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a b s t r a c t

A methodology to determine the unknown shape of an embedded tumor is proposed. A functional that
represents the mismatch between a measured experimental temperature profile, which may be obtained
by infrared thermography at skin surface, and the solution of an appropriate boundary problem is
defined. Using the Pennes’s bioheat transfer equations, the temperature in a section of healthy tissue with
a tumor region is modeled by a boundary problem. The functional is related to the shape of the tumor
through the solution of the boundary problem, in such a way that finding the minimum of the functional
form also means finding the unknown shape of the embedded tumor. The shape derivative of the func-
tional is computed in each node of an approximation of the solution by the method of Finite Elements
using similar methods considered by Pironneau [7]. The algorithm presented include an adaptive strategy
to improve the error of the objective function. Numerical results with multiple connected tumors are con-
sidered to illustrate the potential of the proposed methodology.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The modeling of heat transfer in organs has been studied by
Pennes since 1948 [2,3]. He suggested that the rate of heat transfer
between blood and tissue was proportional to the product of the
volumetric perfusion rate and the difference between the arterial
blood temperature and the local tissue temperature. Therefore
the temperature of a tissue depends on the rate of blood perfusion,
the metabolic activity and the heat conduction between the tissue
and the environment. The physiological properties of a tumor may
differ from a normal tissue, which produces an increase in the tem-
perature of the skin [8–10]. By observing the superficial tempera-
tures of the skin, the location and size of a tumoral tissue may be
predicted.

Given the location and shape of a tumor, we can predict the
temperature in all the domain. This problem is called the direct
problem. The inverse problem consists of using the measurement
of the skin temperature to infer the position of the tumor. While
the direct problem is well-posed problem [11] (has a unique solu-
tion which depends continuously on the data), the inverse problem
generally is not.

In [6] the boundary element method was used to locate tumor
regions (which were assumed to be elliptical or ellipsoidal) and to
find the unknown thermophysical parameters of these regions. In
[4] unknown geometrical parameters of an embedded tumor were
determined by computing a shape derivative, and solving the

differential and adjoint problem with a second order finite differ-
ence scheme. In [4] they assumed that the tumor was a spherical
simply connected region. The goal of this work is to locate discon-
nected tumor regions with any shape. We developed an algorithm
based on the reaction–diffusion equation, using the finite element
method combined with a shape derivative which allows the tumor
to change its shape in each iteration. The shape derivative is used
to reduce the value of a objective function which measures the dif-
ference between the temperature data and its approximation, and
is determined using an adjoint method similar to the one intro-
duced in [7]. When a node of the triangulation is moved, it is
important to control the error generated by the finite element solu-
tion. We developed a posteriori error estimation and use it for
refinement and remeshing.

The following equation models the temperature of a skin tissue,
/ðxÞ, that has an embedded tumor region [6]:

�riD/ðxÞ þ kið/ðxÞ � TbÞ ¼ qiðxÞ i ¼ 1;2 for x 2 X; ð1Þ

where X represents the two dimensional skin tissue and �x repre-
sents the embedded tumor. The sub index i ¼ 1;2 identifies the
healthy tissue X� �x (i ¼ 1) and the tumor region �x (i ¼ 2) (see
Fig. 1), r represents the thermal conductivity, k is the blood perfu-
sion coefficient, q is the metabolic heat source and Tb is the constant
blood temperature. Using the fact that the thermal conductivity, the
blood perfusion and the metabolic activity are significantly higher
in the tumor region than in normal tissue, we considered that all
these coefficients are piecewise continuous. Defining Q ¼ qþ kTb,
we have the following simplified equation:

�riD/ðxÞ þ ki/ðxÞ ¼ QiðxÞ i ¼ 1;2: ð2Þ
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If we define /1 ¼ /jX� �x and /2 ¼ /jx, we have the following
boundary conditions:

ðiÞ /1 ¼ /2 on @x;
ðiiÞ �r1

@/1
@n ¼ �r2

@/2
@n on @x;

ðiiiÞ �r1
@/1
@n ¼ að/1 � TaÞ on Cu;

ðivÞ �r1
@/1
@n ¼ 0 on Ci;

ðvÞ /1 ¼ Tb on Cb;

8>>>>>><>>>>>>:
ð3Þ

where a is the heat transfer coefficient, Ta is the ambient tempera-
ture, and n is the outward pointing unit normal. Conditions (3)(i,ii)
represent the ideal thermal contact between healthy tissue and
tumor. A constant core temperature Tb is assumed (3)(v), and a
no-flux condition in the lateral boundaries (3)(iv). The convective
condition (3)(iii) represents the interchange of temperature
between the body and the environment.

The physiological properties of a tumor may produce an in-
crease in the temperature of the skin [8–10], and by observing
the superficial temperatures of the skin, the location and size of
a tumoral tissue may be predicted. Let /o be the temperature mea-
sured on the boundary Cu, which represents the superficial skin,
and /x the solution of the problem (2) and (3), which depends
on the location and shape of x. The objective function is defined
by:

Eðx;/xÞ ¼
Z

Cu

j /x � /oj
2dC: ð4Þ

The goal is to find x� � X such that the respective solution /� of
the problem (2) and (3) verifies: Eðx�;/�Þ ¼ 0, which implies that
/� ¼ /o in Cu. An equivalent way of defining the problem is the
following:

ðPÞ
Given the following thermophysical constants : r;k;q;Tb ;Ta;a and the temperature /o

at the boundary Cu; find x� �X;such that the respective solution /�of the problem
ð2Þ—ð3Þproduces the minimum of the functional E; i:e: : Eðx�;/�Þ¼min

x�X
Eðx;/xÞ:

8><>:

2. Variational formulation and discretization of the problem (2)
and (3)

The variational formulation of the problem (2) and (3), is the
following [4]:

Find / 2 H1ðXÞ such that
að/;vÞ ¼ LðvÞ; 8v 2 VðXÞ
/ ¼ Tb on Cb

8><>: ð5Þ

where a, L and VðXÞ are defined as follows:

að/;vÞ¼
Z

X
ðrr/rvþk/vÞdxþa

Z
Cu

/vdC; ð6Þ

LðvÞ¼
Z

X
QvdxþaTa

Z
Cu

vdC; ð7Þ

H1ðXÞ¼ fv 2 L2ðXÞ=kvkH1ðXÞ <1g; kvkH1ðXÞ ¼ kvk2
L2ðXÞ þkrvk2

L2ðXÞ

� �1=2
; ð8Þ

VðXÞ¼ fv 2H1ðXÞ : v ¼0 on Cbg: ð9Þ

We recall that krvkL2ðXÞ is equivalent to kvkH1ðXÞ in the space VðXÞ.
Let fT hg be a family of triangulations of X such that any two

triangles in T h have at most a vertex or an edge. For the triangula-
tion T h, let M be the number of triangles, N the number of nodes,
and G the set of index of the nodes which are on the Dirichlet
boundary Cb. Let hT stand for the diameter of the triangle T 2 T h,
and h the maximum of hT ; T 2 T h. We assume that the family of
triangulations fT hg satisfies the minimum angles condition and,
consequently, there exists a constant H > 0 such that hT=dT < H,
where dT is the diameter of the largest circle contained in T.
Throughout this work we will denote by c a generic positive
constant, not necessarily the same at each occurrence, which
may depend on the mesh only through the parameter H.

We define the following finite element spaces:

V1
hðXÞ ¼ fwh 2 H1

hðXÞ : whjCb
¼ 0g ð10Þ

where

H1
hðXÞ ¼ fwh 2 CoðXÞ : whjTk

2 P1ðTkÞ 8Tk 2 T hg ð11Þ
P1ðTÞthe space of the polynomials of degree less or
equal to 1 in T ð12Þ

We use H1
hðXÞ and V1

hðXÞ to approximate H1ðXÞ and VðXÞ,
respectively. Then / can be approximated by a function
/h 2 H1

hðXÞ the solution of the problem:

Find /h 2 H1
hðXÞ such that

að/h;whÞ ¼ LðwhÞ; 8wh 2 V1
hðXÞ

/h ¼ Tb on Cb

8><>: ð13Þ

The problem (13) can be solved by finding a solution of a linear
matrix system:

A/h ¼ F; ð14Þ

where

Aij ¼ aðgi;gjÞ; Fi ¼ LðgiÞ; ð15Þ
/h ¼ ð/1;/2; . . . ;/NÞ

T
; /h ¼

X
iRG

/igi þ
X
i2G

Tbgi; ð16Þ

fgjgj¼1;...;N
is a base of H1

hðXÞ and fqigi2G are the nodes in Cb: ð17Þ

It is easy to show that the matrix A is positively defined and
symmetric, and therefore a unique solution exists. If fqigi¼1;...;N

are the vertex of the triangles of T h, the base fgjgj¼1;...;N
of H1

hðXÞ
is uniquely determined by:

giðqjÞ ¼ dij 8i; j ¼ 1; . . . ;N: ð18Þ

Then, (4) can be approximated by:

Eðxh;/hÞ ¼
X
l2Cu

Z
l
j /h � /oj

2dC: ð19Þ

We define the following Approximated Problem of (P):

ðA:P:Þ

Given the following thermophysical constants : r;k;q;Tb;Ta ;a and the temperature
/o in the boundary Cu ; find x�h�X; such that the respective solution /�h of the
problem ð15Þ gives the minimum of the functional E;i:e: : Eðx�h ;/

�
hÞ¼ min

X¼[Tk

Eðxh ;/hÞ

8>><>>:

Fig. 1. Two dimensional domain. X–x healthy tissue and x tumor region.
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2.1. Adjoint problem and the shape derivative

The adjoint problem of the problem (5) is to find
p 2 H1

hðXÞ=pjCb
¼ 0, where p is the solution of the following differ-

ential problem:

ðiÞ �rDpþ kp ¼ 0 on X;

ðiiÞ �r @p
@n ¼ aðp� 2

a ð/h � /oÞÞ on Cu;

ðiiiÞ @p
@n ¼ 0 on Ci;

ðivÞ p ¼ 0 on Cb:

8>>><>>>: ð20Þ

The variational formulation of (20) can be approximated by a
function ph 2 V1

hðXÞ such that:

aðph;whÞ ¼ 2
Z

Cu

ð/h � /oÞwhdC; 8wh 2 V1
hðXÞ: ð21Þ

This last problem is equivalent to a linear matrix problem:

Aph ¼ eF ; ð22Þ

where

eF i ¼ 2
Z

Cu

ð/h � /oÞgidC; ð23Þ

ph ¼ ðp1;p2; . . . ; pNÞ
T
; ph ¼

X
iRG

pigi: ð24Þ

The matrix A is defined by (15) and therefore a unique solution
exists.

3. Shape derivative

Using similar techniques to the ones developed by Pironneau
[7], one can define a derivative of the objective function E with re-
spect to each node of the triangulation. This derivative shows in
which direction we should move qk to have a maximum increase
of E, thus if we move it in the opposite direction, we would have
a maximum decrease of the value of E [1].

Theorem 1. If E is given by (19), /h is the solution of (13), and ph is
the solution of (21), then

@E
@ql

k

¼
Z

X

@ph

@xl
ðqkÞðrrgkr/h þ gkðk/h � QÞÞdx

�
Z

X

@

@xl
½gkðphðk/h � QÞ þ rr/hrphÞ�dx; ð25Þ

where qk ¼ ðq1
k ; q

2
kÞ are the nodes of the triangulation T h; l ¼ 1;2

represents the coordinates and fgjgj¼1;...;N
is the base of H1

hðXÞ.

Proof 1. See [1].

4. A posteriori error estimations

When the nodes of the mesh are moved, sometimes the triangles
can degenerate, having an area close to zero. This is the reason for the
remeshing in each iteration. After some iterations, the size of the tri-
angles of the mesh must be reduce to improve the values of the tem-
perature in the boundary Cu, therefore a refinement is needed. The
problem is where to refine. In this section we introduce estimators
for the temperature error /� /h and the adjoint error p� ph. Using
this estimators we can find a bound for the objective function.

4.1. Estimator of the objective function

Theorem 2. Let /x and px be the solutions of (5) and (20),
respectively, and /h and ph the solutions of their approximated
problems in the spaces H1

hðXÞ and V1
hðXÞ, respectively. Then for all

c > 0:

j Eðx;/xÞ � Eðxh;/hÞ j 6 c
c
2
k/x � /hk

2
H1ðXÞ þ

1
2c
kpx � phk

2
H1ðXÞ

� �
þ h:o:t:;

where h.o.t. represents higher order terms.

Proof 2. Is easy to verify that:

Eðx;/xÞ � Eðxh;/hÞ ¼ 2
Z

Cu

ð/h � /oÞð/x � /hÞdC

þ
Z

Cu

ð/x � /hÞ
2dC: ð26Þ

The first term of (26) is bounded by:

2
Z

Cu

ð/h � /oÞð/x � /hÞdC
���� ���� 6 að/x � /h;pxÞ

¼ að/x � /h; px � phÞ

6 ck/x � /hkH1ðXÞkpx � phkH1ðXÞ

6 c
c
2
k/x � /hk

2
H1ðXÞ þ

1
2c
kpx � phk

2
H1ðXÞ

� �
; 8c > 0:

The second term of (26) is a higher order term which can be ne-
glected. In fact,Z

Cu

ð/x � /hÞ
2dC 6 chkr/x �r/hk

2
L2ðXÞ 6 chk/x � /hk

2
H1ðXÞ:

By the previous theorem, for the estimation of the error of the
objective function it is necessary to estimate the errors of the tem-
perature and adjoint temperature.

4.2. Temperature estimator

We define the local indicator gT in each triangle T of the triangu-
lation T h for problem (5) by:

gT ¼ h2
T

Z
T
j RT j2dxþ

X
l�@T

hl

Z
l
j Jlj

2dC

 !1=2

; ð27Þ

where

hl ¼ jlj; hT ¼ max
l side of T

hl; ð28Þ

RT ¼ Q þ rD/h � k/h ¼ Q � k/h; ð29Þ

Jl ¼

�r1
@/h
@n if l � Ci;

0 if l � Cb;

�r1
@/h
@n � að/h � TaÞ if l � Cu;

� 1
2 ðrþr/þh � r�r/�h Þ � n if l � EI;

8>>>><>>>>: ð30Þ

l is a side of T and EI is the set of interior sides:
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We remark that Jl represents the residual in each side l of the
triangulation and RT represents the volumetric residual en each
triangle T.

The global estimator g is then defined as:

g ¼
X
T2T h

g2
T

 !1=2

: ð31Þ

Lemma 1. Let / be the solution of (5) and let /h be the solution of
(13). If e ¼ /� /h 2 VðXÞ is the error, the Error Equation for this
problem is:

Z
X
rrerv þ kevdxþ a

Z
Cu

evdC ¼
X
T2T h

Z
T

RTðv � vhÞdx

þ
X
l�@T

Z
l

Jlðv � vhÞdC 8v 2 VðXÞ; 8vh 2 V1
hðXÞ; ð32Þ

where Jl and RT are given by (30) and (29), respectively.

Proof 3. Observe that:Z
X
rrervh þ kevhdxþ a

Z
Cu

evhdC ¼ 0 8vh 2 V1
hðXÞ: ð33Þ

Using (5) and (33):Z
X
rrervþkevdxþa

Z
Cu

evdC¼¼
X
T2T h

Z
T
ðQ �k/hÞðv�vhÞ

�
�rr/hrðv�vhÞdxÞ

�
Z

Cu

að/h�TaÞðv�vhÞdC: ð34Þ

Integrating by parts in each triangle T, we obtain the Error
Equation.

Theorem 3. Let / and /h be the solution of (5) and (13), respectively.
Then there exists a constant c > 0 such that:

k/� /hkH1ðXÞ 6 cg: ð35Þ

Proof 4. We denote eI 2 V1
hðXÞ the Clément interpolation which is

defined in [5]. The following error estimate, which can be easily
proved by using the results from this reference, hold for this
interpolation:

X
T2T h

ðke� eIk2
L2ðTÞh

�2
T þ

X
l�@T

ke� eIk2
L2ðlÞh

�1
l Þ

 !1=2

6 ckrekL2ðXÞ: ð36Þ

Taking v ¼ e and vh ¼ eI in the Error Equation of Lemma 1 and
applying the Cauchy–Schwartz inequation:Z

X
r j rej2 þ k j ej2dxþ a

Z
Cu

j ej2dC

6

X
T2T h

h2
TkRTk2

L2ðTÞ þ þ
X
l�@T

hlkJlk
2
L2ðlÞ

 ! !1=2

�
X
T2T h

ke� eIk2
L2ðTÞh

�2
T þ

X
l�@T

ke� eIk2
L2ðlÞh

�1
l

 ! !1=2

: ð37Þ

From (36) and (37) we obtain the following:

kekH1ðXÞ 6 c
X
T2T h

g2
T

 !1=2

: ð38Þ

Theorem 4. Let / and /h be the solution of (5) and (13), respectively.
Then there exists a constant c > 0 such that 8T 2 T h:

gT 6 ck/� /hkH1ðT�Þ; ð39Þ

where T� ¼ [feT 2 T h=eT \ T – ;; eT \ T – fPgg, i.e., T� is the union of
all the triangles that share a side with T.

Proof 5. If the vertex of T are fz1; z2; z3g, then we define the ith
barycentric coordinate kiðx; yÞ 2 P1ðTÞ=kiðzjÞ ¼ dij. Let bT ¼ 27k1k2k3

be the cubic bubble of T. Replacing v ¼ RT bT and vh ¼ 0 in the Error
Equation, and observing that bT is zero in every side of T, we have
that:Z

T
rrerRT bT þ kRT bT edxþ a

Z
Cu\T

eRT bT dC ¼
Z

T
R2

T bT dx: ð40Þ

Taking into account that all the norms are equivalent in finite
dimensional spaces (P4ðTÞ), there exists a constant c > 0 such that:Z

T
v2dx 6 c

Z
T

v2bT dx: ð41Þ

On the other hand, by the Inverse Inequality, there exists a con-
stant c > 0, such that:

krvkL2ðTÞ 6
c

hT
kvkL2ðTÞ: ð42Þ

Using the Cauchy–Schwarz Inequality, (41) and (42) and the
fact that the cubic bubble is less than 1, we have that:

kRTk2
L2ðTÞ 6

c
hT
kekH1ðTÞkRTkL2ðTÞ ð43Þ

and dividing by kRTkL2ðTÞ:

h2
T

Z
T

R2
T dx

� �1=2

6 ckekH1ðTÞ: ð44Þ

Let l be a side of the triangle T. If l is in the interior of the domain
X, then l ¼ T \ eT for some eT 2 T�. In this case we replace v ¼ Jlwl

and vh ¼ 0 in the Error Equation, with wl ¼ 4k1k2 in T and eT (if z1

and z2 are the vertex of l). If l is over the boundary, we replace
v ¼ Jlwl and vh ¼ 0 in the Error Equation, with wl ¼ 4k1k2 in T. In
the case where l is interior, we have:Z

T[eT rrerJlwl þ kJlwledx ¼
Z

T[eT RT Jlwldxþ
Z

l
J2

l wldC: ð45Þ

Observing that Jl is constant in l, that wl 6 1 and using (42) and
(44), we have that:

2
3

hlJ
2
l ¼

Z
l

J2
l wldC 6 c j Jl j kekH1ðT[eT Þ: ð46Þ

Rearranging the terms, we obtain that for each eT 2 T�:

hl

Z
l

J2
l dC

� �1=2

¼ hl j Jl j6 ckek
H1ðT[eT Þ: ð47Þ

Likewise, if l belongs to the boundary @X� Cu, we can obtain a
similar inequality. If l belongs to Cu; Jl is lineal, and in this case the
Error Equation can be bounded in the following way:Z

l
J2

l wldC 6
c

hT
kekH1ðTÞkJlwlkL2ðTÞ: ð48Þ

The equivalence of the norms of L1ðlÞ and L2ðlÞ in the space of
the polynomials of degree less or equal than 2 implies that:
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kJlwlkL2ðTÞ 6 hT max
l
j Jl j6 ch1=2

T kJlwlkL2ðlÞ: ð49Þ

Then, by the previous property and (48) we have that

hl

Z
l

J2
l wldC

� �1=2

6 ckekH1ðTÞ: ð50Þ

Finally, from (44) and (47), (39) is obtained.

4.3. Adjoint estimator

We define the local adjoint indicator lT in each triangle T of the
triangulation T h, for the problem (21), in the following way:

lT ¼ h2
T

Z
T
j Ra

T j
2dxþ

X
l�@T

hl

Z
l
j Ja

l j
2dC

 !1=2

; ð51Þ

where

hl ¼ klk; hT ¼ max
l a side of T

hl; ð52Þ

Ja
l ¼

�r1
@ph
@n if l � Ci;

0 if l � Cb;

�r1
@ph
@n � aph þ 2ð/h � /oÞ if l � Cu;

� 1
2 ðrþrpþh � r�rp�h Þ � n if l � EI;

8>>>><>>>>: ð53Þ

Ra
T ¼ rDph � kph ¼ �kph: ð54Þ

The global adjoint estimator l is defined by:

l ¼
X
T2T h

l2
T

 !1=2

: ð55Þ

Lemma 2. Let p and ph be the solutions of (20) and (21), respectively.
If ea ¼ p� ph 2 VðXÞ is the adjoint error, then the Error Equation for
this problem is the following:

Z
X
rrerv þ kevdxþ a

Z
Cu

evdC

¼
X
T2T h

Z
T

Ra
Tðv � vhÞdxþ

X
l�@T

Z
l

Ja
l ðv � vhÞdC 8v

2 VðXÞ; 8vh 2 V1
hðXÞ; ð56Þ

where Ja
l and Ra

T are given by (53) and (54), respectively.

Theorem 5. Let p and ph be the solutions of (20) and (21), respec-
tively. Then there exists a constant C > 0 such that:

keakH1ðXÞ 6 cl: ð57Þ

Proof 6. Similar to Theorem 3.

Theorem 6. Let p and ph be the solutions of (20) and (21), respec-
tively. Then there exists a constant c > 0 such that 8T 2 T h:

lT 6 ckeakH1ðT�Þ: ð58Þ

where T� is given by Theorem 4.

Proof 7. Similar to Theorem 4.

We define the local objective function indicator nT in each trian-
gle T of the triangulation T h, in the following way:

nT ¼
c
2

h2
T þ

1
2c

l2
T

� �1=2

; ð59Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxjfgjg=maxjfga

j g
q

. The choice of this c shows that
maxfc2 l2

Tg ¼maxf 1
2c g

2
Tg, which implicates that triangles with high

gT will we refined in the same way as the ones with high lT . The
global objective function estimator n is then defined as:

n ¼
X
T2T h

n2
T

 !1=2

: ð60Þ

Corolary 1. Let /x and px be the solutions of (5) and (20),
respectively, and /h and ph the solutions of their approximated
problems in the spaces H1

hðXÞ and V1
hðXÞ, respectively. Then:

j Eðx;/xÞ � Eðxh;/hÞj
1=2
6 cnþ h:o:t:

where h:o:t represents higher order terms.

5. Numerical results

In this section we present different numerical simulations, car-
ried out on a domain of 3 cm depth and 9 cm length. In the first
example, the data was generated by a single connected tumor re-
gion, which shows how the shape derivative works. In the second
place, the data was generated with two connected tumor regions,
but the initial tumor for the algorithm was a single tumor region.
In all of these we considered the following thermophysical con-
stants [4]:

r1¼0:5 ½W=mK�; k1¼1998:1 ½W=m3K�; Q 1¼74349:7 ½W=m3�;
r2¼0:75 ½W=mK�; k2¼7992:4 ½W=m3K�; Q 2¼299918:8 ½W=m3�;
Tb ¼37�C; Ta¼25�C; a¼10½W=m2K�:

ð61Þ

We present two algorithms, one of which only moves the
boundary of the tumor, and another that also minimizes the error
of the objective function.

5.1. Algorithm without refinement

0. Choose an initial triangulation given by the nodes
fqð0;0Þk gk¼1;...;No

. Choose R (number of iterations) and bM (num-
ber of movements in each iteration).

For r ¼ 0; . . . ;R:
1. For m ¼ 0; . . . ; bM:

(a) Calculate /ðr;mÞh ; pðr;mÞh using (13) and (21).

(b) Calculate the derivative gðr;mÞk ¼ ðgðr;mÞk1
; gðr;mÞk2

Þ in each node

qðr;mÞk using (25), for k ¼ 1; . . . ;Nr .

(c) Let qðr;mÞk ðqÞ ¼ qðr;mÞk � q:gr
k .

(d) Compute qðr;mÞmax the maximum allowable q such that it min-

imizes Eðqðr;mÞk ðqÞÞ (using Algorithm 3, page 51 of [7]).
(e) Set qðr;mþ1Þ

k ¼ qðr;mÞk � qðr;mÞmax gr
k .

2. Keeping only the nodes on @x, remesh X using the program
Gmsh�, and save this triangulation as fqðrþ1;0Þ

k gk¼1;...;Nrþ1
.
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5.2. Algorithm with refinement

For remeshing the domain we used the program Gmsh�, which
has 2 inputs, one file with extension geo and another with exten-
sion pos. The file geo has the information of the domain, defining
the boundaries Cu;Ci and Cb, and the segments that approximate
the boundary of the tumor @x. To indicate the size of the triangles
of the mesh, we use the file pos, which consists on another mesh,
where each nodes has assigned a number that indicates the
approximate size of the edges of the new triangles nearby. In the
file geo the data of the last iteration are saved, in particular the
boundary @x and the new segments added by the last remeshing.

For the refinement of the mesh, we do the following:

1. Calculate the error estimators gj and ga
j en each triangle

fTjgj¼1...M of the mesh.

2. Define c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxjfgjg=maxjfga

j g
q

.

3. Define a new matrix with the triangles’s barycenter:
~qj;8j ¼ 1 . . . M.

4. Establish a refinement bound, in this case estmax ¼
0:5 max

j¼1...M
fc2 ga

j þ 1
2c gjg.

5. Create the vector bm 2 RM , such that:

bmðjÞ ¼
bmðjÞ ¼ 0:25 max

lsize ofTj

fj l jg if c
2 ga

j þ 1
2c gj > estmax

bmðjÞ ¼ 1
3

X
lsize ofTj

fj l jg if not

8>><>>:
6. Assign bmmaxðkÞ ¼ min

qk2Tjk

fbmðjkÞg to each node qk.

7. Assign bmðjÞ to the nodes ~qj whose triangles have local estima-
tor gj > estmax.

8. Make a new triangulation with the nodes fqkgk¼1;...;N and the
ones chosen in the previous item. This triangulation with the
assigned values is the background mesh.

The final algorithm is the following:

0. Choose an initial triangulation given by the nodes

fqð0;0Þk gk¼1;...;No
. Choose R (number of iterations), bM(number

of movements in each iteration), and I (the number of refine-
ment in each iteration).
For r ¼ 0; . . . ;R:

1. For m ¼ 0; . . . ; bM:
(a) Calculate /ðr;mÞh ; pðr;mÞh using (13) and (21).

(b) Calculate the derivative gðr;mÞk ¼ ðgðr;mÞk1
; gðr;mÞk2

Þ in each node

qðr;mÞk using (25), for k ¼ 1; . . . ;Nr .
(c) Let qðr;mÞk ðqÞ ¼ qðr;mÞk � q:gr

k .

(d) Compute qðr;mÞmax the maximum allowable q such that it min-
imizes Eðqðr;mÞk ðqÞÞ (using Algorithm 3, page 51 of [7]).

(e) Set qðr;mþ1Þ
k ¼ qðr;mÞk � qðr;mÞmax gr

k .
2. Keep only the nodes on @x, and remesh X.
3. For i ¼ 1; . . . ; I

(a) Calculate g2
Tj
¼ c

2 ga2
j þ 1

2c g
2
j , assign bmðjÞ to each triangle Tj.

(b) With this values create a new background mesh.
(c) Remesh X using Gmsh�, using the background mesh of the

previous item.
4. Save the last triangulation as fqðrþ1;0Þ

k gk¼1;...;Nrþ1
.

5.3. Simulations with a connected tumor region

To generate the ‘‘data’’ we supposed that the tumor region was
the square C (see Fig. 2). We made simulations for eight different
cases, replacing xo for the circles Ci for i ¼ 1::8. We could observe
that the results were symmetric to the vertical axis x ¼ 0:045, for
example the cases for i ¼ 8 and i ¼ 5 approached the region C in
a similar way. Therefore we will just show the cases for
i ¼ 1;2;3;7;8. In all these cases we made 120 iterations, where
for the first 60 we used the algorithm without refinement (5.1),
and for the last 60 we used the other algorithm (5.2), taking
I ¼ 4 up to iteration 100, and I ¼ 5 after that. This is due to the fact
that as the temperature at the boundary Cu approaches to the data
the mesh needs to be refined in that boundary to improve the val-
ues of the objective function.

5.3.1. xo ¼ C2

In this case the domain x32 divided in two sub-domains at the
iteration N� 32. One sub-domain stays near xo while the other con-
tinuous to approximate to C. In the Fig. 3(a) we observe how the
objective function decreases while the number of iterations in-
creases. The oscillations are due to the remeshing, while the value
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Fig. 2. Tumoral domains for the simulations.

Fig. 3. a) Value of the target function (in logarithm scale) for each iteration, for the case of i = 2. b) Value of the area of the symmetric difference between C and xi for each
i = 1. . .120.
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of the objective functions decreases in the first mesh. When we re-
mesh this value changes. In the Fig. 3(b) we plot the area of the
symmetric difference between C and xi for each i ¼ 1 . . . 120. This
area measures how good the approximation geometrically is. We
observe that from the iteration N� 11 the area starts to decrease,
because at this point the intersection between the two sets is not
empty space.In the Fig. 4 we can observe the movement of the
boundary tumor, and in Table 1 its references.

5.3.2. Cases for i ¼ 1; 3; 7; 8
In Fig. 5 we observe the final iteration for each case, and in

Table 1 its references. The final values of the objective function
are: 7:144� 10�8;2:023� 10�7;2:172� 10�7 and 1:182� 10�7 for
C1;C3;C7 and C8, respectively. For i ¼ 3 we observe that the domain
stretches vertically, and the bottom part of the boundary does not
move. Firstly, it stretches horizontally, and while it starts to stretch
vertically, its width decreases. For i ¼ 7 it has the opposite behav-
ior, firstly it shrinks and then moves toward C. In the last iterations
the locations does not change, instead it stretches horizontally. For

i ¼ 8 the behavior is similar, but it also moves horizontally toward
C. In the case for i ¼ 1 the movement is mainly horizontal, and the
final size is similar to C.

5.4. Simulations with a disconnected tumor region

We also simulated the case where the ‘‘data’’ was generated by
the tumor region C1 [ C5, and xo ¼ C (see Fig. 2). The algorithm
used was the one with refinement for all the 160 iterations, but
with a modification in the item number 3, where we used a ‘‘while
g > �’’ instead of the ‘‘for i ¼ 1 . . . I’’. The number of refinement var-
ies between 2 and 5. In Fig. 6 we can observe how the value of the
objective function decreases. Fig. 7 shows the location of xi

(Table 1 shows its references) and the value of the temperature
in the boundary Cu for different number of iterations. In the
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Fig. 4. Results of the movement for C2.

Table 1
References of the movement.

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.04 0.05 0.06 0.07
0

0.005

0.01

0.015

0.02

0.036 0.04 0.05 0.054

0.01

0.015

0.02

0.025

0.03

0.037 0.04 0.05 0.053

0.01

0.015

0.02

0.025

0.03

0.04 0.05 0.06 0.07

Fig. 5. Results of the movement for different cases.
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Fig. 6. Value of the target functino (in logarithm scale) for disconnected tumors.
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iteration N� 39 the domain splits in two. The asymmetry of the two
domains is generated by the non homogeneous mesh.

6. Conclusions and future work

The algorithm shows to be robust in the sense that all the seeds
employed move toward the tumor location. The size and shape
prediction, however, do not match with the size and shape of the
tumor for most of cases. We can observe that the final value of
the objective function is of the order of 10�7, from which we can
conclude that the information (the superficial temperature) is not
enough to predict the size and shape. We have the conjecture that
this method is sharp while detecting the horizontal position of the
tumor, but not for the vertical position. If we consider time varia-
tion, using a thermography video as data, probably the prediction
of size and shape will improve. It is important to point out that
the disconnected tumors are located, even though the starting tu-
mor is not connected.

There are many promising directions for future research. Firstly,
we plan to incorporate noise into the data. Secondly, we could de-
velop an algorithm that combines the results from simulations
with different seeds. This will probably improve the prediction of
the size or shape. Another method to consider for this purpose is

to have as data the skin temperature in different ambient
temperatures.
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Fig. 7. Results for disconnected tumors. En each iteration we show at the left the position of the tumor and at the right the temperature in Cu .
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