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HOCHSCHILD (CO)HOMOLOGY
OF HOPF CROSSED PRODUCTS

JORGE A. GUCCIONE AND JUAN J. GUCCIONE

ABSTRACT. For a general crossed product E = A#  H, of an algebra A by a Hopf al-
gebra H, we obtain complexes simpler than the canonical ones, giving the Hochschild
homology and cohomology of E. These complexes are equipped with natural filtra-
tions. The spectral sequences associated to them is a natural generalization of the
one obtained in [H-S] by the direct method. We also get that if the 2-cocycle f takes
its values in a separable subalgebra of A, then the Hochschild (co)homology of E with
coefficients in M is the (co)homology of H with coefficients in a (co)chain complex.

INTRODUCTION

Let G be a group, S = @ S, a strongly G-graded algebra and V' an S-bimodule.
In [L] was shown that there is a convergent spectral sequence

E?‘s = HT(G7 HS(S€7 V)) = HT+S(Sv V)v

where e denotes the identity of G. In [S] was shown that this result remains valid
for H-Galois extensions (in his paper the author deals with both the homology and
the cohomology of these algebras). An important particular type of H-Galois ex-
tensions are the crossed products with convolution invertible cocycle E = A#¢H,
of an algebra A by a Hopf algebra H (for the definition see Section one). The pur-
pose of our paper is to construct complexes simpler than the canonical ones, given
the Hochschild (co)homology of E with coefficients in an arbitrary E-bimodule.
These complexes are equipped with canonical filtrations. We show that the spec-
tral sequences associated to them coincide with the ones obtained using a natural
generalization of the direct method introduced in [H-S], and with the ones con-
structed in [S] (when these are specialize to crossed products). In the case of group
extensions these results were proved in [E] and [B].

This paper is organized as follows: in Section 1 a resolution (X, d.) of a crossed
product E' = A# ¢ H is given. To accomplish this construction we do not use the fact
that the cocycle is convolution invertible. Moreover, we give a recursive construction
of morphisms ¢, : (X,,d.) —» (EQE ®E,b.) and ¢,: (EQE @ E,b.) — (X,,d,),
where (EQE ®E, b.) is the normalized Hochschild resolution, such that . ¢, = id
and we show that ¢, 1, is homotopically equivalent to the identity map. Conse-
quently our resolution is a direct sum of the normalized Hochschild resolution. We
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also recursively construct an homotopy ¢ 1. 2t d, Both, the canonical nor-
malized resolution and (X,,d.) are equipped with natural filtrations, which are
preserved by the maps ¢., V. and wyy1.

In Section 2, for an E-bimodule M, we get complexes )A(*(E, M) and )?*(E, M),
giving the Hochschild homology and cohomology of E with coefficients in M respec-
tively. The filtration of (X,,d,) induces filtrations on X,(E, M) and X*(E, M).
So, we obtain converging spectral sequences E!, = H.(A,M @ H ) = H,,,(E, M)
and E7* = H"(A,Homy(H", M)) = H"™(E, M). Using the results of Section 1,
we get that these spectral sequences are the ones associated to suitable filtra-
tions of the Hochschild normalized chain and cochain complexes (M ® E", b.) and
(Homy(E™, M), b*). This allows us to give very simple proofs of the main results
of [H-S] and [G].

In Section 3, we show that, if the cocycle is convolution invertible, then the
complexes X, (E, M) and X+ (E, M) are isomorphic to simpler complexes X . (FE, M)
and X (E, M) respectively. Then, we compute the term E2, and E5* of the spectral
sequences obtained in Section 2. Moreover, using the above mentioned filtrations,
we prove that if the 2-cocycle f takes its values in a separable subalgebra of A,
then the Hochschild (co)homology of E with coefficients in M is the (co)homology
of H with coefficients in a (co)chain complex. Finally, as an application we obtain
some results about the Tor*E and Ext}, functors and an upper bound for the global
dimension of F (for group crossed products this bound was obtained in [A-R]).

In addition to the direct method developed in [H-S], there are another two clas-
sical methods to obtain spectral sequences converging to H.(E, M) and with E2-
term H,(H,H,(A, M)). Namely the Cartan-Leray and the Grothendieck spectral
sequences of a crossed product. In Section 4, we recall these constructions and we
prove that these spectral sequences are isomorphic to the one obtained in Section 2.
This generalizes the main results of [B].

In a first appendix we give a method to construct (under suitable hypothesis)
a projective resolution of the k-algebra E as F¢ = E ® E°P-bimodule, simpler
than the canonical one of Hochschild. This method, which can be considered as a
variant of the perturbation lemma, is used to prove the main result of Section 1.
The boundary maps of the resolution (X,,d.) are recursively defined in Section 1.
In a second appendix we give closed formulas for these maps.

1. A RESOLUTION FOR A CROSSED PRODUCT

Let A be a k-algebra and H a Hopf algebra. We will use the Sweedler notation
A(h) = Y @ h(?) | with the summation understood and superindices instead of
subindices. Recall some definitions of [B-C-M] and [D-T]. A weak action of H on
A is a bilinear map (h,a) — a” from H x A to A such that, for h € H, a,be A

1) (ab)" = o™

2) 1" = ¢(h)1,

3) a' = a.

Let A be a k-algebra and H a Hopf algebra with a weak action on A. Given a

k-linear map f: HQH — A, let A# ¢H be the k-algebra (in general non associative
and without 1) with underlying vector space A ® H and multiplication map

(@@ h)(b@1) =ab"’ f(h® 1)@ 3>
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for all a,b € A, h,l € H. The element a ® h of A#;H will usually be written
a#h to remind us H is weakly acting on A. The algebra A#H is called a crossed
product if it is associative with 1#1 as identity element. It is easy to check that
this happens if and only if f and the weak action satisfy the following conditions:
i) (Normality of f) for all h € H, we have f(h,1) = f(1,h) =e(h)la,
ii) (Cocycle condition) for all h,l,m € H, we have

R

FAD, OV F (0 1@ @) = (RO 10) (@@, ).

iii) (Twisted module condition) for all h,l € H, a € A we have
[ONAS (2)7(2)
(al ) f(h(Q),l@)) — f(h(l)J(l))ah A

In this section we obtain a resolution (X, d,) of a crossed product E = A#;H
as an F-bimodule, which is simpler than the canonical one of Hochschild. To begin,
we fix some notations:

1) For each k-algebra B, we put B = B/k. Moreover, given b € B we also let b
denote the class of b in B.

2) We write B' = B®---®B, B = B®---® B (I times) and B;(B) = B® B ® B,
for each natural number [.

3) Given ap®---®a, € A" and 0 <i < j <r, we write a;; = ¢;®- - -®a; € AT~

4) Given hg®---®@hs € H*™ and 0 <i < j < s, we write h;; = h; ® --- ® h; and
hij=h;---h; € H.

5) Givenh =hy®---®h, € H5, we let h(M @ h® denote the comultiplication
of hin H5+1. So, kW @ h® = WV @ @ h) @ (WP & --- @ h?).

6) Givena € A,a=0a;® - ®a, € A" and h = hy®---® hy € H**!| we write

_ — el (r)
a® = (... (((als)Ps=1)Ps=2)hs—s _  Yho and ab = a?“s ® - ®are .

1.1. The resolution (X,,d,)

Let Y, =EQH @H (s>0)and X,, = E®H @A @E (r,s > 0). The
groups X, are E-bimodules in an obvious way and the groups Yy are E-bimodules
via the left canonical action and the right action

(a0 @ h)(a#th) = aga™” F(hY,, V)Y @ (b & 1), @),

where h = ho ® -+ ® hsy1. Let us consider the diagram of E-bimodules and
E-bimodule maps

@

0 0
dll d21

M1
Y, Xo1 X — ...
o
0 0
Mo dio dyg
Yo Xoo X «—— ..+
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where p,: Xo« — Ya, dg*: Xix = Xi1, and 0, Y, = Y, are defined by:

e
prs(ao ® hos ® a1 @ hyy1) = GOGTOS ® h((fs) ® hsi1,

d?y(ag ®hos ®a® hey1) = aoﬂbl ® h(2) ®az 41 @ hsy1

+ Z(—l)iao ®hos ®ay i1 ® a;0i41 @ Ai42 741 @ bt

S —_
; o
d(a@h) =Y (1) af(h" )M @ b @ hPhE) @ hita e,
i=0
wherea=a; ® -+ - ®a,41 and h = hy ® - - - ® hsy1. We have left E-module maps
00,1 Yy = Xoy and 00+ Xuw = Xoy14, given by 07, (a0 @ hos @ a® hyy1) =
(=1)"*ag @ hos ® a® 1#hsq for r > —1. Clearly (Y;, d,) is a complex and 2,
is a contracting homotopy of
s 3. 3. 3. 3. i, d3.
Y ¢ Xos ¢ X5+ Xog ¢ X35 ¢ Xyg +— X5 ¢— ....
So, we are in the situation considered in Appendix A. We define F-bimodule maps
dy: Xps — Xrti—1,5—1 (r>0and 1 <[ <s) recursively, by:

—00,5—1 s 115(x) if r =0and =1,
dyx)=3¢ =0l d d(x) ifr=0and1<<s,

-1 l i .
_Zj:() 70‘+l lslerr]J 1,s— de (X) lf’l“>07
forxeckoH @A @Fk.
Theorem 1.1.1. There is a relative projective resolution

(1) Bl Xo & Xy & X & Xy 8 X, & X & X &

where X, = @ X,s, @ is the multiplication map and d,, = Z Z dlrs

r4+s=n r+s=n [=(
r+1>0

Proof. Let Ji: Yy — E be the map fi(a® (ho®h1)) = —af(h\", h{")#hP n{?. The
complex of E-bimodules

ELEv &y & v & vy &y & vy &y &
is contractible as a complex of left F-modules. A chain contracting homotopy
o't E = Yy and o1 Yy — Yoy (s > 0) is given by 0, (z) = (-1)°z @ 1p.
Hence, the theorem follows from Corollary A.2 of Appendix A O
Remark 1.1.2. Let als 10 Ys = Xi s and O'T+l+1s 10 Xrs = Xrqi41,5—1 be the
maps recursively defined by
-1
5 .
Ortlql,s—1 = ZUTHH s— ldr+1+1 s—i Orqitts—i (0<I<sandr>-1).
=0
We will prove, in Corollary A.2, that the family 7o: E — Xg, Tpnt1: Xn = X1,
defined by 7o = 03,0, ' and
n+1
On+1 = Zaln 141 Un+1,“n+ Z Zar+l+ls 1 (n>0),
r+s=n [=0
is a contracting homotopy of the resolution (1) introduced in Theorem 1.1.1.



HOCHSCHILD (CO)HOMOLOGY OF HOPF CROSSED PRODUCTS 5

Theorem 1.1.3. Letxz a®h®awleg, witha =006 ® - ---®a, € A and
h=hy® --Qh,e HRH . We have:

1) dl, is the map given by

s—1
dLx) = 3 (1) ao f(A, AV @ b @ h® AP, @ s, ©a® 1p
1=0

+(=1)""ap ® hg o1 ® a"’ ® 1#0),

2) For each | > 2, there are maps Fo(l): H = A and F,Sl): " QA — ATH-L
(r > 1), whose image is included in the k-submodule of A™'=1 generated by all
the elementary tensors a1 ® - -+ ® ap4j—1 with | — 1 coordinates in the image of
f, such that for 2 <1 <s,

d(x) = (-1)'")ag @ ho s ® Fr(l)(hgl)lJrl s®a)® 1#55 I+1,8°

where Fr(l)(hil_)l_,_l)s ®a)= Fél) (hs—i41,5) if r=0.

Proof. The computation of d., can be obtained easily by induction on r, using that
dyy = =004 105 pd and d}, = —o? d}_  dY), for r > 1. The assertion for d..,
with [ > 2, follows easily by induction on [ and r, using the recursive definition of
d, O

In Appendix B we will give more precise formulas for the maps Fr(l)

the computation of the d’,’s.

completing

1.2. Comparison with the canonical resolution

Let (B.(FE),b,) be the normalized Hochschild resolution of E. As it is well
known, the complex

E{ BEeE " B(E) &2 By(E) & Bs(E) & ...

is contractible as a complex of left E-modules, with contracting homotopy &, (x) =
(=1)"x®1. Let 7. be the contracting homotopy of (1) introduced in Remark 1.1.2.
Let ¢n: (Xi,ds) — (BL(E),b,) and ¢, : (B.(E),b,) — (X, dx) be the morphisms
of E-bimodule complexes, recursively defined by ¢¢ = id, 1o = id, ¢pp11(x® 1) =
§n+1 ¢n dn-‘,—l(x & 1) and "/Jn—i-l(y & 1) =0Opt1 wn b’/n,Jrl(y & 1)

Proposition 1.2.1. ¢, ¢, = id. and ¢, Y, is homotopically equivalent to the iden-

W41

tity map. An homotopy ¢ . —— idy is Tecw"swely defined by wi; = 0 and
wn-i-l( ) gn-i—l((bnwn_ld wWn b )( ) fOTXEE@E ® k.

Proof. We prove both assertions by induction. Let U, = ¢, ¥, — id, ani T, =
Uy — wp bl,. Assuming that b, w, +wp—1b],_; = Up_1, we get that on F® E'® k,
bn_,_1 W41 + Wy b = bn+1 Env1 T + wn b’
Ty — &0, Ty + wi b,
=Up, — & Up—1 b, + &0, wn b,
=Up—& Up1 b, + & T b, = U,.
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Hence, bj, ,y wpy1 +wp by, = Uy, on B, (E). Next, we prove that 1, ¢, = id,. It is
clear that Yo o = idy. Assume that ¥y, ¢, = idy. Since ppi1(EQH @A @ k) C
E®Fn ® k, we have that, on k @ H' ®An+l "k,

Untl Gl = Ong1 Un b;+1 Dny1
=0n+1 wn b;hLl §n+1 ¢n dn-i-l
= Tnt1 Un On dnt1 — OTng1 Yo & b)), O dpyr
=0nt+1dnt1 = idpt2 — dnt2 Onyo.

—n+1—s

So, to finish the proof it suffices to check that T, ok @ H ® A ® k) =0,

which follows easily from the definition of 7, O

Let F'(X,) = @Pocsey E@H ®A" °®F and let F (B, (E)) be the sub-bimodule
of B,,(F) generated by the tensors 1 ® 1 ® - -+ ® £, ® 1 such that at least n — i
of the z;’s belong to A. The normalized Hochschild resolution (B.(E), b)) and the
resolution (X,,d,) are filtered by F°(B.(E)) C F'(B.(E)) C F?(B.(E)) C ...
and F°(X,) C F}(X,) C F?(X.) C ..., respectively

Proposition 1.2.2. The maps ¢, ¥, and w41 preserve filtrations.
Proof. Let Q; =E® Vil ® A ® k. We claim that
a) Tp1(FH(X,)) C Fi(X,4q) forall 0 <i <n,
b) Tt (BEQH @A" @A) C Qi + Fi-1(X,41) for all 0 < i < n,
Q)7 +1(E®H QE)CEQH" " ®@k+ F'(Xnu) for all n >0,
d) Yu(F(Bu(E)NEQE" ®k) C Qi+ F' =1 (X,).
In fact a), b) and c) follow immediately from the definition of 7,1 1. Suppose d)

is valid for n. Let x =20 ® -+ @ X1 ® 1 € Fi(B,41(E))NE ®Fn+1 ® k. Using
a) and b), we get that for 1 < j < n,

Tn1(Pn(X0,j—1@7Tj 110X 420 +1®1)) C Ty (Q; HFT 1( n)) € Qi—l‘i‘Fi_l(Xn)'

Since Y 41(X) = Tni1¥n by, 1(x), to prove d) for n 4 1 we only must check that
Tni1(Vn(x0nt+1)) € QL + FI7H(X,,). If 2,41 € A, then using a) and b), we get

En—i—l(wn(xO,n—i-l)) = En-{-l (djn(XOn & 1E)$n+1)
Con(E@H 04" "9 A+ F1(X,))
g Q:LL:fl + Fiil(Xn)v
and if 2,41 ¢ A, then X941 € F'"!(B,(E)), which together a) and c), implies

that
EnJrl(?/)n(XO,nJrl)) - En+1(F171(Xn)) - Q§—1 + FZil(XnJrl)-

From d) follows immediately that i, preserves filtrations. Next, assuming that ¢,
preserve filtrations, we prove that ¢,41 does it. Let x € F*(X,41) N Q¢_,. Since

Gnt1(X) = Ent1 Pn dp(x) and

§n+1 ((bn(dis(x))) C §n+1 ((bn(Fz_l(Xn))) C gn-‘rl(Fi_l(Bn(E))) - Fi_Hl(Bn-‘rl (E)),
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it suffices to see that &, 1(¢n(d%(x))) € F{(Bp11(E)) for x =1®h®a® 1, with
h=h® - @hjanda=a;® - @ any1_i. Since $,(Q}) C EQE" @k, we have
Ent1 On dgs(x) = (_1)T€n+1 an(l ®h® a)

=(-1)"%ti1(dpn(l@h®ar n_i ®1)ant1-i)

C&(FIBu(E)NE®E" @A)

C F'(Buy1(E)).
Next, we prove that w, preserves filtrations. Assume that w, does it. Let x =
0@ @, @1 € FiB(E) NE®E @k It is evident that w, 1(x) =
Ent1 On ¢n(X) —&nr1wn b, ( ) Since gn—i-l((bn(Q )) C &t (E ® E & k) =0, from
d) we get

Ent1 On Un(X) € Enp1 00 (Qf + F' (X)) C &nia(F' 1 (Bu(E))) C F'(Bu(E)).

It remains to check that &, 1wy, b, (x) C F'(B,(F)). Since w,(E ® E® k) C

E®E" @k, we have Ent1wn bl (x) = (—=1)""1&11 wn(Xon ). Hence, if 2, € A, then
€1 Wi by, (%) = (1) s (W (Xon—1 © 1)2n)
Ctn(F'Bu(E)NERE" ® 4)
C F'(Bnt1(E)),
and if x, ¢ A, then x € F'""!(B,,_1(F)), and so
Ent1 wn (%) = (=1)" " nt1 wi(Xon) € &1 (F7H(Bu(E))) € F'(Bus E) O

2. THE HOCHSCHILD (CO)HOMOLOGY OF A CROSSED PRODUCT

Let E = A#¢H and M an E-bimodule. In this section we use Theorem 1.1.1 in
order to construct complexes X, (E, M) and X «(E, M), simpler than the canonical
ones, giving the Hochschild homology and cohomology of A with coefficients in
M respectively. These complexes have natural filtrations that allow us to obtain
spectral sequences converging to Hy(F, M) and H*(E, M) respectively.

2.1. Hochschild homology

Letd,. MoH @A - MoH a4 "

be the morph1sms defined by:

(r,s>0,0<I<sandr+1[>0)

P, (x) = ma]f(_l) ®h® @ay, + (—1)"a,m@h®ay )
r—1
+ Z(—l)im ®h®ai—1 ®aai+1 @ ajyo,,,
i=1
@A@=04Ymﬂ#mwﬂm@w+t4Y“ﬂ#%%m®hﬂ4®aw)

+ Z D Hmf (00 R @ b @ hP R @ by @ a

dy(x) = (1) 12, Jmeh @ FOMY,,, | @a),
wherex =m®h®a,witha=a¢,® ---®a, andh=~h1 ®---® h,.
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Theorem 2.1.1. The Hochschild homology of E with coefficients in M is the ho-

mology of the chain complex

where X,, = @ MeH @A andd, = Z Zcﬂm

r4+s=n r+s=n [=(
r+1>0

Proof. Tt follows from the fact that X, (E, M) ~ M ®g. (X,,d,). An isomorphism
is provided by the maps 0,s: MQH QA — M®pe X,s, defined by 0, (m@h®a) =
m@(lg@h®agly) O

2.1.2. A spectral sequence. Let F'(X,) = Do<.ci M @H @A ", Clearly
F9(X,) C FY(X,) C ... is a filtration of X,(E, M). Using this fact we obtain:

Corollary 2.1.2.1. There is a convergent spectral sequence
EL =H.(AM@H) = H,,(E,M),

1

where M@ H' is considered as an A-bimodule via ar(m®hys)ag = alma;l(“) ®h§25).

The normalized Hochschild complex (M ® E", b,) has a filtration FO(MQE") C
FIM®E) C F2(M®E") C ..., where Fi(M ® E") is the k-submodule of
M®E" generated by the tensors m ® 1 ® - -+ ® x,, such that at least n — ¢ of
the x;’s belong to A. The spectral sequence associate to this filtration is called
the homological Hochschild-Serre spectral sequence. Since, for each extension of
groups N C G with N a normal subgroup, it is hold that k[G] is a crossed product
of k[G/N] on k[N], the following theorem (joint with Corollary 3.1.3 below) gives,
as a particular case, the homological version of the main results of [H-S].

Theorem 2.1.2.2. The homological Hochschild-Serre spectral sequence is isomor-
phic to the one obtained in Corollary 2.1.2.1.

Proof. 1t is an easy consequence of Propositions 1.2.1 and 1.2.2.

2.1.3. A decomposition of X,(E,M). Let [H,H] be the k-submodule of H
spanned by the set of all elements ab — ba (a,b € H). It is easy to see that [H, H|
is a coideal in H. Let H be the quotient coalgebra H/[H, H]. Given h € H, we
let [h] denote the class of h in H. Given a subcoalgebra C' of H and a right H-
comodule (N, p), we put N¢ = {n € N: p(n) € N ® C}. It is well known that if
H decomposes as a direct sum of subcoalgebras C; (i €1), then N = P,; NCi.

Now, let us assume that M is a Hopf bimodule. That is, M is an E-bimodule
and a right H-comodule, and the coaction m — m(®) @ m() verifies:

((a#th)m(b#1)) O ((a#th)m(b#1)) M = (a#hM)ym O D)@ (a#h D) mD(b#1?).
For each n > 0, )/fn is an H-comodule via

pn(m@his®ay,) = m© hgls) Ra, @ [m(l) 525)] (r+s=n).
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Moreover, the map p,: X,(E, M) — X,(E,M) ® H is a map of complexes. This
fact implies that if C is a subcoalgebra of H, then dj, (X9) € X¢ |. We consider
the subcomplex XC(E, M) of X, (E, M), with modules )A(nc, and we let HY (E, M)
denote its homology. By the above discussion, if H decomposes as a direct sum
of subcoalgebras C; (i € I), then X,(E, M) = D.c: X% (E,M). Consequently
Hi(E,M) = D, HY (E, M). Finally, the filtration of X, (E, M) induces a filtra-

tion on X C(E, M). Hence we have a convergent spectral sequence

El, =H.(A, (M@ H )% =H, (B, M),

. Ty
where (M ® H )© is an A-bimodule via a1(m ® hys)az = almah“ ® h(2).

2.1.4. Compatibility with the canonical decomposition. Let us assume that
k D Q, H is cocommutative, A is commutative, M is symmetric as an A-bimodule
and the cocycle f takes its values in k. In [G S1] was obtained a decomposition of
the canonical Hochschild complex (M ® A b, ). It is easy to check that the maps
do and d1 are compatible w1th this decomposmon Since dl =0foralll > 2, we
obtain a decomposition of X, (E, M), and then a decomposition of H,(F, M).

2.2. Hochschild cohomology

Let d*: Homy(H ‘@At

be the morph1sms defined by:

,M) = Homy(H @A, M) (0<1<s,r+1>0)

@ (9)(x) = "V p(h® @ ay,) + (=1)"p(h @ a1, _1)a,

r—1
+ Z(—l)igo(h ®ai-1® aitit1 ®aitar),
=1
&7 ()(x) = (1) (1#h1)p(has ® a) + (1) p(hy o1 @ a ) (1#12))
s—1

(
+ Z( )r+1f( (1) h (1) )hllZ 1@(hfi)71 ® h§2)h§<2k)l ®@hitos® a),
i=1
/}‘S rTs 1
di*()(x) = (1) o(hy e @ FOMY,, (@) (1#67,, ),
where x =h®a, witha=a,® - -®a andh=h; ® - ® hs.

Theorem 2.2.1. The Hochschild cohomology of E with coefficients in M is the
homology of

~ ~ ) P g2~ 73~ T 7 ~ 76 a7
XEM= XL x4 xrd x84 b5 64,
where X" = @ Homy,(H' ® A", M) and d* = Z Alr
r+s=n r4+s=n [=
r+1>0

Proof. Tt follows from the fact that X* (E, M) ~ Hompge((X,ds),M). An iso-
morphism is provided by the maps g7 Homy (_s QA M) — Hompge (X5, M),
defined by 07 (p)(1g @ x® 1) = p(x) O
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2.2.2. A spectral sequence. Let FZ(X") =,, Homy (H® @ A" ", M). Clear-
ly Fo 2 Fy} D F5 O ... is a filtration of X*(E, M). Using this fact we obtain:

Corollary 2.2.2.1. There is a convergent spectral sequence
Ep* = H" (A, Homy,(H", M)) = H""*(E, M),

where Homy (H", M) is considered as an A-bimodule via aipas(h) = a]f(l) ©(h®)ay.

Let F;(Homy(E", M)) be the k-submodule of (Homy(E", M), b*) consisting of
maps f € Homy(E", M), for which f(z, ®---®x,) = 0 whenever n — i of the z;,’s
belong to A. The normalized Hochschild complex (Homy(E™, M), b*) is filtered by
Fy(Homy(E™, M)) 2 Fy(Homy(E", M)) D Fy(Homy(E", M)) D .... The spectral
sequence associated to this filtration is called the cohomological Hochschild-Serre
spectral sequence. The following theorem (joint with Corollary 3.2.3 below) gives,
as a particular case, of the main results of [H-S].

Theorem 2.2.2.2. The cohomological Hochschild-Serre spectral sequence is iso-
morphic to the one obtained in Corollary 2.2.2.1.

Proof. 1t is an easy consequence of Propositions 1.2.1 and 1.2.2.

2.2.3. Compatibility with the canonical decomposition. Assume that k& 2
Q, H is cocommutative, A is commutative, M is symmetric as an A-bimodule and
the cocycle f takes its values in k. Then, the Hochschild cohomology H* (E, M) has
a decomposition similar to the one obtained in 2.1.4 for the Hochschild homology.

3. THE HOCHSCHILD (CO)HOMOLOGY OF A
CROSSED PRODUCT WITH INVERTIBLE COCYCLE

Let E = A#;H and M an E-bimodule. Assume that the cocycle f is invert-
ible. Then, the map h +— 1#h is convolution invertible and its inverse is the map
b (1#h) "1 = £71(S(h@), k) #S(h™M)). Under this hypothesis, we prove that
the complexes X, (E, M) and X+ (E, M) of Section 2 are isomorphic to simpler com-
plexes. These complexes have natural filtrations, which give the spectral sequences
obtained in [S]. Using these facts and a theorem of Gerstenhaber and Schack, we
prove that if the 2-cocycle f takes its values in a separable subalgebra of A, then
the Hochschild (co)homology of E with coefficients in M is the (co)homology of
H with coefficients in a (co)chain complex. Finally, as an application we obtain
some results about the Tor*E and Ext}, functors and an upper bound for the global
dimension of E.

3.1. Hochschild homology

Let Eis: MoA T - Med " om ! (r,s>0,0<!<sandr+1>0)

be the morphisms defined by:

—0
d, (x) =ma ®az, h+ (-1)"a,m®a;,—1®h

r—1
+ Z(—l)im ®ai-1®a;a;+1 @ a2, @h,
=1
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1

(%) m

(—=1)"me(h1) ® a @ hg, + (=1)" T (A#A)mA#A )t @a” @ hy

s—1
+ Z(—l)”im ®a®hy i1 ®@hihit1 @hipos,
i=1

=l r+s —
dyy(x) = (=100 P L m#eY,, )T e FOMY, L | @a),

where x =m®a®h, witha=0a;®---®a, andh=h; ®---®h,. Let X,(E, M)
be the complex

X.(EM) = Xo& X, & X, & X, X, & X, do X &
where X, =@, .., M @A @H and d, =3 rre=n 31 Eis.

r4+1>0

Theorem 3.1.1. The map 0,: X.(E,M) — X, (E, M), given by
On(m@h©a) =m1#hY) - (1#hN) waeh®  (r4+s=n)

is an isomorphism of complezes. Consequently, the Hochschild homology of E with
coefficients in M is the homology of X .(E, M).

Proof. A direct computation shows that 6, is a morphism of complexes. The inverse
map of 6, is the map m®@a®h — m(l#hgl))_l S (1#h§1))_1 oh® ®a O

Note that when f takes its values in k, then X.(E, M) is the total complex of
the double complex (M @A ©H a. . d )

For each h € H, we have the morphism 6" : (M®Z*, b.) = (M®ZA",b,), defined
by 02 (m @ a) = (1#h )m(1#p0) 1 @ ah”.

Proposition 3.1.2. For each h,l € H the endomorphisms of H.(A, M) induced
by 07 6L and by 67! coincide. Consequently H.(A, M) is a left H-module.

Proof. By a standard argument it is sufficient to prove it for Hy(A4, M), and in this
case the result is immediate [
Corollary 3.1.3. The chain complex X, (E, M) has a filtration FOCFlC...,
where F/(X,) = Pocse;, M ® A" @ H'. The spectral sequence of this filtra-
tion is isomorphic to the one obtained in Corollary 2.1.2. From Proposition 8.1.2
it follows that if H is a flat k-module, then E}, = H,(A,M)® H and E2, =
Hy(H,H,(A, M)).

Given an A-bimodule M we let [A, M] denote the k-submodule of M generated
by the commutators am — ma (a € A and m € M).

Remark 3.1.4. From Corollary 3.1.3 it follows immediately that if A is separable,
then H.(F, M) = H,.(H, M/[A, M]), and if A is quasi-free, then there is a long
exact sequence

.. = Hy1(H, Ho(A, M)) = H,_1(H,H1(A, M)) = H,(E, M) —
H,, (H,Ho(A, M)) — H,_o(H,Hy (A, M)) — Hy_1(E, M) — ...
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3.1.5. Separable subalgebras. Let S be a separable subalgebra of A. Next we
prove that if the 2-cocycle f takes its values in S, then the Hochschild homology of
E with coefficients in M is the homology of H with coefficients in a chain complex.
When S equals A we recover the first part of Remark 3.1.4. Assume that f(h,l) € S
forall h,l € H. Let A= A/S, A" = Sand A" = A®g---®g A (r-times) for r > 0,
and let M ®g A"®g = M ®4c (A®; A" @, A) = M ®5 A" ®gc S be the cyclic
tensor product over S of M and A" (see [G-S2] or [Q]). Using the fact that f takes
its values in S, it is easy to see that H acts on (M ®g Ar®g, b.) via

h- (m ®Rg 5) = (1#h(3))m(1#h(1))_1 g aM_2),

~ D R oD
where m®ga=mQ®g a1 Qg - Vg a,Qg and a" za}f ®5---®5af} RKg.

Theorem 3.1.5.1. The Hochschild homology H.(E, M), of E with coefficients in
M, is the homology of H with coefficients in (M ®g A"®g, by).

Proof. Let (M ®g A*®g) @ H',d°,,d.,) be the double complex with horizontal
differentials

Jgs(x) =ma; Qs az Qh+ (-1)"a,msa; 1 ®h

r—1
+ Z(—l)im ®s a1,i-1 @5 AGi+1 Ds Ajr2,r © h,
i=1

and vertical differentials

dl,(x) = (—1)"m ®, 2 ® hyy + (=) A#RE)mA#RD) L @5 a"” @ hy .

s—1
+3 D) tmesaeh?_ @ hPh @ hi.,
=1

where x = m®a®h, with a =a; Qg+ - Rs a,Qg and h = h| ® -+ ® h,. Let
Yf(E, M) be the total complex of (M ®g A ®s)®H, ., Ji*) We must prove
that H,(E, M) is the homology of X. (E,M). Let m: X,(E,M) — X.(E, M)
be the map m ® aj, ® hy, — m ®g a;, ® his. Consider the filtration F?° C
FIS C F25 C ... of Xo(E, M), where Fi$ = @,.,..(M ©g A" ) @ I .
From Theorem 1.2 of [G-S2], it follows that 7, is a morphism of filtered complexes
inducing an quasi-isomorphism between the graded complexes associated to the
filtrations of X,(FE, M) and Yf(E, M). Consequently 7, is a quasi-isomorphism.
The proof can be finished by applying Theorem 3.1.1 0O

3.1.6. A decomposition of X,(E,M). Here we freely use the notations of
Subsection 2.1.3. Suppose M is a Hopf bimodule. A direct computation shows that
the H-coaction of X.(E, M), obtained transporting the one of )A(*(E, M) through
0.: X, (E,M) — X.(E,M), is given by

2) meaoh—m®gaeh® @m®sHh®D). .. ShMP .. h®.

S
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For each subcoalgebra C of H, we consider the subcomplex Y*C(E , M) of X.(E,M)
with modules YS , and we let HY(E, M) denote its homology. If H decomposes
as a direct sum of subcoalgebras C; (i € I), then X, (E, M) = @, 7*01 (E, M).
Consequently Hy(E, M) = @, HY (E, M). From (2) it follows that if H is cocom-
mutative, then YS =D, 1s=n MC @A @H'’. Finally, the filtration of X, (E, M)
induces a filtration on Y*C(E, M). Hence, when H is cocommutative and H is a
flat k-module, we have a convergent spectral sequence

E2, =H,(H,H,(A, M) = HE, (E, M),

where H,.(A, M) is a left H-module via the action introduced in Proposition 3.1.2.

3.1.7. An application to TorE. Let k be a field, B an arbitrary k- algebra M
a right B-module and N a left B-module. It is well known that Tor? (M, N) ~
H.(B,N® M) (here N® M is an B-bimodule via a(n®@m)b = an®mb) This fact
and Corollary 3.1.3 show that if k is a field, M is a right E-module and N is a left
FE-module, then there is a convergent spectral sequence

E?, = H,(H, Tor} (M, N)) = TorZ, (M, N).

3.2. Hochschild cohomology

Let d, Hornk(ZTJrF1 ®ﬁ57l,M) — Homy(A @H', M) (0<1<s,7+1>0)

be the morphisms defined by:

—rs

dy (p)(x) = al%ﬁ’(aw @h) + (=1)"p(a1,—1 ® h)a,

+Z alz 1®azaz+1 ®az+2r®h)

& (p)(x) = (—1>Te<h )o(a ® hay) + (—1) (1#A0) @™ @ hy 1) (1#0P)

+Z TJrZ a®hlz 1®hh1+1®h1+2s)

4" () (x) = (D)"Y (RO P, @a) @hy, ) 1#Y,, ),

wherex=a®h, witha=a¢1®---®a, andh=h; ®--- ® h,. Lety*(E,M) be
the complex

5 d° =6 4’

. 4 _
<3 d' <4 d
— X — ..

— % — — a2 =3 Je —
X'EM= X LY LY LY LY 57X

where X' = D, Homy, (A" @ H, M) and d" =3 r4e=n Zl 0d -

41>

Theorem 3.2.1. The map 60*: X (E,M) — X*(E, M), given by

0" (p)(h@a) = (1Y) - (1#hD)p(a@h®)  r+s=n)
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is an isomorphism of complexes. Consequently, the Hochschild cohomology of E
with coefficients in M is the homology of X (E,M).

Proof. Tt is similar to the proof of Theorem 3.1.1 [

Note that when f takes its values in k, then X" (E, M) is the total complex of
the double complex (Homy, A oH, M),ES*,EI*).

For each h € H we have the map 6 : (Homy (A", M), b*) — (Homy (A", M), b*),
defined by 0, (¢)(a) = (1#hD) " Lp@™ ) (1#h©)).

Proposition 3.2.2. For each h,l € H the endomorphisms of H*(A, M) induced
by 0 65 and by 65, coincide. Consequently H*(A, M) is a right H-module.

Proof. By a standard argument it is sufficient to prove it for H’(A, M), and in this
case the result is immediate O

Corollary 3.2.3. The cochain complex Y*(E, M) has a filtration Fo D Fy D ...,
where Fi(X) = DPo<,<,_; Homy (A"@H""",M). The spectral sequence of this fil-
tration is isomorphic to the one obtained in Corollary 2.2.2. From Proposition 3.2.2

it follows that E7® = Homy(H ,H"(A, M)) and E}* = H*(H,H" (A, M)).

Given an A-bimodule M, we let M4 denote the k-submodule of M consisting of
the elements m verifying am = ma for all a € A.

Remark 3.2.4. From Corollary 3.2.3, it follows immediately that if A is separable,
then H*(E, M) = H* (H, MA) and if A is quasi-free, then there is a long exact
sequence

... —=H"?(H H(A,M)) — H"(H,H°(A, M)) — H"(E, M) —
H*Y(H,H' (A, M)) — H"" (H,H°(A, M)) — H""HE, M) — ...

3.2.5. Separable subalgebras. Let S be a separable subalgebra of A and let Ar
(r > 0) be as in 3.1.5. Suppose f(h,l) € S for all h,l € H. Using the fact that f
takes its values in S it is easy to see that H acts on (HomAe (AR A" ®, A, M), b*) =

(Homg. (A", M),b*) via (¢ - h)(@) = (1#hM) Lo (@) (1h3).
Theorem 3.2.5.1. The Hochschild cohomology H*(E, M), of E with coefficients

in M, is the cohomology of H with coefficients in (HOmSe (A", M), b*).
Proof. 1t is similar to the proof of Theorem 3.1.5.1 [

3.2.6. An application to Exty. Let k be a field, B an arbitrary k-algebra and M,
N two left B-modules. It is well known that Extp (M, N) ~ H*(B, Homg (M, N))
(here Homy (M, N) is an B-bimodule via (apb)(m) = ap(bm)). This fact and
Corollary 3.2.3 show that if k is a field and M and N are left E-modules, then
there is a convergent spectral sequence

E3® = H'(H, Ext’y (M, N)) = Ext}*(M, N).

As a corollary we obtain that gl. dim(E) < gl. dim(A) + gl. dim(H ), where gl. dim
denotes the left global dimension. Note that this result implies Maschke’s Theorem
for crossed product, as it was established in [B-M].
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4. THE CARTAN-LERAY AND GROTHENDIECK SPECTRAL SEQUENCES

Assume that E is a crossed product with invertible cocycle. In this case another
two spectral sequences converging to H,(E, M) and with E?-term H,(H, H.(A4, M))
can be considered. They are the Cartan-Leray and the Grothendieck spectral se-
quences. The last one was introduced for the more general setting of Galois ex-
tension in [S]. In this Section we recall these constructions and we prove that both
coincide with the Hochschild-Serre spectral sequence. Similar results are valid in
the cohomological setting.

Let (F* ® H,d,) be the canonical resolution of k as a right H-module and
(Z.,0,)=(EQE @E,V.)®(H ®H,d,). Consider EQE @ E®@H ® H as an
E-bimodule via

(a#1) (x @ h) (b#q) = ((a#])z0 @ X1r @ Ty 1 (b#qM)) @ (hyg @ her1gP),

where x =20 ® - - ®@x,4+1 and h =h; ® --- ® hgy. It is clear that
3) ELzy& oz &2, 2,8 2,8 72,8 758 72,2

where pi((ag#ho ® ar#hy) ® 1) = e(lagar f(hVRS)#R P (P | is a complex of
E-bimodules. Moreover (3) is contractible as a complex of left E-modules, with
contracting homotopy ¢, (n > 0) given by (o(1g) =1p ® 1p ® 1y and

—x®1lp@h+ (-1)""apz; @ 1lg@hely ifr=0

C"“(y):{ (-1)""'x®@1g®h ifr>0’

wherey =x®h, withx =20 ® -+ ® 41 and h=h; ® - - ® hy_r41. Since the
map

E®FE o H @ HRE -FEQFE @E®H ®H,
given by 7(xo, @h®xz, 1) = (X0 ® 1 g ®h)x,.41, is an isomorphism of E-bimodules

(the inverse of 7 is the map xo, ® a#th @ h — xo, @ h1s @ hey 1S~ (W) @ a#hM),
(Z., 0.) is a relative projective resolution of E.

Let M be an E-bimodule. The groups M ®@gg e (EQE QFE) are left H-modules
via h(m ® x) = (1#h(2))m ® Xgr ® xr+1(1#h(1))_1, where x = 20 ® -+ ® Tpy1.
There is an isomorphism

M ®pe (Ze,0,) ~(H @ H,d,) g (M Qpgaw (EQE @ E,b.)).

Let F' = @, _((H' ® H) ®y (M @agp» E®E @ E). It is immediate that
FO C F1 C F?2 C F3 C ..., is a filtration of the last complex. The spec-
tral sequence associate to this filtration converges to H,(E, M) and has E?-term
H.(H,H.(A, M)). This spectral sequence is called the homological Cartan-Leray
spectral sequence. Similarly the groups Hompgg aor (E ® E ®F, M) are right H
modules via f.h(xo,11) = f(Xor @ Tr1(1#M) ") (14£02)) and there is an iso-
morphism

Hompge ((Zs,0x), M) ~ Homp (H ® H,d.),Hompg o (E®E ® E,b,), M)).
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This complex has a filtration Fy O F; D Fg D Fy D Fy D ..., defined by F* =
®j2i Hompg (ﬁj ® H,Hompgg Ao (E QFE '®E, M)) The spectral sequence asso-
ciate to this filtration converges to H*(E, M) and has E%-term H*(H,H*(A, M)).
This spectral sequence is called the cohomological Cartan-Leray spectral sequence.

Let @,: (EQE ® E,b.) — (Z,,8,) and U,: (Z.,0,) —» (EQE" @ E,b,) be
the morphisms of F-bimodule complexes, recursively defined by
Doz ®1p) =211y, Yp(z®1lp®h)=€ch)z®1g,
D1 (x®1p) = (o1 O by, (x@ 1) forx e EQ B,
U 1(x®@1p @ h) = i1 Yp Oy (x@1p@h) forxe E@E ,he A" "®H.

Proposition 4.1. It is hold that U, ®, = id, and that &, VU, is homotopically

equivalent to the identity map. The homotopy @, U, & idy 1s recursively defined
by Ql(I®1E®h) =rR1g®h® 1y and

Qi1 (x®1p @ h) = Cogr (D) Ty, — id — 0y, 0,)(x ® 15 @ h),

forx=20® @z, andh=h1 Q- ® hpt1-r.

Proof. 1t is easy to see that &, and ¥, are morphisms of complexes. Arguing as
in Proposition 1.2.1 we get that .41 is an homotopy from &, ¥, to the identity

map. It remains to prove that ¥, &, = id,. It is clear that \IJO ®g = idy. Assume

that ‘Ijn @n = Zdn Since ¢n+1(E®Fn ® k) g En-‘rl E® E ® k ® HnJrl T ® H,

we have that on EQ E ' @ k

W1 Pr1 = Eng1 U Ong1 Prgr = gt Ui Ongt Gyt P by
- §n+1 \Ijn q)n b;1+1 - €n+1 \Ijn Cn an (I)n b;,+1 - €n+1 b;1+1 - idnJrl O

Next, we consider the normalized Hochschild resolution (F ®E ®EF, b,) filtered
as in Proposition 1.2.2 and the resolution (Z., d.) filtered by FY C F} C F} C

where Fi =@’ _(E®E" ' ©E)e (H ©H).
Proposition 4.2. We have that
O, (ap#ho @ - - @ an1F#hnt1) Z D (aodtho) (ar#hSV) .. (ay#hlD)
j=
(%H#hﬁl) ‘® (an+1#hn+1)® hgz) Q- ® h§2)® hg’i)l e hiﬁl-

Consequently the map ®, preserve filtrations.

Proof. Tt follows by induction on n, using the recursive definition of ®, [
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Proposition 4.3. The map P, induces an homotopy equivalence of E-bimodule
complezes between the graded complexes associated to the filtrations of (B.(E),b.,)

and (B.(E),b.) ® (H © H,d,).
Proof. Note that

F5(X,,d,) 0 0

T = (X, dY, EoH A ®E,d,),
F*(Z.,0.) R

stl(Z*,a*) _(B*(E)vb*)@)H ®H=

where dgys is the boundary map introduced in Subsection 1.1. By Proposition 1.2.2
it suffices to check that @, = ®, ¢, induces an homotopy equivalence 5i of E-
bimodules complexes, from (E@ H @A @ E, d) ;) to (B.(E), V) QH @H. Let Y,
and pus be as in Subsection 1.1 and }75 = E® H @ H endowed with the structure
of E-bimodule given by zo(z1 ® h)ze = zox122 @ h, where h = hg ® -+ @ hgy1.
Consider the diagram

s 0 e — 0
Y, <" EeH' 9E <<% EoH 9AgE <2 .

(4) l&ss FS Fi
Y, " EeEoH 9oH «— E9EQE0H ©H 22— ..,

where Ji,((zo ® 1) ®h) = zoz; @ h and &*(z®@h) = x(l#hgl)) (1 #hgi_l) h®),
We assert that &5 (x) = 1E®(1#h§1)) . (1#hgl))®h(2)®1H, where x = 1;@h®15,
with h = h; ® - -+ ® hs. To prove this it suffices to check that

By 6a(x) € 15 ® (1#hS) - (1#hD) ©h® @ 1y + Foy,

which follows by induction on s, using that ®5 ¢s(x) = (s Ps_1 Ps—1 ds(x). Now, it
is immediate that s @0 = o* 1. Since @° is an isomorphism and the rows of (4)

are relative projective resolutions of Y and 375 respectively, it follows that 53; is an
homotopy equivalence [

Corollary 4.4. The (co)homological Cartan-Leray spectral sequence is isomorphic
to the (co)homological Hochschild-Serre spectral sequence.

4.5 The Grothendieck spectral sequence. If M is an E-bimodule, then the
group Ho(A, M) = M/[A, M] is a left H-module via h-m = (1#h2))m(14#h1)~1
where the T denotes the class of m in M/[A, M]. Let us consider the functors
M — Hy(E, M) from the category of E-bimodules to the category of k-modules,
M +— Hy(A, M) from the category of E-bimodules to the category of left H-modules
and M — Ho(H, M) from the category of left H-modules to the category of k-
modules. It is easy to see that Ho(E, M) = Ho(H, Hy(A, M)) and that if M is
a relatively projective E¢/E°P-module, then Hy(A, M) is a relatively projective
H/k-module. In fact, if M = E® N, then the map h®@n — 1#h2 @ n(1#h1)-1
is an isomorphism of left H-modules from H ® N to Ho(A, M). Thus we have a
Grothendieck spectral sequence

E? =H,(H,H,.(A,M)) = H,,,(E, M)).
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We assert that the Grothendieck spectral sequence and the Cartan-Leray spectral
sequence coincide. To prove this we use a concrete construction of the Grothendieck
spectral sequence. Let (Pi,0.) = (M ® E ®E, b,) be the normalized canonical
resolution of M as a right E°-module. Let us write (ﬁ*,g*) = (Ps,04) ®ac A.
Consider the double complex

| | |

T HopP ——— HOHOy P, «—— H @HQy Py ——0o ...

l l l

HopgPy ¢—— HoOH®y Py «—— H © Hoy Py ——

C

whose r-th column is (—1)" times H ® H @y (P,,d,) and whose s-th row is the
canonical complex (H ® H @y P, d,) giving the homology H,(H,P,) of k as
a trivial right H-module with coefficients in P,. By definition, the Grothendieck
spectral sequence is the spectral sequence associate to the filtrations by columns
of Cy,. Since Cy, ~ (H ® H,d,) @5 (M Qpgar (E®E @ E,b.)) as filtered
complexes, the homological Cartan-Leray and the Grothendieck spectral sequence
coincide. The same is valid in the cohomological setting.

APPENDIX A

Let R — S be an unitary ring map and let N be a left S-module. In this
section, under suitable conditions, we construct a projective relative resolution of
N. We need this result (with R = E, S = F° and N = E) to complete the proof
of Theorem 1.1.1. The general case considered here simplifies the notation and
enables us to consider other cases, for instance algebras of groups having particular
resolutions.

Let us consider a diagram of left S-modules and S-module maps

Jo

H1 d(1)1 d31
Yy Xo1 X1 +—— ...
lal
0 0
Ho dig dso
Yo Xoo Xig +— ... R

such that:
a) The column and the rows are chain complexes.

b) For each r,s > 0 we have a left R-module X, and S-module maps
Spst Xps = S Xys and Trs: SR Xps = Xps

verifying 7, s,s = id.



HOCHSCHILD (CO)HOMOLOGY OF HOPF CROSSED PRODUCTS 19
c) Each row is contractible as a complex of R-modules, with a chain contracting
homotopy og,: Yy = Xos and 0, ;2 Xps = Xpy16 (r > 0).

We are going to modify this diagram by adding S-module maps
dlm: Xrs = Xrti—1,5-1 (r,s>0and 1 <1<s).

Let X, =@, _p, Xrsand dp =, >"10 d., (n >1). Consider the maps
r+1>0
s X =Y, (n>0), given by:

) = pn(x) for x € Xoy,
%)= 0 for x € X, y,—p with > 0.

We define the arrows d., in such a way that (X, d.) becomes a chain complex of
S-modules and p, : (X, ds) = (Yi, —0s) becomes a chain homotopy equivalence of
complexes of R-modules. In fact, we are going to build R-module morphisms

! !
0110 Ys = X5 and 0,40 o0 Xps = Xeqpg1,50 (s >0and 1 <1< s),

satisfying the following:

Theorem A.1. Let C.(ul,) be the mapping cone of ', that is, C.(u,) = (Cx, d4),
where Cp, =Y, ® Xp,—1 and 6, (yn, Tn-1) = (—8(yn) — 1 (xn—1), —dn,l(:zzn,l)).
The family of R-module maps op11: Cr(pl) = Cpi1(pl) (n>0), defined by:

s
_ E E l
On+1 = — O'r+l+1,sfl’

r+s=n—1 [=(
r>—1

is a chain contracting homotopy of C,(ul,).

Corollary A.2. Let N be a left S-module. If there is a S-module map fi: Yo — N,
such that

(*) NEYV v &y &y &y, &y &
is contractible as a complex of left R-modules, then
() O N&E X & X & X, & X & x & Xy & X A

where @ = [t g, s a relative projective resolution. Moreover, if 00_1: N — Yo,
o1t Yy = Yuiq (n>0) is a chain contracting homotopy of (*), then we obtain
a chain contracting homotopy o: N — Xo, Tny1: Xn = Xnt1 (n > 0) of (*7),
defining 5o = o), a&l and

n+1 S

— 1 ~1 !
Ontl = — E Olin—141Tnt1 Mn + E E Opilq1,s—1
1=0

r4+s=n [=0

Proof. Write

s n
571 = Z Zai-i-l—i-l,s—l (n 2 1) and an = Z Ull,n—l (n 2 O)
1=0

rs=n—1 [=(
r>0
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From Theorem A.1, we have

n [+1

* l+1—1 i _ ~
( Il) 071 71+1 - E Ul n—l aﬂ‘i‘l - § E :d’L n+1—i Tin+1—i = _d"+1 On+1-
=0 i=0

It is clear that poo = id. Moreover

To 1= 00000 Fifo =00 Ho — 000 01 07 ' Ho
=id — dYy 0y + dgy 00, 07 " po + dYg olg o7 ! o,
where the last equality follows from (*0). Now, let n > 1. Take z € X, . If
r > 1, then the equality (0,2) = 0n420n4+2(0,2) + 0pnt1 0nt1(0,2) implies that

x = dp+10n41(2) + 0 dn(x). Hence, we can suppose r = 0. Then, from (0,2) =
Ont+20n42(0,2) + 0py1 0nt1(0, ), we get

+ o.d
+ ond
+o.d
+ond

T

nftn ()

Uno 671/1471( ) + anan-i-lo—;iﬂjfn(x)

€r = dnJrl&nJrl €

(
(x x
(
(

- dn—i— 10n+1

T x

Uno Mn ld ( )+anan+10—7:.|1-1ﬂn($)

Gooyy i 1dy (2 )—dn+§n+10;1r1ﬂn(33)7

- dn—i— 10n+1

xT

n(2) +
n(2) +
n () —
n(2) =

_— L

= dnJrl&nJrl z
where the last equality follows from (*n) O

Next we define the morphisms d’., and we prove that (X, d.) is a chain complex.

Definition A.3. We define the S-module maps disz Xrs = Xrti—1,5—1 (r >0 and

1 <1< s), recursively by dis = Elm Srs, where Elm: SR X, — Xrtic1,5—1 (r>0
and 1 <1< s) is the S-module map defined by

—00 o1 Os 15 T0s (X) ifr=0andl=1,
alrs(x): _Zé “iof 15— ldé 15— Jdé mos(X) ifr=0and1<1<s,
-1 ! .
— 0 Tr -1, lerr]J Lsmg s Trs(x) if r >0,

foreachx=1®% ¢ S®X,s.
Proposition A.4. We have ps_1 d(l)S = —0s s and

-1 Sl— J . _
411, _{ 21 di 15Jdos ifr=0andl <l <s

S edi ) dl, ifr>0and1<1<s.

Consequently (X, d.) is a chain complez.

Proof. We prove the proposition by induction on [ and r. To simplify the ex-
pressions we put dj, := ps, d' |, := 95 and d', , := 0 for all [ > 1. Moreover
to abbreviate we do not write the subindices. Let x = 1 ® X with X € Xos.
Since E(l)(x) = —0%d* d° n(x), we have d° d (x) = —d’ o d* d° w(x) = —d' d° 7(x),
which implies d®d'! = —d'd°. Let [ +r > 1 and suppose the result is valid for
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dg)* with j < lorj =1land p < r. Let x = 1 ®X with X € X,,. Since

4 (x) = — Eé;é 0% d'=J dI 7(x), then

-1 -1 -1
PTx) ==Y dd T d )= > d T w(x)+ > 0 dd I n(x).

=0 =0 =0

Applying first the inductive hypothesis to d®d"~7 with (0 < j < I) and then to
d® d7 with (0 < j < 1), we obtain:

-11—j-1
Zdl Id > otd T r(x)
j=0 =0
1—21—j—1
_—Zdl I > o%d T d d w(x)
7j=0 =1
-1 j-1
+Y > otd T @ d Zdl Id

7=1 h=0

The desired equality follows immediately from this fact [

It is immediate that u),: (X., ds) = (Yi, —0,) is a morphism of S-module chain
complexes. Next, we construct the chain contracting homotopy of C. ().

Definition A.5. We define al{sil: Y, = X1 and U£+l+1,sfl: Xrs = Xogig1,6—1
0 <i<s,r>0), recursively by:

-1

l § : i
r+l+1 s—1 — Ur+l+1 s— ldr+z+1 s—1 T+’L‘+1,87’L‘ (O < l S s and r 2 _1)
1=0

Proof of Theorem A.1. To simplify the expressions we put d91,s =0, d, = s,
d', . =0, and d- 1,5 := 0 for all I > 1. Because of the definitions of d. and o, it
suffices to check that of, d), +dY, | ;o0 . =id and

TS rs

i —
ZUTJrl s—1 rs + Zererrl s—i Ortitl,s—i = 0 forl> 0,

where we put dgl,s = 0. The first formula simply says that ¢? is a chain contracting
homotopy of d2. Let us see the second one. To abbreviate we do not write the
subindices. From the definition of o! we have:

-1 -1 -1
dO O_l — _ E dO 0,0 dl—i O,i _ E 0,0 dO dl—i O,i _ E dl—i ot
i=0 =0 i=0

Consequently

l -1

l l
Zo,lfi dz + Zdlfi O,'L' — Zo,lfi d’L 4 ZO_O dO dl*i ot
=0

i=0 =0 =0
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Then, it suffices to prove that the term appearing on the right side of the equality
is zero. We prove this by induction on [. For | = 1 we have:

o%d°d o = -6 d' d°6® =6V dt 00’ — 0P dt = —0t d° — o0 dt.

Suppose [ > 1. From Proposition A.5,

-1 I-11—i—1 -1 h
E 0_0 dO dlfl i 0_0 dlflfg ot =— E E 0_0 dlfh dhfzo_
i=0 i=0 j=0 h=0 i=0

So, applying the inductive hypothesis to E?:o d"=to' (h > 0), we obtain

-1
E 0_0 dO dlfz ol =
i=0

1
0,0 dl*h O_hf’L dz _ 0,0 dl

M-

Il
=]

3

=
=)

~
—

1
0_0 dlfzfj ol dt — 0_0 dl

—i

1=

l
==Y o7"d O
=0

APPENDIX B

=]

<.
Il
=]

In this appendix we compute explicitly the maps d.., introduced in Section 1,
completing the results of Theorem 1.1.3.

Definition B.1. Givenh=h1 ® ---® h; € ﬁl, we define Fo(l)(h)7 recursively by:

l -
M .
F0(l+1)(h) _ Z( ) f(h§1)7 hgi)l) 1Li-1 ® F(l) (hJ(Q)),

where h/(?) = hfj);l ® h(2) h(2)1 ® hji241. For instance, we have
&N
F® () =f(h{", hV) @ F(013, hs) — F(RS" 050 @ £(h P b5)
and
£ (h) = fh9m4>®f<3mﬁh®fwﬁh@hm
f(hgl vh(l )hm ® f(h127 34 )

h§27 23 ®f(h1?§),h4)

)
»Y Y @
)5 @ f(R$?, %)
— F R @ 0@ @ £ p5RP)
)2 @ f( )
D)z @ f (% 55"

R, h{
L (2) ;(2)

12®fh1,h ®f(h127 34)
@) 3

n @ f(RSY,05Y).

fhu)h Dyh

2’34

For the following definition we adopt the convention that a;p = a,+1,, = 11 € k.
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Definition B.2. Given h=h; ® --- Q@ h; € ﬁl anda=a1® - -®a, € ZT, we
define Fr(l)(h ® a), recursively by:
T ,g)
FP(h@a) = Z( ™" tay); hm ® f(h 12)= h(z)) ®a;]
i=0
l r

PO a) = 303 (1 @ f(n® 03P o FO,WO @ a,),

j=1 i=0

where h/® = h{®)_| @ h® 1), @wl), | and BV (I® @ a,11,) = Fy) (W),
For instance, we have

5); (4)
FOMhea)= > (—1at @ f(h f>,h<2>>®az+u®f< ) D) @ alia s
0<i<j<r
1 h (2) (5)
b Y ot o pe@aO) o el o F(0 0 o all
0<i<j<r

We set F\P(he) = 1x € k, F\V(hs ® a) = a and F\'(hy_ ;1. ® 1;) =
Fo(l)(hs_l_Ls). Moreover, to abbreviate we write F()(h) = Fo(l)(h) and FO(}) =
FYh®a).

Lemma B.3. Leta=a1® --®a, and hy_j s =hs_ 1 ®---® h;. We have:
(M

l
i —1 F( ( s—1i
F(lJrl)(hs—l,s) = Z(_l) F(l +1)( e ) ®f( s— ls i) hs i+1, s)

=1

and

F(z+1)(h a ) _ F”“)(?(’ffl) 0 a)

s—1, s—1,s

i i FOL ) 2
+Z + Fl +1)( Ehs i S>> ®f( s— ls i) gf)’H*l,s)'

(1)
s—1,s—1

where F(H'l)(a1 Tl i) FUHD (- l,s) if r=1.

Proof. We prove the second formula. The proof of the first one is similar. It is
clear that the lemma is valid for [ = 1. Let [ > 1 and suppose the result is valid for
I — 1. To abbreviate we put

E=u(ll—1)4+j+s

j(4 4
]s(l)s:b( ),]+1b]+25’
3 3 3); (3 2
hi( l)s _hg )lj 1®h( )hg'Jr)l®h§'+)2,s7
f@ =f(h§2),h§2+) ) b
o = J 021000,
s—l,s—1,s SljJrl Jj+2,5—i Vs—i+1,s
4)j
fs( l,s— zs:f( s— ls z’hs z+l,j+1b]+25)
2
fs()ls zs:f(sls z’hs H—ls)
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We have:
l-‘rl a s s (2) l aif+l’r
P ) = 3 S e e e r ()
j=s—1lu=0
s—1 r—1 -
h Aug1 P
=3 S enstan et o FO(TE ) wa
j=s—lu=0 e
S— T S—j—l (17 ) )( (;L)+1T>
o B A g o LU
j=s—lu=0 i=1 LA
s—1 r -1 — Ayt1,7
(i
+ Z (—1)§HHr—utia ®f(2)®F(l z)( ghi@z S)>®f(4)ls .
j=s—Il+1u=0i=s—j hi )Ls i—1
Permuting the order of the summands, we obtain
a s—1 r—1 (2 But1 ot hJ(4)
F(z+1(515> S(-1 ary ®f ®F()( h{(gl)\)@)arszs
j=s—lu=0 e

r s—i—1

- . Ay+41,r
B 3P o EUSESTA PV s uh) PRI

(3)
i=1 u= OJSl hy

s—1l,s—1i

n Z i Z 5+r utig h(T X f(2) ® F(l_i"‘l)(F(il)(h]z%jrlr >> f(4)
- s—1l,5—1,s

(3)
=2 u=0j=s—i+1 h

s—l,s—1

—l,s—1,s?

- R e s et () o
nt

slsw

which ends the proof O

Computation of d’.,. Let us compute d-t! for [ > 1. First we suppose the formula
is valid for &/, with j < [ and we see that it is valid for dffsrl. To abbreviate we
write ¢; =is+ (I —i4 1)(s — 1) + 1. Using the inductive hypothesis and the fact
that o0 d* (ao ® hgs ® 1#1) = 0, we obtain:

dM(loh®lg) = Za dM T d(1ohe 1)

i=1
l

_ Z (—1)is+140 Ji1—i (1 ®hps—; ® F® (hgl)Hl S ® 1#hs i+, s)
i=1

l (1)
yF P2
00(( )Cw®hos 1— 1®F(l+1 )( a +1, )@f( s—1,5—i» s z+ls)#bs ls)
=1

sls1

:( 1)(H_1) 1®h05 - 1®F(l+l)(h )®1#bs l,s?

where the last equality follows from the definition of ¢ and Lemma B.3. Now, we
suppose the result is valid for leJ,rsl with 7 < r and we show that it is valid for d/£!.
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To abbreviate we write (; =i(r +s)+ (I —i+1)(r+s—1)+ 1.

d(1oheawly) = }:ad”lzw@®h®a®1@
=0

— (-1)*logdt (1@ h@a®1) — (1) ogd (1@ he, ®a" @ 1#h?)

l
_ Z o0 giti—i ((_1)i(r+s) ®hps i ® F(i)(hil,)? . ) ® 1#1’1S i1, S)

:( N logd ™ (lehwa® 1)

l
— Z 0’0 lerlii ((_1)i(r+s) ® hO,sfi & F(l)(h(fj: 1, ) ® 1#hs i+1, s)

ay,._ @)
— o0 (_1)(!+1)(T+s—1)+r+1 ® hos 11 ®F(1+1)(h1§121,:> ®a25*1’5#f)5 L

l
) i (1)
+ Z(_l)g & hO,sflfl & F(l+1 ) )<hs L S> ® f( s— l s—1? hgz i+1, s)#hs l,s

e
=1 hs l,s—i

= (_1)(l+1)(r+s) ®hgs_11® F(Hl)(hi” ) ® 1#hs 1,s?

where the last equality follows from the definition of ¢° and Lemma B.3 O

Remark B.4. When H is a group algebra k[G] and the 2-cocycle f takes its values
in the center of A, then

d.. (a0 ®gos®ar,®1g) = (D) ag @ go s ® Fél)(gsflJrl,s) *ar, @ 1#gs141,s,

where * denotes the shuffle product:

aj,xby = Z (—1)i1+m+ilbl®' - ®bi, ®a1®bi, +1®- - -®b;, ®a,rQb;, 11®- -

0<iy <-+- < <I
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