G(A∗) is
a subgroup of G via χg 7→ g.

Proof Let g ∈ G such that χ(f) = f(g) for all f ∈ kG. By (1), χ(R×) = 0 and
then χ = χg. Since χg ∗ χh is an algebra map and χg ∗ χh(f) = f(gh) for all
f ∈ kG, the proposition follows.

Example 1 Let V ∈ kG
kGYD with �nite-dimensional Nichols algebra B(V ). Then

{δg : g ∈ G} is a complete set of orthogonal primitive idempotents of B(V )#kG
and therefore {kg : g ∈ G} are its simple modules.

Let
∫ r

A
(resp.

∫ l

A
) denote the space of right (resp. left) integrals, see for

example [Mo]. If t ∈
∫ r

A
, then α ∈ G(A∗) is said to be distinguished whether

at = α(a)t for all a ∈ A.

Lemma 6. Let G be a �nite group, A a �nite-dimensional copointed Hopf
algebra over kG and α = χg ∈ G(A∗) the distinguished group-like element. If
e is a primitive idempotent, then

Supp(top(Ae)) = g−1 Supp(soc(Ae)).

In particular,
∫ l

A
= soc(Aeg−1) ⊂ R[g]eg−1 where eg−1 is the primitive g−1-

idempotent such that top(Aeg−1) ≃ kg−1 .
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Proof Let η : A → A be the Nakayama automorphism. If M is an A-module,
then M denotes the vector space M with action a ·m = η−1(a)m for all a ∈ A,
m ∈ M . Since η−1(a) = ⟨α−1, S2(a)1⟩S2(a)2 for all a ∈ A, see e. g. [FMoS,
Lemma 1.5], M [g−1h] = M [h] for all h ∈ G. Finally, top(Ae) = soc(Ae), see
e. g. [NeSc, Lemma 2], and the lemma follows.

We include the next lemma for completeness.

Lemma 7. Let A be an algebra and a1, ..., an be idempotents of A such that
aiaj = ajai for all i, j = 1, ..., n. Set

ei = ai + ai

i−1∑
ℓ=1

(−1)ℓ
∑

1≤j1<···<jℓ≤i−1

aj1 · · · ajℓ .

Then eiej = δj,iei for all i, j = 1, ..., n.

Proof For j < i, we write

ei = ai + ai

i−1∑
ℓ=1

(−1)ℓ
∑

1≤j1<···<jℓ≤i−1
js ̸=j

aj1 · · · ajℓ

+ ai

i−1∑
ℓ=1

(−1)ℓ
∑

1≤j1<···<jℓ≤i−1
js=j for some s

aj1 · · · ajℓ .

Then ajei = 0 and hence ejei = δi,jei for all i, j = 1, ..., n.

The order of the set {ai} alters the result of the above lemma. Moreover,
it can produce ei = 0 for some i. For example: {1, a} and {a, 1} with a an
idempotent.

2.1 Quasitriangular copointed Hopf algebras

Let G be a non-abelian group and A be a quasitriangular �nite-dimensional
copointed Hopf algebra over kG with R-matrix R ∈ A⊗A. Let (AR, R) be its
unique minimal subquasitriangular Hopf algebra [R]. Then AR = HB with
H,B ⊆ A Hopf subalgebras such that B ≃ H∗cop by [R, Proposition 2 and
Theorem 1].

Lemma 8. H, B and AR are pointed Hopf algebras over abelian groups.
Moreover, AR is neither a group algebra nor the bosonization of its diagram
by G(AR).

Proof Since H[0] = H∩A[0] and B[0] = B∩A[0], there are group epimorphisms
G → GH and G → GB such that H[0] = kGH and B[0] = kGB . Then there is

an epimorphism of Hopf algebras B
≃−→ H∗cop −→ kGH . By [Mo, Corollary

5.3.5], the restriction B[0] = kGB → kGH is surjective. Thus GH is an abelian
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group.Mutatis mutandi, we see that GB is also an abelian group. Hence H and
B are generated by skew-primitives and group-likes elements by [An, Theorem
2] and therefore also is AR = HB. Then AR = HB, H and B are pointed
Hopf algebras over abelian groups. Set Γ = G(AR).

Now we assume AR = kΓ and let δg ∈ kG \ kΓ . By a property of the
R-matrix, it must hold R∆(δg) = ∆cop(δg)R. However, this is not possible
since R is invertible and kG is commutative but not cocommutative. Then
AR ̸= kΓ .

Finally, we assume that AR = B(V )#kΓ where B(V ) is the diagram of
AR which is a Nichols algebra by [An, Theorem 2]. Let R0 ∈ kΓ⊗kΓ and
R+ ∈ B(V )+#kΓ⊗kΓ +kΓ⊗B(V )+#kΓ such that R = R0+R+. Then R0 is
invertible since R is so and B(V )+ is nilpotent. If δg ∈ kG \ kΓ , then it must
hold R0∆(δg) = ∆cop(δg)R0 by a property of the R-matrix. As above, this is
not possible. Therefore AR ̸̸= B(V )#kΓ .

3 The a�ne rack Aff(F4, ω) and their associated algebras

Let F4 be the �nite �eld of four elements and ω ∈ F4 such that ω
2+ω+1 = 0.

The a�ne rack Aff(F4, ω) is the set F4 with operation a◃ b = ωb+ ω2a.

Let (·, g, χG) be a faithful principal YD-realization of (Aff(F4, ω),−1) over
a �nite group G [AG3, De�nition 3.2], that is

� · is an action of G over F4,

� g : F4 → G is an injective function such that gh·i = hgih
−1 and gi ·j = i◃j

for all i, j ∈ F4, h ∈ G

� χG : G → k∗ is a multiplicative character such that χG(gi) = −1 for all
i ∈ F4; we can consider such a χG by [AG3, Lemma 3.3(d)].

These data de�ne a structure on V = k{xi}i∈F4 of Yetter-Drinfeld module
over kG via

δt · xi = δt,g−1
i

xi and λ(xi) =
∑
t∈G

χG(t
−1)δt⊗xt−1·i ∀t ∈ G, i ∈ X. (5)

We obtain (5) using the fact that the categories kG
kGYD and kG

kGYD are braided
equivalent [AG1, Proposition 2.2.1], see [GIV, Subsection 3.2] for details.

We denote by G′ the subgroup of G generated by {gi}i∈F4 . Then G′ is a
quotient of the enveloping group of Aff(F4, ω) [EG,J]:

GAff(F4,ω) = ⟨gi | gigj = gi◃jgi, i, j ∈ F4⟩.

Let m ∈ N. We denote by Cm = ⟨t⟩ the cyclic group of order m. The
semidirect product group F4 oω C6m is given by t · i = ωi for all i ∈ F4.

Examples 9. (1) Let k,m ∈ N, 0 ≤ k < m. The (m, k)-a�ne realization of
(Aff(F4, ω),−1) over F4 oω C6m [GIV, Proposition 2.6] is de�ned by

� g : F4 → F4 oω C6m, i 7→ gi = (i, t6k+1);
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� · : F4 oω C6m → F4 is h · i = j, if hgih
−1 = gj ;

� χF4oωC6m : F4 oω C6m 7−→ k∗, (j, ts) 7→ (−1)s, ∀i, j ∈ A, s ∈ N.

(2) The next example gives a nontrivial lifting of B(V ), see the next sub-
section. Suppose that m | 6k+1. Let G1 be a �nite group with a multiplicative
character χG1 : G1 → k∗ such that χ6

G1
̸= 1. Then the (m, k)-a�ne realization

is extended to a principal YD-realization over G = F4 oω C6m × G1 setting
G1 · i = i and χG = χF4oωC6m × χG1 . Note that z ∈ T (V )[e] and χ6

G ̸= 1,
where z is de�ned in (7).

(3) Let (·, g, χG) be a faithful principal YD-realization of (Aff(F4, ω),−1)
over a �nite group G. If G′ ≤ G1 ≤ G are subgroups, then (·, g, (χG)|G1

) is
a faithful principal YD-realization of (Aff(F4, ω),−1) over G1. For instance,
G1 = kerχ6

G.

3.1 A Nichols algebra over Aff(F4, ω)

From now on, we �x a faithful principal YD-realization (·, g, χG) over a �nite

group G of (Aff(F4, ω),−1) . Let V ∈ kG
kGYD be as in (5).

In [GIV, Subsection 2.2] it was discussed how braided functors modify the
Nichols algebras. As a consequence the de�ning relations of the Nichols algebra
B(V ) were calculated [GIV, Proposition 2.10 (b)] using previous results of [G1]
for the pointed case.

Namely, B(V ) is the quotient of T (V ) by the ideal J (V ) generated by

x2
i , xj xi + xi x(ω+1)i+ωj + x(ω+1)i+ωj xj ∀i, j ∈ F4 and (6)

z := (xωx0x1)
2 + (x1xωx0)

2 + (x0x1xω)
2. (7)

We are specially interested in the case where z ∈ T (V )[e], since otherwise
the liftings of B(V ) are trivial, see Theorem 11 (b). In Example 9 (2) this
condition is satis�ed.

Let B be the basis of B(V ) consisting of all possible words m1m2m3m4m5

such that mi is an element in the ith row of the next list

1, x0,

1, x1, x1x0,

1, xωx0x1,

1, xω, xωx0,

1, xω2 .

By (5) the weight of a monomial xi1 · · ·xiℓ ∈ T (V ) is g−1
i1

· · · g−1
iℓ

. Set

gtop = g−1
0 g−1

1 g−1
0 g−1

ω g−1
0 g−1

1 g−1
ω g−1

0 g−1
ω2 . An integral of B(V ) is

mtop = x0x1x0xωx0x1xωx0xω2 ∈ B[gtop].
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Lemma 10. Let G be a �nite group with a faithful principal YD-realization
(·, g, χG) of (Aff(F4, ω),−1). Hence

(a) SuppB(V ) = SuppB ⊂ G′.

(b) G′ 7−→ F4 oω C6, gi 7→ (i, t) is an epimorphism of groups.

(c) If z ∈ T (V )[e], then B[e] = {1, b1, b2, b3, b4, b5} where

b1 = x0x1x0xωx0xω2 , b2 = x0xωx0x1xωxω2 , b3 = x1x0xωx0x1xω2

b4 = x1xωx0x1xωx0, b5 = x0x1xωx0x1xω.

(d) Let y =
∑

i∈F4
xi and U = k{x0 − x1, x0 − xω, x0 − xω2}. Then ky and U

are simple kG-comodules such that V = ky ⊕ U .

Proof (a) holds since the elements of B are kG-homogeneous and B(V ) is a
kG-module algebra.

(b) By [AG2, Lemma 1.9 (1)], the quotient of G′ by its center Z(G′)
is isomorphic to Inn◃ Aff(F4, ω) = F4 oω C3 via gi 7→ (i, t), i ∈ F4. Then
G′/(Z(G′) ∩ kerχG) ≃ F4 oω C3 × C2 ≃ F4 oω C6.

(c) If z ∈ B[e], then {1, b1, b2, b3, b4, b5} ⊆ B[e] since gigj = gi◃jgi. The
other inclusion follows using (b).

(d) is equivalent to prove that ky and U are simple kG-modules via the
action g · xi = χG(g)xg·i, i ∈ F4. Clearly, ky and U are kG-submodules and
ky is kG-simple. Moreover, it is an straightforward computation to show that
U is kG′-simple and therefore kG-simple.

3.2 Copointed Hopf algebras over Aff(F4, ω)

The copointed Hopf algebras over kG whose in�nitesimal braiding arises
from a principal YD-realization of the a�ne rack Aff(F4, ω) with the constant
2-cocycle −1 are classi�ed in [GIV] as follows.

By (5) the smash product Hopf algebra T (V )#kG is de�ned by

δtxi = xiδgi t and

∆(xi) = xi⊗1 +
∑
t∈G

χG(t)δt−1⊗xt·i ∀t ∈ G, i ∈ X. (8)

De�nition 1 Let λ ∈ k and assume z ∈ T (V )[e]. The Hopf algebra AG,λ is
the quotient of T (V )#kG by the ideal generated by (6) and z − f where

f = λ(1− χ−1
z ) and χz = χ6

G.

Notice that if either λ = 0 or χz = 1, then AG,λ = B(V )#kG.

The next theorem is [GIV, Main theorem 2 and Theorem 4.5].

Theorem 11. Let H be a copointed Hopf algebra over kG whose in�nitesimal
braiding arises from a principal YD-realization of the a�ne rack Aff(F4, ω)
with the constant 2-cocycle −1.
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(a) If G = G′, then H ≃ B(V )#kG.
(b) If z ∈ T (V )×, then H ≃ B(V )#kG.
(c) If z ∈ T (V )[e], then H ≃ AG,λ for some λ ∈ k.
(d) AG,λ is a cocycle deformation of AG,λ′ , for all λ, λ′ ∈ k.
(e) AG,λ is a lifting of B(V ) over kG for all λ, λ′ ∈ k.
(f) AG,λ ≃ AG,1 ̸≃ AG,0 for all λ ∈ k∗.

We think of AG,λ as an algebra presented by generators {xi, δg : i ∈ F4, g ∈
G} and relations:

δgxi = xiδgig, x2
i = 0, δgδh = δg(h)δg, 1 =

∑
g∈G

δg,

x0xω + xωx1 + x1x0 = 0 = x0xω2 + xω2xω + xωx0, (9)

x1xω2 + x0x1 + xω2x0 = 0 = xωxω2 + x1xω + xω2x1 and

xωx0x1xωx0x1 + x1xωx0x1xωx0 + x0x1xωx0x1xω = f,

for all i ∈ F4 and g ∈ G. Since χz(gi) = 1, it holds that

f xi = xi f ∀i ∈ F4. (10)

A basis for AG,λ is A = {xδg|x ∈ B, g ∈ G} and a basis for the Verma module
Mg is M = {xi1 · · ·xisδg ∈ Bδg}.

Proposition 12. AG,λ is not quasitriangular.

Proof Let A be a pointed Hopf subalgebra of AG,λ with abelian group of
group-like elements. Then A is generated by skew-primitives and group-likes
elements by [An, Theorem 2].

Let y =
∑

i∈F4
xi. The space of skew-primitives of AG,λ is kG(AG,λ) ⊕

ky kG(AG,λ) by Lemma 10 (d). Then A is generated by y and G(A). By (9),
y2 = 0 and hence A ⊆ (k[y]/⟨y2⟩)#kG(A). Therefore AG,λ is not quasitrian-
gular by Lemma 8.

4 Representation theory of AG,λ

Let (·, g, χG) be a faithful principal YD-realization of (Aff(F4, ω),−1) over

a �xed �nite group G. Let V ∈ kG
kGYD be as in (5).

Also we �x λ ∈ k∗ and assume z ∈ T (V )[e] and χz ̸= 1. In this section we
study the Hopf algebra AG,λ, De�nition 1.

For g ∈ G \ kerχz, we de�ne

eg1 = − 1

f(g)
b1δg, eg2 = − 1

f(g)
b2δg, eg3 =

1

f(g)
b3δg,

eg4 =
1

f(g)
(b4 − b3)δg, eg5 =

1

f(g)
(b5 + b1)δg and
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eg6 = δg +
1

f(g)
(b2 − b4 − b5)δg,

where b1, b2, b3, b4, b5 ∈ AG,λ are as in Lemma 10 (c).

Lemma 13. A complete set of orthogonal primitive idempotents of AG,λ is

E :=
{
δh, e

g
1, e

g
2, e

g
3, e

g
4, e

g
5, e

g
6 |h ∈ kerχz, g ∈ G \ kerχz

}
.

Proof By Lemma 10 (c), {biδg|1 ≤ i ≤ 6} is a basis of B(V )[e]δg for all g ∈ G.
By (9) and (10), it holds that:

b21 = −b1f, b1b2 = 0, b1b3 = 0, b1b4 = 0, b1b5 = b1f,

b2b1 = 0, b22 = −b2f, b2b3 = 0, b2b4 = 0, b2b5 = 0,

b3b1 = 0, b3b2 = 0, b23 = b3f, b3b4 = b3f, b3b5 = 0, (11)

b4b1 = 0, b4b2 = 0, b4b3 = b3f, b24 = b4f, b4b5 = 0,

b5b1 = b1f, b5b2 = 0, b5b3 = 0, b5b4 = 0, b25 = b5f.

Therefore Eh = {δh} is a complete set of orthogonal primitive h-idempo-
tent for all h ∈ kerχz. If g ∈ G \ kerχz, we apply Lemma 7 to the ordered
set {

− 1

f(g)
b1δg, −

1

f(g)
b2δg,

1

f(g)
b3δg,

1

f(g)
b4δg,

1

f(g)
b5δg, δg

}
and hence Eg = {egi |1 ≤ i ≤ 6} is a complete set of orthogonal primitive
g-idempotent. Then E = ∪g∈GEg.

Let M be an AG,λ-module. Since AG,λ is a quotient of T (V )#kG, M also
is a T (V )#kG-module. Moreover, M is a T (V )#kkerχz -module if SuppM ⊆
kerχz since T (V )#kkerχz is a subalgebra of T (V )#kG, cf. Example 9 (3).

Lemma 14. Let h ∈ kerχz.

(a) If M is an AG,λ-module with SuppM ⊆ kerχz, then M is a module over
B(V )#kkerχz .

(b) Mh is a free B(V )-module of rank 1 generated by δh.

(c) χh : AG,λ → k is an algebra map.

(d) top(Mh) ≃ kh and soc(Mh) ≃ kgtoph.

(e)
∫ l

AG,λ
= soc(Mg−1

top
) and χgtop is the distinguished group-like element.

Proof (a) Since M is a T (V )#kkerχz -module, we have to see that the elements
in (6) and z act by zero over M . This is true for the �rst elements because they
are zero inAG,λ. If h ∈ kerχz, then fδh = 0 and hence z·M [h] = f ·(δh·M) = 0.
(b) follows from (a). (c) is clear. (d) and (e) follows from (b) and Lemma 6.

For each egi ∈ E , we set Lg
i = AG,λe

g
i .

Lemma 15. (a) Lg
i is an injective and projective simple module of dimension

12 for all egi ∈ E.
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(b) There exist kG-submodules L1, . . . , L6 ⊂ B(V ) such that B(V ) = L1⊕· · ·⊕
L6 and Lg

i = Liδg for all i = 1, . . . , 6 and g ∈ G.

(c) SuppLi ̸= SuppLj and SuppLg
i = (SuppLi)g for all 1 ≤ i, j ≤ 6 and

g ∈ G.

(d) Lg
i ≃ Lh

j if and only if (SuppLi)g = (SuppLj)h.

Proof (a) Let v = egi ∈ top(Lg
i ). Since f(g)v = z · v = (xωx0x1)

2 · v + b4 · v +
b5 · v ̸= 0, there are xi6 , . . . , xi1 ∈ AG,λ such that xiℓ · · ·xi1 · v ̸= 0 for all
ℓ = 1, ..., 6.

We claim that dim top(Lg
i ) ≥ 11. In fact, if 1 ≤ ℓ < 6, then by (6)

xiℓ+1
xiℓ · · ·xi1 · v =

−xiℓ x(ω+1)iℓ+ωiℓ+1
· · ·xi1 · v − x(ω+1)iℓ+ωiℓ+1

xiℓ+1
· · ·xi1 · v ̸= 0

and hence x(ω+1)iℓ+ωiℓ+1
· · ·xi1 · v ̸= 0 or xiℓ+1

· · ·xi1 · v ̸= 0. Therefore using
Lemma 10 (b), we see that #Supp top(Lg

i ) ≥ 11.

Now, we show that Lg
i = soc(Lg

i ) = top(Lg
i ) and (a) follows. Otherwise,

dimLg
i ≥ 22 since dim top(Lg

i ) = dim soc(Lg
i ) by [CR, Lemma 58.4]. But the

above claim holds for all i and hence 72 = dimMg ≥ 22+5·11, a contradiction.
(b) follows from Tables 1�6 in Appendix. (c) SuppLg

i = (SuppLi)g follows
from (b). If G′ = F4 o C6, then SuppLi ̸= SuppLj by Table 7 in Appendix
and therefore for any G′ by Lemma 10 (b). (d) follows from (c) and Lemma 3.

We consider the product set {1, 2, 3, 4, 5, 6} ×G with the equivalence rela-
tion i× g ∼ j × h if and only if (SuppLi)g = (SuppLj)h. Let X be the set of
equivalence classes of ∼. We denote by [i, g] the equivalence class of i× g. By
Lemma 15 (d), we can de�ne L[i,g] = Lg

i .

Theorem 16. Every simple AG,λ-module is isomorphic to either

kg for a unique g ∈ kerχz or

L[i,g] for a unique [i, g] ∈ X.

In particular, (up to isomorphism) there are | kerχz| one-dimensional simple

AG,λ-modules and (|G|−| kerχz|)
2 12-dimensional simple AG,λ-modules.

Proof It follows from Lemmata 13, 14 and 15.

Example 2 Assume G′ = F4oC6 and let g ∈ G\kerχz. The set X is completely
de�ned by the equivalence class [1, g] which is{

1× g, 2× (1, t2)g, (3, tg), 4× (ω, t2)g, 5× (1, t)g, 6× (ω, 1)g, 1× (0, t3)g

2× (1, t5)g, 3× (0, t4)g, 4× (ω, t5)g, 5× (1, t4)g, 6× (ω, t3)g

}
.

Hence

L[1,g] = Lg
1 ≃ L

(1,t2)g
2 ≃ L

(0,t)g
3 ≃ L

(ω,t2)g
4 ≃ L

(1,t)g
5 ≃ L

(ω,1)g
6 ≃
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L
(0,t3)g
1 ≃ L

(1,t5)g
2 ≃ L

(0,t4)g
3 ≃ L

(ω,t5)g
4 ≃ L

(1,t4)g
5 ≃ L

(ω,t3)g
6 .

Note that i× g ∼ i× (0, t3)g for all i, then Lg
i ≃ L

(0,t3)g
i .

In fact, (SuppL2)(1, t
2) = SuppL1, see Tables 1 and 2. Then Lg

1 ≃ L
(1,t2)g
2

by Lemma 15 (d). The other isomorphisms are obtained in the same way.

4.1 Decomposition of the category of AG,λ-modules

Fix λ ∈ k∗ and assume z ∈ T (V )[e] and χz ̸= 1. Let I ⊂ {1, 2, 3, 4, 5, 6}×G
be a set of representative of the equivalence classes of ∼. Let M be an AG,λ-
module.

If i× g ∈ I, then dM[i,g] = dim(egi ·M) is the number of composition factors

of M which are isomorphic to L[i,g] [CR, Theorem 54.16]. The number dM[i,g]
can be calculated keeping in mind Lemma 1 (d). Since L[i,g] is projective and
injective by Lemma 15, there is a submodule N ⊆ M such that SuppN ⊆
kerχz and

M = N ⊕
⊕
j∈I

(Lj)
dM
[i,g] .

Moreover, N is a B(V )#kkerχz -module by Lemma 14 (a).

4.2 Representation type of AG,λ

Now, we do not make any assumptions on z and λ can be zero. Let kg
and kh be one-dimensional AG,λ-modules such that g = g−1

i h ∈ kerχz for
some i ∈ F4. We de�ne the AG,λ-module Mg,h = k{wh, wg} by kwg ≃ kg as
AG,λ-modules, wh ∈ M [h] and xjwh = δj,iwg for all j ∈ F4.

Proposition 17. The extensions of one-dimensional AG,λ-modules are either
trivial or isomorphic to Mg,h for some g, h ∈ kerχz. Hence AG,λ is of wild
representation type.

Proof Let M be an extension of kh by kg. Then M = M [g] ⊕ M [h] as kG-
modules and M [g] ≃ kg as AG,λ-modules. Since xi ·M [h] ⊂ M [g−1

i h], the �rst
part follows.

For the second part we can easily see that Ext1AG,λ
(kg, kh) is either 1 or 0

for all g, h ∈ kerχz. Then the separated quiver of AG,λ is wild. The details for
this proof are similar to [AV2, Proposition 26].

4.3 Is AG,λ spherical?

A Hopf algebra H is spherical [BaW1] if there is ω ∈ G(H) such that

S2(x) = ωxω−1 ∀x ∈ H and (12)

trV (ω) = trV (ω
−1) ∀V ∈ IrrH by [AAGTV, Proposition 2.1]. (13)
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Proposition 18. B(V )#kG is spherical i� χ2
G = 1. Moreover, (AG,λ, χG)

with λ ̸= 0 is spherical i� (χG| kerχz
)2 = 1.

Proof It is a straightforward computation to see that χG satis�es (12) using
(8). Let V ∈ IrrAG,λ. If dimV = 12, then V is projective and therefore
trV (χ

±1
G ) = 0 [BaW2, Proposition 6.10]. If V = kh with h ∈ kerχz, then (13)

holds i� χG(h) = ±1.

Example 3 Let (·, g, χG) be the faithful principal YD-realization in Example
9 (2). Then (AG,λ, χG) is a spherical Hopf algebra with non involutory pivot.

Any spherical Hopf algebra H has an associated tensor category Rep(H)
which is a quotient of Rep(H), see [AAGMV,BaW1,BaW2] for the background
of this subject. Moreover, Rep(H) is semisimple but rarely is a fusion category
in the sense of [ENO], i. e. Rep(H) rarely has a �nite number of irreducibles.
One hopes to �nd new examples of fusion categories as tensor subcategories
of Rep(H) for a suitable H. However, this is not possible for H = AG,λ, see
below.

Remark 19. Assume that (AG,λ, χG) is spherical. Then only the one-dimensi-
onal simple modules survive in Rep(AG,λ) since the other simple modules are

projective. Then Rep(AG,λ) is equivalent to Rep(B(V )#kkerχz ) by Subsection
4.1, where the pivot χG| kerχz

is involutory. Hence any fusion subcategory of
Rep(AG,λ) is equivalent to Rep(K), with K a semisimple quasi-Hopf algebra,
by [AAGTV, Proposition 2.12].

Appendix

The next tables describe the structure of the 12-dimensional simple modules
of AG,λ. These were used in Lemma 15.

Table 1 Action of the generators xi on Lg
1 = AG,λe

g
1

Linear basis of Lg
1 x0· x1· xω · xω2 ·

c1 = x0x1x0xωx0x1xωx0xω2δg 0 0 −f(g)c6 −f(g)c10
c2 = x0x1x0xωx0xω2δg = −f(g)eg1 0 0 −c5 −c9
c3 = x0x1xωx0x1xωx0xω2δg 0 c1 f(g)c12 0
c4 = x0x1xωx0xω2δg 0 c2 c11 0
c5 = x0xωx0x1xωx0xω2δg 0 c7 0 −c3
c6 = x0xωx0xω2δg 0 c8 0 −c4
c7 = x1x0xωx0x1xωx0xω2δg c1 0 0 −f(g)c12
c8 = x1x0xωx0xω2δg c2 0 0 c11
c9 = x1xωx0x1xωx0xω2δg c3 0 −c7 0
c10 = x1xωx0xω2δg c4 0 −c8 0
c11 = xωx0x1xωx0xω2δg c5 c9 0 0
c12 = xωx0xω2δg c6 c10 0 0
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Table 2 Action of the generators xi on Lg
2 = AG,λe

g
2

Linear basis of Lg
2 x0· x1· xω · xω2 ·

c1 = x0x1x0xωx0x1xωxω2δg 0 0 c6 −f(g)c10
c2 = x0x1x0xωxω2δg 0 0 −c5 −c9
c3 = x0x1xωx0x1xωxω2δg 0 c1 −c12 0
c4 = x0x1xωxω2δg 0 c2 c11 0
c5 = x0xωx0x1xωxω2δg = f(g)eg2 0 c7 0 −c3
c6 = x0x1x0xωx0x1xωx0xω2δg 0 −f(g)c8 0 f(g)c4

−x0xωxω2δg
c7 = x1x0xωx0x1xωxω2δg c1 0 0 −c12
c8 = x1x0xωxω2δg c2 0 0 c11
c9 = x1xωx0x1xωxω2δg c3 0 −c7 0
c10 = x1xωxω2δg c4 0 −c8 0
c11 = xωx0x1xωxω2δg c5 c9 0 0
c12 = x1x0xωx0x1xωx0xω2δg − xωxω2δg c6 −f(g)c10 0 0

Table 3 Action of the generators xi on Lg
3 = AG,λe

g
3

Linear basis of Lg
3 x0· x1· xω · xω2 ·

c1 = x0x1x0xωx0x1xω2δg 0 0 c6 −c10
c2 = x0x1x0xω2δg 0 0 −c5 −c9
c3 = x0x1xωx0x1xω2δg 0 c1 c12 0
c4 = x0x1xω2δg 0 c2 c11 0
c5 = x0xωx0x1xω2δg 0 c7 0 −c3
c6 = x0x1xωx0x1xωx0xω2δg 0 c8 0 f(g)c4

−f(g)x0xω2δg
c7 = x1x0xωx0x1xω2δg = f(g)eg3 c1 0 0 c12
c8 = x0x1x0xωx0x1xωx0xω2δg −f(g)c2 0 0 −f(g)c11

−f(g)x1x0xω2δg
c9 = x1xωx0x1xω2δg c3 0 −c7 0
c10 = x0x1x0xωx0x1xωxω2δg −f(g)c4 0 c8 0

−f(g)x1xω2δg
c11 = xωx0x1xω2δg c5 c9 0 0
c12 = x1xωx0x1xωx0xω2δg −c6 −c10 0 0

+x0x1xωx0x1xωxω2δg − f(g)xω2δg
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Table 4 Action of the generators xi on Lg
4 = AG,λe

g
4

Linear basis of Lg
4 x0· x1· xω · xω2 ·

c1 = x0x1x0xωx0δg 0 0 −c6 −c10
c2 = x0x1x0xωx0x1xωx0δg 0 0 −f(g)c5 −c9
c3 = x0x1xωx0δg − x0x1x0xω2δg 0 c1 c12 0
c4 = x0x1xωx0x1xωx0δg − x0x1x0xωx0x1xω2δg 0 c2 c11 0
c5 = x0xωx0δg 0 c7 0 −c3
c6 = x0xωx0x1xωx0δg 0 c8 0 −c4
c7 = x1x0xωx0δg c1 0 0 −c12
c8 = x1x0xωx0x1xωx0δg c2 0 0 −c11
c9 = x1xωx0δg − x1x0xω2δg c3 0 −c7 0
c10 = x1xωx0x1xωx0δg − x1x0xωx0x1xω2δg c4 0 −c8 0

= f(g)eg4
c11 = x0x1xωx0x1xωx0xω2δg − f(g)x0xω2δg c5 c9 0 0

+f(g)xωx0δg
c12 = −x0xωx0x1xω2δg + xωx0x1xωx0δg c6 c10 0 0

Table 5 Action of the generators xi on Lg
5 = AG,λe

g
5

Linear basis of Lg
5 x0· x1· xω · xω2 ·

c1 = x0x1x0xωδg 0 0 −c6 c10
c2 = x0x1x0xωx0x1xωδg 0 0 −c5 c9
c3 = x0x1x0xωx0x1xωx0xω2δg 0 f(g)c1 −f(g)c12 0

+f(g)x0x1xωδg
c4 = x0x1xωx0x1xωδg − x0x1x0xωx0xω2δg 0 c2 c11 0

= f(g)eg5
c5 = x0x1x0xωx0x1xωx0δg + f(g)x0xωδg 0 f(g)c7 0 c3
c6 = x0xωx0x1xωδg − f(g)x0xω2δg 0 c8 0 c4
c7 = x1x0xωδg c1 0 0 c12
c8 = x1x0xωx0x1xωδg c2 0 0 c11
c9 = x1x0xωx0x1xωx0xω2δg + f(g)x1xωδg c3 0 −f(g)c7 0
c10 = x1xωx0x1xωδg − x1x0xωx0xω2δg c4 0 −c8 0
c11 = x0xωx0x1xωx0xω2δg c5 c9 0 0

+x1x0xωx0x1xωx0δg + f(g)xωδg
c12 = xωx0x1xωδg − x0xωx0xω2δg c6 c10 0 0
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Table 6 Action of the generators xi on Lg
6 = AG,λe

g
6

Linear basis of Lg
6 x0· x1· xω · xω2 ·

c1 = x0x1x0δg 0 0 −c6 −c10
c2 = x0x1x0xω2x0x1δg 0 0 −c5 c9
c3 = x0x1x0xωx0x1xωxω2δg + f(g)x0x1δg 0 f(g)c1 c12 0
c4 = x0x1xωx0x1δg − x0x1x0xωxω2δg 0 c2 c11 0
c5 = −x0x1xωx0x1xωx0δg + f(g)x0δg 0 c7 0 c3
c6 = x0xωx0x1δg 0 c8 0 −c4
c7 = −x0x1x0xωx0x1xωx0δg + f(g)x1x0δg f(g)c1 0 0 c12
c8 = x1x0xωx0x1δg c2 0 0 c11
c9 = x1x0xωx0x1xωx0δg c3 0 −c7 0

−x0x1x0xωx0x1xωδg + f(g)x1δg
c10 = x1xωx0x1δg − x1x0xωxω2δg c4 0 −c8 0
c11 = x0xωx0x1xωxω2δg − x1xωx0x1xωx0δg c5 c9 0 0

−x0x1xωx0x1xωδg + f(g)δg = f(g)eg6
c12 = −x0x1x0xωx0x1xωx0xω2δg f(g)c6 c10 0 0

+f(g)xωx0x1δg − f(g)x0xωxω2δg

Table 7 Weight of the vectors ci in the case G′ = F4 o C6

Lg
1 Lg

2 Lg
3 Lg

4 Lg
5 Lg

6

c1 (0, t3)g (ω, t4)g (0, t5)g (ω2, t)g (ω2, t2)g (ω, t3)g
c2 g (ω, t)g (0, t2)g (ω2, t4)g (ω2, t5)g (ω, 1)g
c3 (1, t4)g (ω, t5)g (1, 1)g (0, t2)g (0, t3)g (ω, t4)g
c4 (1, t)g (ω, t2)g (1, t3)g (0, t5)g g (ω, t)g
c5 (1, t5)g g (1, t)g (ω2, t3)g (ω2, t4)g (0, t5)g
c6 (1, t2)g (0, t3)g (1, t4)g (ω2, 1)g (ω2, t)g (0, t2)g
c7 (0, t4)g (ω2, t5)g g (1, t2)g (1, t3)g (ω2, t4)g
c8 (0, t)g (ω2, t2)g (0, t3)g (1, t5)g (1, 1)g (ω2, t)g
c9 (ω, t5)g (ω2, 1)g (ω, t)g (0, t3)g (0, t4)g (ω2, t5)g
c10 (ω, t2)g (ω2, t3)g (ω, t4)g g (0, t)g (ω2, t2)g
c11 (ω, 1)g (0, t)g (ω, t2)g (1, t4)g (1, t5)g g
c12 (ω, t3)g (0, t4)g (ω, t5)g (1, t)g (1, t2)g (0, t3)g
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