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Abstract

The space G+ of postive invertible operators of a C∗-algebra A, with the appropriate Finsler
metric, behaves like a (non positively curved) symmetric space. Among the characteristic properties
of such spaces, one has that two selfadjoint elements x, y ∈ A (regarded as tangent vectors at
a ∈ G+) verify that

‖x− y‖a ≤ d(expa(x), expa(y)).

In this paper we investigate the ocurrence of the equality ‖x− y‖a = d(expa(x), expa(y)). If A has
a trace, and the trace is used to measure tangent vectors then - as in the finite dimensional classical
setting - this equality is equivalent to the fact that x and y commute. In arbitrary C∗-algebras,
when the usual C∗-norm is used, the equality is equivalent to a weaker condition. We introduce
in G+ an analogous of the sectional curvature for pairs of selfadjoint operators, and study the
vanishing of this invariant.

Keywords: positive operator, selfadjoint operator, sectional curvature.

1 Introduction

Let A be a unital C∗-algebra, let G the group of invertibles of A, and let G+ the set of positive
elements of G. The space G+ admits a rich geometric structure [2]. It is a differentiable manifold
modelled in A (in fact an open subset of the real Banach space Ah of hermitian elements of A),
carries a transitive left action of the Banach-Lie group G,

g · a = gag∗, g ∈ G, a ∈ G+

and an invariant Finler metric ‖ ‖a,

‖x‖a = ‖a−1/2xa−1/2‖,
∗2000 Mathematics Subject Classification: 46L05, 58B20, 47A63.
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for x ∈ Ah, which identifies with the tangent space (TG+)a. The connection induced by the action
in a natural way, which is compatible with the metric, is given by

DX

dt
=

dX

dt
− 1

2
(γ̇γ−1X + Xγ−1γ̇),

where X is a tangent (i.e. hermitian) field along γ ∈ G+. The curvature tensor is given by

Ra(x, y)z = −1
4
a[[a−1x, a−1y], a−1z],

for x, y, z ∈ Ah.
If A = Mn(C) is the algebra of n × n matrices, and one replaces the C∗-norm by the trace

norm, then the connection is the Levi-Civita connection of the (Riemannian) metric ga(x, y) =
tr(xa−1ya−1) (with corresponding morm ga(x, x)1/2 = ‖a−1/2xa−1/2‖2). This is the well known
metric which makes M+

n (C) a symmetric space [4].
Remarkably, in the infinite dimensional, non Riemannian setting, the space G+ has many of the

structural and characteristic properties of the classical case. Let us make a short list:

1. Two elements in G+ are joined by a unique minimizing geodesic [2]. Namely, if a, b ∈ G+,

γa,b(t) = a1/2(a−1/2ba−1/2)ta1/2

is the unique geodesic with γa,b(0) = a and γa,b(1) = b, and

d(a, b) = length(γa,b) = ‖log(a−1/2ba−1/2)‖.

Here log denotes the smooth logarithm of positive invertible elements.

2. The space G+ is complete, in both senses of the word: geodesics are defined for all time t ∈ IR,
and the geodesic distance d is complete [2].

3. If δ and γ are two geodesics of G+, then the map

t 7→ d(δ(t), γ(t))

is convex [3].

4. If J is a Jacobi field along a geodesic γ, then the map

t 7→ ‖J(t)‖γ(t)

is convex [3].

5. If x, y ∈ Ah (regarded as tangent vectors at a ∈ G+), then [3]

‖x− y‖a ≤ d(expa(x), expa(y)). (1.1)

In this paper we study the following problem related to the inequality (1.1): for which x, y ∈ G+

does one have equality,
‖x− y‖a = d(expa(x), expa(y))?

In geometric terms: in which directions is the exponential map isometric? One can use the action,
which is isometric, and reduce the problem to the case a = 1.

In the finite dimensional case, for the trace induced metric, the answer is that this equality holds
if and only if x and y commute. One readily sees that this condition is sufficient in the infinite
dimensional case.
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In section 2 we consider a C∗-algebra A with a faithful trace τ , and pose the problem for the
metric induced by τ . This metric is not complete (if A is not finite dimensional), nevertheless, and
quite unsurprisingly, the answer here is the same as in the finite dimensional case: the exponential
does not distort the metric if and only if x and y commute. Although the metric is not a Riemannian
metric strictly speaking, the methods here are essentially Riemannian.

In section 3 we consider the question for the Finsler metric based on the C∗-norm. Riemannian
methods are no longer available, and the answer is also less transparent: ‖x − y‖ = d(ex, ey) if
and only if there is a multiplicative functional ϕ in the C∗-algebra Ax,y generated by x and y such
that |ϕ(v)| = ‖v‖a, where v is the velocity vector of the geodesic joining a = ex and b = ey. This
condition is weaker than commutation. For example, if x = p and y = q are projections, it is
equivalent to ‖p− q‖ = 1.

One proves that non-distortion of the metric implies commutation in the finite dimensional
case by means of the sectional curvature: commutation is equivalent to vanishing of the sectional
curvature. In section 4, motivated by an observation by J. Milnor in [6] (page 101), that the
sectional curvature can be obtained as a limit involving norms and distances (and not the inner
product), we define an analogous of the sectional curvature. We characterize the vanishing of
this number. In general, it is a condition which is weaker than the non-distortion of the metric.
However, if x = p and y = q are projections, these two notions coincide.

We wish to thank Leon Paley for many fruitful conversations.

2 Distortion in the 2-norm and commutativity.

Throughout this section the C∗-algebra A is assumed to have a faithful trace τ . We shall consider
the 2-norm ‖ ‖2:

‖a‖2 = τ(a∗a)1/2.

The trace τ enables one to define inner products in the tangent bundle of G+, which mimic the
natural Riemannian metric on the space of positive definite finite matrices. Namely, if x, y are
selfadjoint elements of A, regarded as tangent vectors at the point a ∈ G+, put

ga(x, y) = τ(xa−1ya−1) = τ(a−1xa−1y).

This metric varies smoothly with a. Note that g is invariant under the action of G. It is not a
Riemannian metric, in that it fails to be complete. Nevertheless we shall treat it as such, and
employ the same terminology as in the proper Riemannian case. First note that the Riemannian
connection of this metric is precisely the linear connection of G+ considered in [2], [3], and looks
formally identical to the natural connection for positive matrices. If X is a tangent field along a
curve γ ∈ G+ (i.e. a smooth curve of elements in Ah), then the covariant derivative is given by

DX

dt
=

dX

dt
− 1

2
(γ̇γ−1X + Xγ−1γ̇).

The proof of this fact is a straightforward verification, and is left to the reader. Therefore, the usual
connection of G+ is the Levi-Civita connection of the metric g. It will become apparent below that
the unique geodesic γa,b(t) = a1/2(a−1/2ba−1/2)ta1/2, joining a, b ∈ G+, is also minimizing for the
metric g.

In this section we prove that if x, y ∈ Ah, then ‖x − y‖2 = d2(ex, ey) if and only if x and y
commute. Here d2(a, b) denotes the geodesic distance, i.e. the minimum of the lengths of all smooth
curves joining a and b in G+, measured with the metric ga, a ∈ G+. Therefore, d2(a, b) equals the
length of the geodesic γa,b,

d2(a, b) =
∫ 1

0

gγa,b
( ˙γa,b, ˙γa,b)1/2dt =

∫ 1

0

τ( ˙γa,b(γa,b)−1 ˙γa,b(γa,b)−1)1/2dt = ‖log(a1/2ba1/2)‖2.
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In our argument, we shall follow ideas contained in [3].
Suppose that γ is a geodesic in G+ and J = J(t) is a Jacobi field along γ. Then J satisfies the

differential equation
D2J

dt2
+ R(J, γ̇)γ̇ = 0.

If x, y ∈ Ah, are regarded as tangent vectors of G+ at the point a, then the following condition
(which is a non positive sectional curvature condition) holds:

ga(Ra(x, y)y, x) = τ(Ra(x, y)ya−1xa−1) ≤ 0.

The proof of this fact is straightforward. Then

d2

dt2
gγ(J, J) = 2{gγ(

D2J

dt2
+ gγ(

DJ

dt
,
DJ

dt
)} = 2{−gγ(Rγ(J, γ̇)γ̇, J) + gγ(

DJ

dt
,
DJ

dt
)} ≥ 0.

In other words, the smooth function t 7→ gγ(J, J) is convex. This fact implies that though J may
vanish, if J(t0) 6= 0 for some t0, then J(t) 6= 0 for any t ≥ t0. We shall need convexity of the norm
of the Jacobi filed (and not of the square of the norm just proved).

Proposition 2.1 Let γ be a geodesic of G+ and let J a Jacobi field along γ. The map t 7→
gγ(J, J)1/2 is convex.

Proof. By the above argument, is suffices to prove this assertion for a field J which does not
vanish. As in Thm.1 of [3], by the invariance of the connection and the metric g under the action
of G, it suffices to consider the case of a geodesic γ(t) = etx starting at 1 ∈ G+ (x ∈ Ah). For the
field K(t) = e−tx/2J(t)e−tx/2 the Jacobi equation translates into

4K̈ = Kx2 + x2K − 2xKx. (2.2)

Moreover
gγ(J, J)1/2 = τ(γ−1Jγ−1J)1/2 = τ(K2)1/2 = ‖K‖2.

Let us prove therefore that the map t 7→ f(t) = ‖K(t)‖2 is convex, for any (non vanishing) solution
K of (2.2). Note that f(t) is smooth, and ḟ = τ(K2)−1/2τ(KK̇). Then

f̈ = −τ(K2)−3/2τ(KK̇)2 + τ(K2)−1/2{τ(K̇2) + τ(KK̈)}.
Let us multiply this expresion by τ(K2)3/2 to obtain

−τ(KK̇)2 + τ(K2)τ(K̇2) + τ(K2)τ(KK̈). (2.3)

The first two terms add up to a non negative number. Indeed,

τ(KK̇)2 ≤ τ(K2)τ(K̇2)

by the Cauchy-Schwarz inequality for the trace τ . Let us examine the third term τ(K2)τ(KK̈). It
suffices to show that τ(KK̈) is non negative. Using (2.2),

τ(KK̈) =
1
4
{τ(K2x2) + τ(Kx2K)− 2τ(KxKx)} =

1
2
{τ(K2x2)− τ(KxKx)}.

This number is positive, again by the Cauchy-Schwarz inequality:

τ(KxKx) = τ((xK)∗Kx) ≤ τ((xK)∗xK)1/2τ((Kx)∗Kx)1/2 = τ(K2x2).

2
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Corollary 2.2 Let γ1 and γ2 be geodesics of G+. Then the map

t 7→ d2(γ1(t), γ2(t)), t ∈ IR

is convex.

Proof. The proof proceeds as the proof of Thm.2 of [3], replacing the C∗-norm ‖ ‖ by the 2-norm
‖ ‖2. To carry on this argument, one needs the fact that the geodesics of G+ are minimizing also
for the metric g. This fact is proved in [1]. 2

Corollary 2.3 Let x, y ∈ Ah, then

‖x− y‖2 ≤ d2(ex, ey).

Proof. See Thm. 3 of [3]. 2

Our main result follows.

Theorem 2.4 Let x, y ∈ Ah, a = ex, b = ey. Then ‖x − y‖2 = d2(a, b) if and only if x and y
commute.

Proof. Let γ be the geodesic of G+ with γ(0) = a and γ(1) = b, and let δ(t) ∈ Ah be characterized
by the equation eδ = γ. Let H be the real Hilbert space obtained by completing Ah in the inner
product < v, w >= τ(vw). Applying the above corollaries, we have that

length(δ) ≤ d2(a, b),

where δ is regarded as a curve in H, and its length is measured accordingly. Indeed, for any number
h,

‖δ(t + h)− δ(t)‖2 ≤ d2(γ(t + h), γ(t)).

Therefore, if {0 = t0 < t1 < . . . < tn = 1} is a partition of the unit interval, then

n∑

i=1

‖δ(ti)− δ(ti−1)‖2 ≤
n∑

i=1

d2(γ(ti, ti−1)) = d(a, b).

Since δ is smooth, the supremum of all such sums on the left hand side of the inequality, taken over
all possible partitions of the unit interval, equals the length of δ in H, and our claim is proven.

Clearly ‖x − y‖2 = d2(a, b) if x and y commute. Suppose that ‖x − y‖2 = d2(a, b). Then δ,
which joins δ(0) = x and δ(1) = y, satisfies the inequality

‖x− y‖2 ≤ length(δ) ≤ d2(a, b) = ‖x− y‖2.
This implies (by the uniform convexity of the euclidean norm of H), that

x + t(y − x) = δ(t) = log(γa,b(t)) = log(a1/2(a−1/2ba−1/2)ta1/2).

The map f(t) = d2(etx, ety) is convex with f(0) = 0 and f(1) = ‖x − y‖2. Therefore f(s) =
‖sx − sy‖2, i.e. sx and sy satisfy the hypothesis of this theorem for s ∈ [0, 1]. Therefore the
argument above in fact proves that

sx + st(y − x) = log(as/2(a−s/2bsa−s/2)tas/2, s, t ∈ [0, 1].

Let us compute ∂3

∂t3 of both terms of this equality at points s = 0, t ∈ [0, 1]. On the left hand side
we obtain zero. After tedious but straightforward computations (which can be easily performed
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because at such pairs, only the derivatives of log at the origin are involved), one obtains, on the
right hand side

t2∆ + t∆, t ∈ [0, 1]

where
∆ = −1

2
y2x− 1

2
yx2 + xyx + yxy − 1

2
x2y − 1

2
xy2.

Note that ∆ = 1
2 [[x, y], x− y]. Then, ∆ = 0, or equivalently [[x, y], y] = [[x, y], x]. Therefore

g1(R1(x, y)y, x) = τ(([[x, y], y])x) = τ(([[x, y], x])x) = 0

by the properties of the trace. This implies that

τ(x2y2) = τ(xyxy).

This means that we have equality in the Cauchy-Schwarz inequality involving xy and yx:

τ(xyxy) = τ((yx)∗xy) ≤ τ((yx)∗yx)1/2τ((xy)∗xy)1/2 = τ(x2y2) = τ(xyxy).

Therefore xy is a positive multiple of yx: xy = αyx, α ≥ 0. If α = 0, then xy = 0 = (xy)∗ = yx.
Otherwise yx = (xy)∗ = α(yx)∗ = αxy, i.e. α = 1. 2

Remark 2.5 The non trivial part of the argument above could be extracted as follows. If the
exponential map of G+ does not distort the distance of x and y (i.e. ‖x − y‖2 = d2(ex, ey)), then
the sectional curvature vanishes at (x, y): sec1(x, y) = 0.

3 Distortion of the metric in the C∗-norm

Let a, b ∈ G+ and let x, y ∈ Ah be such that a = ex and b = ey. The geodesic distance d(a, b) is
defined as the infimum of the lengths of all smooth curves in G+ joining a and b, measured with
the Finsler metric (introduced and studied in [2], [3]):

‖x‖a = ‖a−1/2xa−1/2‖, x ∈ Ah, a ∈ G+.

The next lemma is the key of our exposition in this section. We view A as represented concretely
via its universal representation acting on the Hilbert space H. Recall that any selfadjoint element
x ∈ A has a unit norming vector ξ ∈ H, which is an eigenvector of x verifying the equation
‖xξ‖ = ‖x‖. Equivalently, xξ = ±‖x‖ξ.
Lemma 3.1 If ‖x−y‖ = d(a, b) then there exists a norming vector of x−y which is simultaneously
an eigenvector of x and y.

Proof. Let γ(t) be the unique geodesic joining a and b, γ(0) = a and γ(1) = b. Explicitely, γ(t) =
a1/2(a−1/2ba−1/2)ta1/2. As in the proof of (2.4), there exists a smooth curve δ(t) of selfadjoint
elements such that eδ(t) = γ(t). In particular δ(0) = x and δ(1) = y. Consider the space Ah with
its Banach space flat geometry (geodesics=straight line segments). We claim that

length(δ) ≤ length(γ).

The proof is similar to the proof of the analogous fact in (2.4), using the fundamental inequality
for the C∗-norm: ‖x− y‖ ≤ d(ex, ey).
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Let ξ ∈ H be a norming (unit) vector for x − y, (x − y)ξ = −λξ, with λ = ±‖x − y‖, and
consider the smooth curve δ(t)ξ in H. Then

length(δξ) =
∫ 1

0

‖δ̇ξ‖dt ≤
∫ 1

0

‖δ̇‖dt = length(δ) ≤ length(γ).

By hypothesis, length(γ) = d(a, b) = ‖x− y‖. Therefore

length(δξ) ≤ ‖x− y‖ = ‖(x− y)ξ‖.
In other words, δξ is a smooth curve in H whose length equals the length of the (minimal) line
segment λ(t) = [x + t(y − x)]ξ, and joins the same endpoints. Then

[x + t(y − x)]ξ = δ(t)ξ (3.4)

for all t ∈ [0, 1].
On the other hand, it was shown [2] that in general, the function f(t) = d(etx, ety) is convex.

In our case f(0) = 0 and f(1) = ‖x− y‖. These facts imply that f(s) = s‖x− y‖, or equivalently

‖sx− sy‖ = d(esx, esy)

for all s ∈ [0, 1]. Note that the vector ξ is also norming for sx − sy, therefore we may apply (3.4)
to obtain a refined version of this equality, namely

[sx + st(y − x)]ξ = [log
(
as/2(a−s/2bs/2a−s/2)tas/2

)
]ξ, (3.5)

for all s, t ∈ [0, 1].
As in the proof of (2.4), we compute ∂3

∂t3 , at pairs s = 0, t ∈ [0, 1]. Then

0 = t2∆ξ + t∆ξ, t ∈ [0, 1],

where, as in (2.4), ∆ = 1
2 [[x, y], y − x]. In this case we have that ∆ξ = 0.

Let us denote by Hλ the space of eigenvectors of y − x associated with the eigenvalue λ. We
have just proved that for any vector ξ ∈ Hλ,

(y − x)[x, y]ξ = [x, y](y − x)ξ = λ[x, y]ξ.

That is, [x, y] leaves Hλ invariant. Let p = PHλ
the orthogonal projection onto Hλ. We can

represent the elements x, y and [x, y] as two by two matrices in terms of p.

x =
(

l m∗

m n

)
, y =

(
λ + l m∗

m r

)

and [x, y] a diagonal matrix. This fact implies that 0 = λm + (n − r)m = [λ − (r − n)]m. Now
the operator λ + (r − n), regarded as an operator acting in H⊥λ , is injective. Otherwise one could
find eigenvectors of y − x in H⊥λ . Therefore m = 0, and x, y leave Hλ invariant. The proof finishes
by showing that we can find a common eigenvector for x and y inside Hλ. Let A′′ be the double
commutant of A. Clearly p ∈ A′′. For any selfadjoint element in A′′ there exists an eigenvector in
H. Indeed, for any selfadjoint element b ∈ A′′, there exists a normal state ϕ such that |ϕ(b)| = ‖b‖.
Without loss of generality, suppose ϕ(b) = ‖b‖. The GNS Hilbert space Hϕ of ϕ (with norm ‖ ‖ϕ

and cyclic vector vϕ) is a subspace of H. Note that

0 ≤ ‖bvϕ−‖b‖vϕ‖2ϕ = ‖bvϕ−‖b‖vϕ‖2 = ϕ((b−‖b‖)2) = ϕ(b2)+‖b‖2−2‖b‖ϕ(b) = ϕ(b2)−‖b‖2 ≤ 0,

i.e. vϕ is an eigenvector for b. Therefore there exists an eigenvector ω of xp = pxp ∈ A′′. Necesarilly
this vector ω lies in the range of p, which is Hλ. Finally ω is an eigenvector of x and y − x, and
therefore also of y. 2
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Remark 3.2 In fact, we have also shown that if ‖x− y‖ = d(a, b), then the spaces of eigenvectors
associated to ±‖x− y‖ are invariant for x and y.

Note the following elementary observation. Suppose that ξ is a unit eigenvector of x = x∗ ∈ A,
xξ = λξ. Let ϕ = ϕξ be the state of A induced by ξ. Then ϕ(ax) = λϕ(a) for all a ∈ A. Indeed,
ϕ(ax) =< axξ, ξ >= λ < aξ, ξ >= λϕ(a). Moreover, since ϕ(x) =< xξ, ξ >= λ‖ξ‖ = λ, the above
formula can be written ϕ(ax) = ϕ(x)ϕ(a). Clearly also ϕ(xa) = ϕ(x)ϕ(a). This motivates the
following interpretation of the above lemma:

Theorem 3.3 Let x, y ∈ Ah, and let a = ex and b = ey. Let Bx,y be the unital C∗-algebra
generated by x and y.

1. If ‖x − y‖ = d(a, b), then there exists a multiplicative functional ψ on Ax,y which achieves
the norm of x − y, i.e. |ψ(x − y)| = ‖x − y‖. Such functional also achieves the norm of
Λ = log(a−1/2ba−1/2). This norm equals the speed of the geodesic joining a and b in A (which
lies inside Ax,y).

2. If there exists a multiplicative functional ψ of Ax,y which achieves the norm of Λ, then

‖x− y‖ = d(a, b).

Proof. Suppose that ‖x − y‖ = d(a, b). By the above lemma, there exists a unit vector ξ ∈ H
which is a norming eigenvector for x − y and a common eigenvector for x and y. Let ϕ = ϕξ be
the state of A induced by ξ. Then by the above remark, for all z ∈ A, ϕ(xz) = ϕ(zx) = ϕ(x)ϕ(z)
and ϕ(yz) = ϕ(zy) = ϕ(y)ϕ(z). In particular, the functional ϕ restricted to Ax,y is multiplicative.
Moreover, since ξ norms x − y, ‖x − y‖2 = ‖(x − y)ξ‖2 = ϕ((x − y)2) = ϕ(x − y)2, because ϕ is
multiplicative in Ax,y. Then ‖x− y‖ = |ϕ(x− y)|. Finally, by the multiplicativity of ϕ (Λ ∈ Ax,y),

|ϕ(Λ)| = |log(ϕ(a−1/2ba−1/2)| = |log(ϕ(ey)ϕ(e−x))| = |ϕ(y)− ϕ(x)| = ‖x− y‖.

In the reverse direction, suppose that ψ is a multiplicative functional such that |ψ(Λ)| = ‖Λ‖. Let
γ be the unique geodesic joining γ(0) = a and γ(1) = b, γ(t) = a1/2etΛa1/2. Then

d(a, b) = length(γ) =
∫ 1

0

‖γ̇‖γdt = ‖Λ‖ = |ψ(Λ)| = |ψ(y)− ψ(x)| ≤ ‖x− y‖.

The reverse inequality ‖x− y‖ ≤ d(a, b) holds in general. 2

The conditions stated in the theorem can be interpreted as a weaker form of conmutativity for
x and y. Indeed, note that if x and y commute, the algebra Ax,y is abelian and the existence of
multiplicative functionals achieving the norm of Λ is automatic.

Suppose now x = p, y = q are selfadjoint projections in A. We shall see now that the equality
d(ep, eq) = ‖p− q‖ has a simpler interpretation.

Proposition 3.4 d(ep, eq) = ‖p − q‖ if and only if either R(p) ∩ ker(q) or R(q) ∩ ker(p) are non
trivial, or equivalently, if ‖p− q‖ = 1.

Proof. If d(ep, eq) = ‖p − q‖, by (3.1) every norming vector ξ of p − q is a common eigenvector
of p and q. An eigenvector of p lies either in R(p) or ker(p). Clearly, if p 6= q, ξ cannot lie in the
intersection of the ranges (or the kernels) of p and q. Therefore the result follows. On the reverse
direction, suppose that ξ ∈ R(p) ∩ ker(q) with ‖ξ‖ = 1. Then eqξ = ξ and e−p/2ξ = e−1/2ξ. Then

log(e−p/2eqe−p/2)ξ = −ξ,
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i.e. ‖log(e−p/2eqe−p/2)‖ ≥ 1. Let us show that ‖log(e−p/2eqe−p/2)‖ ≤ 1, which ends proof in this
case, because ‖p− q‖ = 1. Note that 1 ≤ eq ≤ e, and therefore

e−1 ≤ e−p ≤ e−p/2eqe−p/2 ≤ e1−p ≤ e.

Then the spectrum of e−p/2eqe−p/2 is contained in the interval [e−1, e]. This implies that the
spectrum of log(e−p/2eqe−p/2) ⊂ [−1, 1], i.e. ‖log(e−p/2eqe−p/2)‖ ≤ 1. If R(q) ∩ ker(p) is non
trivial, the proof is analogous. 2

4 An analogue of the sectional curvature

In his optical description of the curvature of a manifold from within [6] (page 101), Milnor recalls
that the sectional curvature can be recovered via the limit

< Ra(x, y)y, x >a= 6 lim
r→0+

r‖x− y‖a − d(expa(rx), expa(ry))
r2d(expa(rx), expa(ry))

.

Here x, y are tangent vectors at a point a of the manifold. In this section we shall see that this
limit makes sense in our (non Riemannian) context for the manifold G+, with the Finsler metric
induced by the C∗-norm. Namely, if a ∈ G+ and x, y ∈ Ah, we define sa(x, y) as the above limit
(we drop the factor 6 for simplicity). Let us first prove that it exists. Suppose that r > 0 is close
enough to 0 in order that e−rx/2erye−rx/2 lies within the radius of convergence of the series

log(u) = u− 1− 1
2
(u− 1)2 +

1
3
(u− 1)2 − . . .

Then elementary computations show that

log(e−rx/2erye−rx/2) = r(y − x) + r3κ(x, y) + o(r3),

where
κ(x, y) =

1
6
yxy +

1
12

xyx− 1
12

(xy2 + y2x)− 1
24

(x2y + yx2). (4.6)

Note that κ(x, y)∗ = κ(x, y).
Denote by P (x) = ‖x‖. The map P is seldom (Gateaux or Frechet) differentiable. However it

is convex, and therefore has a right derivative [7]

∂+Px(z) = lim
t→0+

1
t
(‖x + tz‖ − ‖x‖).

It also has a continuous (set valued) subdifferential [7]

∂Px = {ϕ ∈ A∗h : ϕ(x) = ‖x‖ with ‖ϕ‖ = 1}.
Here A∗h means the real dual space of the real Banach space Ah. These functionals can be extended
in a unique way to selfadjoint functionals of A.

Proposition 4.1 Let a ∈ G+ and let x, y ∈ Ah. The limit

sa(x, y) = lim
r→0+

r‖x− y‖a − d(expa(rx), expa(ry))
r2d(expa(rx), expa(ry))

exists and satisfies
0 ≥ sa(x, y) ≥ −‖κ(x, y)‖/‖x− y‖.
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Proof. Since the action of G on G+ is isometric, it suffices to consider the case a = 1. Note that

lim
r→0

1
r
d(erx, ery) = lim

r→0
‖y − x + r2κ(x, y) + o(r2)‖ = ‖y − x‖.

Therefore it suffices to show existence of the limit

lim
r→0+

1
r3

(r‖x− y‖ − ‖r(y − x) + r3κ(x, y) + o(r3)‖),

or equivalently

lim
r→0+

1
r2

(‖x− y‖ − ‖(y − x) + r2κ(x, y)‖).

Clearly this exists [7] and equals ∂+Py−x(κ(x, y)). Since r‖x − y‖ ≤ d(erx, ery) this limit is non
positive. On the other hand

‖x− y‖ − ‖(y − x) + r2κ(x, y)‖ ≥ −r2‖κ(x, y)‖,

and therefore s1(x, y) ≥ −‖κ(x, y)‖/‖x− y‖. 2

Next we shall use an elementary result from [7] (Prop. 2.24), to characterize pairs x, y such
that s1(x, y) = 0. Obviously, this is the case if the exponential does not distort the metric: if
‖x − y‖ = d(ex, ey) then by an argument displayed in the previous section, for 0 ≤ r ≤ 1 one has
r‖x− y‖ = d(erx, ery) as well, and s1(x, y) = 0.

Theorem 4.2 s1(x, y) = 0 if and only if there exists a selfadjoint linear functional ϕ in A∗ such
that ‖ϕ‖ = 1, ϕ(y − x) = ‖x− y‖ and ϕ(κ(x, y)) = 0.

Proof. By the above computations, s(x, y) = 0 implies that ∂+Py−x(κ(x, y)) = 0. Proposition
2.24 of [7] states that then there exists ϕ ∈ ∂Py−x such that ϕ(κ(x, y)) = 0. This ends the first
part of the proof, since ∂Py−x consists of all selfadjoint normalized functionals of A which satisfy
ϕ(y − x) = ‖x− y‖.

Suppose now that such a functional ϕ exists. Since ϕ(y−x) = ‖x−y‖ > 0, if r is small enough,
ϕ(y − x + r2κ(x, y) + o(r2)) > 0. Then

‖x− y‖ − ‖y − x + r2κ(x, y) + o(r2)‖ ≥ ‖x− y‖ − ϕ(y − x + r2κ(x, y) + o(r2)) = ϕ(o(r2)).

Then

0 ≥ lim
r→0+

1
r3

(r‖x− y‖ − d(erx, ery)) ≥ lim
r→0+

ϕ(o(r2))
r2

= 0,

i.e., s1(x, y) = 0. 2

Note that if s1(x, y) = 0 with x 6= y, then either κ(x, y) is zero or it is not a multiple of x− y.
Suppose that x = p and y = q are projections which are in generic position [8], i.e.

R(p) ∩ ker(q) = R(q) ∩ ker(p) = R(p) ∩R(q) = ker(p) ∩ ker(q) = {0}.

In particular, ‖p − q‖ < 1. Let us compute s(p, q). The C∗-algebra generated by p and q can be
faithfully represented as the algebra of 2 × 2 matrices of continuous functions in the spectrum of
(p− q)2, generated by the matrices

(
1− t

√
t(1− t)√

t(1− t) t

)
,

(
1 0
0 0

)
,
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which correspond, respectively, to p and q (see for example the paper by N. Vasilevski [8]). Note
that the exponentials erp, erq as well as the logarithm log(e−rp/2erqe−rp/2) lie in the C∗-algebra
generated by p and q. Therefore all computations can be done there. For instance,

e−rp/2erqe−rp/2 =
(

1 + t(e−r − 1)
√

t(1− t)(er/2 − e−r/2)√
t(1− t)(er/2 − e−r/2) 1 + t(er − 1)

)
.

The eigenvalues of this matrix are eλ and e−λ, where λ = arg cosh(1 + t(ch(r)− 1)). Therefore

d(erp, erq) = sup
t∈ sp((p−q)2)

arg cosh
(
1 + t(cosh(r)− 1)

)
= arg cosh

(
1 + ‖p− p‖2(cosh(r)− 1)

)
.

Then

s1(p, q) = lim
r→0+

r‖p− q‖ − arg cosh
(
1 + ‖p− q‖(cosh(r)− 1)

)

r3‖p− q‖ =
‖p− q‖2 − 1
24‖p− q‖ .

If ‖p− q‖ = 1, by the result in the previous section, s1(p, q) = 0. It remains to examine the case
‖p − q‖ < 1 (which is equivalent to R(p) ∩ ker(q) = R(q) ∩ ker(p) = {0}), but p, q not in generic
position. That is, either

R(p) ∩R(q) 6= {0} or ker(p) ∩ ker(q) 6= {0}.
Suppose that A is faithfully represented on H, and that R(p) ∩ R(q) = J 6= {0}. Let p0 = PJ⊥ .
Then p0 (which may lie outsideA) commutes with p and q. As before, letAp,q denote the C∗-algebra
generated by p and q. Then the map

µ : Ap,q → p0Ap,q, µ(x) = p0x

is a ∗-homomorphism which satisfies ‖µ(p) − µ(q)‖ = ‖p − q‖. We regard p0Ap,q acting on J⊥.
Note that ‖(log(e−rµ(p)/2erµ(q)e−rµ(p)/2)‖ ≤ ‖log(e−rp/2erqe−rp/2)‖. Therefore

s1(p, q) ≤ s1(µ(p), µ(q)).

Moreover, R(µ(p)) ∩R(µ(q)) = {0}. Analogously, we can further reduce Aµ(p),µ(q) via the orthog-
onal projection onto ker(p)∩ ker(q), and obtain a ∗-homomorphism ν : Ap,q → Aν(p),ν(q) such that
‖ν(p)− ν(q)‖ = ‖p− q‖, and ν(p), ν(q) are in generic position. Then

s1(p, q) ≤ s1(ν(p), ν(q)) < 0.

We can summarize these remarks in the following

Theorem 4.3 Let p,q be projections in A. Then the following are equivalent:

1. s1(p, q) = 0.
2. ‖p− q‖ = d(ep, eq).
3. ‖p− q‖ = 1.

In general the equality ‖x−y‖ = d(ex, ey) is a stronger condition than s1(x, y) = 0. This becomes
apparent if one states these conditions in terms of functionals of Ax,y. The equality ‖x − y‖ =
d(ex, ey) implies the existence of a multiplicative functional realizing the norm of x − y with an
additional property. Whereas s1(x, y) = 0 implies the existence of a selfadjoint functional ϕ which
realizes the norm of x− y and satisfies ϕ(κ(x, y)) = 0: if ϕ is multiplicative, then authomatically

ϕ(κ(x, y)) = ϕ(
1
6
yxy +

1
12

xyx− 1
12

(xy2 + y2x)− 1
24

(x2y + yx2)) = 0.

Let us state a simple example where this discrepancy is made apparent.
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Example 4.4 Let A = M2(C), and let

x =
(

3 0
0 0

)
, y =

(
0 2
2 0

)
.

Let ϕ : M2(C) → C, ϕ(a) = Tr(ρa), where

ρ =
( − 2

3
1
2 + iβ

1
2 − iβ − 7

24

)

with β =
√

10253
6912 . Straightforard computations show that ‖ϕ‖ = ‖ρ‖1 = 1, ϕ(x− y) = ‖x− y‖ and

ϕ(κ(x, y)) = 0. Then s1(x, y) = 0. However, clearly Ax,y = M2(C), which has no multiplicative
functionals, and therefore ‖x− y‖ < d(ex, ey).

References

[1] E. Andruchow and G. Larotonda; Non-positively curved metric in the positive cone of
a finite von Neumann algebra, preprint.

[2] G. Corach, H. Porta and L. Recht; The geometry of the space of selfadjoint invertible
elements in a C∗-algebra. Integr. Equat. Oper. Th. 16, No. 3 (1993), 333-359.

[3] G. Corach, H. Porta and L. Recht; Convexity of the geodesic distance on spaces of
positive operators. Illinois J. Math. 38, No.1 (1994), 87–94.

[4] P. Eberlein; Geometry of nonpositively curved manifolds. Chicago Lecture Notes in
Mathematics, Univ. of Chicago Press, Chicago, 1996.

[5] R.V. Kadison and J.R. Ringrose; Fundamentals of the theory of operator algebras, Vol.
II. Academic Press, New York, 1986.

[6] J. Milnor; Morse Theory. Annals of Mathematical Studies 54, Princeton University
Press, Princeton, N.J., 1963.

[7] R. R. Phelps; Convex Functions, Monotone Operators and Differentiability. Lecture
Notes in Mathematics 1364, Springer-Verlag, Berlin, 1989.

[8] N. Vasilevski; C∗-algebras generated by projections and their applications. Integr.
Equat. Oper. Th. 31 (1998), 113-132.

Esteban Andruchow
Instituto de Ciencias
Universidad Nacional de Gral. Sarmiento
J. M. Gutierrez 1150
(1613) Los Polvorines
Argentina
e-mail: eandruch@ungs.edu.ar

Lázaro Recht
Departamento de Matemática P y A
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