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HOCHSCHILD (CO)HOMOLOGY

OF HOPF CROSSED PRODUCTS

Jorge A. Guccione and Juan J. Guccione

Abstract. For a general crossed product E = A#fH, of an algebra A by a Hopf al-
gebra H, we obtain complexes simpler than the canonical ones, giving the Hochschild
homology and cohomology of E. These complexes are equipped with natural filtra-
tions. The spectral sequences associated to them is a natural generalization of the
one obtained in [H-S] by the direct method. We also get that if the 2-cocycle f takes
its values in a separable subalgebra of A, then the Hochschild (co)homology of E with
coefficients in M is the (co)homology of H with coefficients in a (co)chain complex.

Introduction

Let G be a group, S =
⊕
Sg a strongly G-graded algebra and V an S-bimodule.

In [L] was shown that there is a convergent spectral sequence

E2
rs = Hr(G,Hs(Se, V ))⇒ Hr+s(S, V ),

where e denotes the identity of G. In [S] was shown that this result remains valid
for H-Galois extensions (in his paper the author deals with both the homology and
the cohomology of these algebras). An important particular type of H-Galois ex-
tensions are the crossed products with convolution invertible cocycle E = A#fH ,
of an algebra A by a Hopf algebra H (for the definition see Section one). The pur-
pose of our paper is to construct complexes simpler than the canonical ones, given
the Hochschild (co)homology of E with coefficients in an arbitrary E-bimodule.
These complexes are equipped with canonical filtrations. We show that the spec-
tral sequences associated to them coincide with the ones obtained using a natural
generalization of the direct method introduced in [H-S], and with the ones con-
structed in [S] (when these are specialize to crossed products). In the case of group
extensions these results were proved in [E] and [B].

This paper is organized as follows: in Section 1 a resolution (X∗, d∗) of a crossed
product E = A#fH is given. To accomplish this construction we do not use the fact
that the cocycle is convolution invertible. Moreover, we give a recursive construction

of morphisms φ∗ : (X∗, d∗)→ (E⊗E
∗
⊗E, b′∗) and ψ∗ : (E⊗E

∗
⊗E, b′∗)→ (X∗, d∗),

where (E⊗E
∗
⊗E, b′∗) is the normalized Hochschild resolution, such that ψ∗ φ∗ = id

and we show that φ∗ ψ∗ is homotopically equivalent to the identity map. Conse-
quently our resolution is a direct sum of the normalized Hochschild resolution. We
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2 JORGE A. GUCCIONE AND JUAN J. GUCCIONE

also recursively construct an homotopy φ∗ ψ∗

ω∗+1
−−−→ id∗. Both, the canonical nor-

malized resolution and (X∗, d∗) are equipped with natural filtrations, which are
preserved by the maps φ∗, ψ∗ and ω∗+1.

In Section 2, for an E-bimodule M , we get complexes X̂∗(E,M) and X̂∗(E,M),
giving the Hochschild homology and cohomology of E with coefficients inM respec-

tively. The filtration of (X∗, d∗) induces filtrations on X̂∗(E,M) and X̂∗(E,M).

So, we obtain converging spectral sequences E1
rs = Hr(A,M ⊗H

s
)⇒ Hr+s(E,M)

and Ers
1 = Hr(A,Homk(H

s
,M)) ⇒ Hr+s(E,M). Using the results of Section 1,

we get that these spectral sequences are the ones associated to suitable filtra-

tions of the Hochschild normalized chain and cochain complexes (M ⊗E
∗
, b∗) and

(Homk(E
∗
,M), b∗). This allows us to give very simple proofs of the main results

of [H-S] and [G].
In Section 3, we show that, if the cocycle is convolution invertible, then the

complexes X̂∗(E,M) and X̂∗(E,M) are isomorphic to simpler complexesX∗(E,M)

andX
∗
(E,M) respectively. Then, we compute the term E2

rs and E
rs
2 of the spectral

sequences obtained in Section 2. Moreover, using the above mentioned filtrations,
we prove that if the 2-cocycle f takes its values in a separable subalgebra of A,
then the Hochschild (co)homology of E with coefficients in M is the (co)homology
of H with coefficients in a (co)chain complex. Finally, as an application we obtain

some results about the TorE∗ and Ext∗E functors and an upper bound for the global
dimension of E (for group crossed products this bound was obtained in [A-R]).

In addition to the direct method developed in [H-S], there are another two clas-
sical methods to obtain spectral sequences converging to H∗(E,M) and with E2-
term H∗(H,H∗(A,M)). Namely the Cartan-Leray and the Grothendieck spectral
sequences of a crossed product. In Section 4, we recall these constructions and we
prove that these spectral sequences are isomorphic to the one obtained in Section 2.
This generalizes the main results of [B].

In a first appendix we give a method to construct (under suitable hypothesis)
a projective resolution of the k-algebra E as Ee = E ⊗ Eop-bimodule, simpler
than the canonical one of Hochschild. This method, which can be considered as a
variant of the perturbation lemma, is used to prove the main result of Section 1.
The boundary maps of the resolution (X∗, d∗) are recursively defined in Section 1.
In a second appendix we give closed formulas for these maps.

1. A resolution for a crossed product

Let A be a k-algebra and H a Hopf algebra. We will use the Sweedler notation
∆(h) = h(1) ⊗ h(2), with the summation understood and superindices instead of
subindices. Recall some definitions of [B-C-M] and [D-T]. A weak action of H on
A is a bilinear map (h, a) 7→ ah from H ×A to A such that, for h ∈ H , a, b ∈ A

1) (ab)h = ah
(1)

bh
(2)

,

2) 1h = ǫ(h)1,

3) a1 = a.

Let A be a k-algebra and H a Hopf algebra with a weak action on A. Given a
k-linear map f : H⊗H → A, let A#fH be the k-algebra (in general non associative
and without 1) with underlying vector space A⊗H and multiplication map

(a⊗ h)(b⊗ l) = abh
(1)

f(h(2), l(1))⊗ h(3)l(2),
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for all a, b ∈ A, h, l ∈ H . The element a ⊗ h of A#fH will usually be written
a#h to remind us H is weakly acting on A. The algebra A#fH is called a crossed
product if it is associative with 1#1 as identity element. It is easy to check that
this happens if and only if f and the weak action satisfy the following conditions:

i) (Normality of f) for all h ∈ H , we have f(h, 1) = f(1, h) = ǫ(h)1A,

ii) (Cocycle condition) for all h, l,m ∈ H , we have

f
(
l(1),m(1)

)h(1)

f
(
h(2), l(2)m(2)

)
= f

(
h(1), l(1)

)
f
(
h(2)l(2),m

)
,

iii) (Twisted module condition) for all h, l ∈ H , a ∈ A we have

(
al

(1))h(1)

f
(
h(2), l(2)

)
= f

(
h(1), l(1)

)
ah

(2)l(2) .

In this section we obtain a resolution (X∗, d∗) of a crossed product E = A#fH
as an E-bimodule, which is simpler than the canonical one of Hochschild. To begin,
we fix some notations:

1) For each k-algebra B, we put B = B/k. Moreover, given b ∈ B we also let b
denote the class of b in B.

2) We write Bl = B⊗· · ·⊗B, B
l
= B⊗· · ·⊗B (l times) and Bl(B) = B⊗B

l
⊗B,

for each natural number l.

3) Given a0⊗· · ·⊗ar ∈ A
r+1 and 0 ≤ i < j ≤ r, we write aij = ai⊗· · ·⊗aj ∈ A

j−i+1.

4) Given h0 ⊗ · · · ⊗ hs ∈ H
s+1 and 0 ≤ i < j ≤ s, we write hij = hi ⊗ · · · ⊗ hj and

hij = hi · · ·hj ∈ H .

5) Given h = h0 ⊗ · · · ⊗ hs ∈ H
s+1, we let h(1) ⊗ h(2) denote the comultiplication

of h in Hs+1. So, h(1) ⊗ h(2) = (h
(1)
0 ⊗ · · · ⊗ h

(1)
s )⊗ (h

(2)
0 ⊗ · · · ⊗ h

(2)
s ).

6) Given a ∈ A, a = a1 ⊗ · · · ⊗ ar ∈ A
r and h = h0 ⊗ · · · ⊗ hs ∈ H

s+1, we write

ah = (. . . (((ahs)hs−1)hs−2)hs−3 . . . )h0 and ah = a
h

(1)
0s

1 ⊗ · · · ⊗ a
h

(r)
0s

r .

1.1. The resolution (X∗, d∗)

Let Ys = E ⊗ H
s
⊗ H (s ≥ 0) and Xrs = E ⊗ H

s
⊗ A

r
⊗ E (r, s ≥ 0). The

groups Xrs are E-bimodules in an obvious way and the groups Ys are E-bimodules
via the left canonical action and the right action

(a0 ⊗ h)(a#h) = a0a
h(1)

f(h
(2)
s+1, h

(1))h
(2)
0s ⊗

(
h
(3)
0s ⊗ h

(3)
s+1h

(2)
)
,

where h = h0 ⊗ · · · ⊗ hs+1. Let us consider the diagram of E-bimodules and
E-bimodule maps

...
y∂2

Y1
µ1

←−−−− X01
d0
11←−−−− X11

d0
21←−−−− . . .

y∂1

Y0
µ0

←−−−− X00
d0
10←−−−− X10

d0
20←−−−− . . . ,
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where µ∗ : X0∗ → Y∗, d
0
∗∗ : X∗∗ → X∗−1,∗ and ∂∗ : Y∗ → Y∗−1 are defined by:

µs(a0 ⊗ h0s ⊗ a1 ⊗ hs+1) = a0a
h

(1)
0s

1 ⊗ h
(2)
0s ⊗ hs+1,

d0rs(a0 ⊗ h0s ⊗ a⊗ hs+1) = a0a
h

(1)
0s

1 ⊗ h
(2)
0s ⊗ a2,r+1 ⊗ hs+1

+
r∑

i=1

(−1)ia0 ⊗ h0s ⊗ a1,i−1 ⊗ aiai+1 ⊗ ai+2,r+1 ⊗ hs+1,

∂s(a⊗ h) =

s∑

i=0

(−1)i+1af(h
(1)
i , h

(1)
i+1)

h
(1)
i−1 ⊗ h

(2)
0,i−1 ⊗ h

(2)
i h

(2)
i+1 ⊗ hi+2,s+1,

where a = a1 ⊗ · · · ⊗ ar+1 and h = h0 ⊗ · · · ⊗ hs+1. We have left E-module maps
σ0
0∗ : Y∗ → X0∗ and σ0

∗+1,∗ : X∗∗ → X∗+1,∗, given by σ0
r+1,s(a0 ⊗ h0s ⊗ a⊗ hs+1) =

(−1)r+1a0⊗h0s⊗a⊗ 1#hs+1 for r ≥ −1. Clearly (Y∗, ∂∗) is a complex and σ0
∗+1,s

is a contracting homotopy of

Ys
µs
←− X0s

d0
1s←−− X1s

d0
2s←−− X2s

d0
2s←−− X3s

d0
3s←−− X4s

d0
4s←−− X5s

d0
5s←−− . . . .

So, we are in the situation considered in Appendix A. We define E-bimodule maps
dlrs : Xrs → Xr+l−1,s−l (r ≥ 0 and 1 ≤ l ≤ s) recursively, by:

dlrs(x) =





−σ0
0,s−1 ∂s µs(x) if r = 0 and l = 1,

−
∑l−1

j=1 σ
0
l−1,s−l d

l−j
j−1,s−j d

j
0s(x) if r = 0 and 1 < l ≤ s,

−
∑l−1

j=0 σ
0
r+l−1,s−l d

l−j
r+j−1,s−j d

j
rs(x) if r > 0,

for x ∈ k ⊗H
s
⊗A

r
⊗ k.

Theorem 1.1.1. There is a relative projective resolution

(1) E
−µ
←−− X0

d1←− X1
d2←− X2

d3←− X3
d4←− X4

d5←− X5
d6←− X6

d7←− . . . ,

where Xn =
⊕

r+s=n

Xrs, µ is the multiplication map and dn =
∑

r+s=n

r+l>0

s∑

l=0

dlrs.

Proof. Let µ̃ : Y0 → E be the map µ̃(a⊗(h0⊗h1)) = −af(h
(1)
0 , h

(1)
1 )#h

(2)
0 h

(2)
1 . The

complex of E-bimodules

E
µ̃
←− Y0

∂1←− Y1
∂2←− Y2

∂3←− Y3
∂4←− Y4

∂5←− Y5
∂6←− Y6

∂7←− . . .

is contractible as a complex of left E-modules. A chain contracting homotopy
σ−1
0 : E → Y0 and σ−1

s+1 : Ys → Ys+1 (s ≥ 0) is given by σ−1
s+1(x) = (−1)sx ⊗ 1H .

Hence, the theorem follows from Corollary A.2 of Appendix A �

Remark 1.1.2. Let σl
l,s−l : Ys → Xl,s−l and σl

r+l+1,s−l : Xrs → Xr+l+1,s−l be the
maps recursively defined by

σl
r+l+1,s−l = −

l−1∑

i=0

σ0
r+l+1,s−l d

l−i
r+i+1,s−i σ

i
r+i+1,s−i (0 < l ≤ s and r ≥ −1).

We will prove, in Corollary A.2, that the family σ0 : E → X0, σn+1 : Xn → Xn+1,
defined by σ0 = σ0

00 σ
−1
0 and

σn+1 = −

n+1∑

l=0

σl
l,n−l+1 σ

−1
n+1 µn +

∑

r+s=n

s∑

l=0

σl
r+l+1,s−l (n ≥ 0),

is a contracting homotopy of the resolution (1) introduced in Theorem 1.1.1.
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Theorem 1.1.3. Let x = a0 ⊗ h ⊗ a ⊗ 1E, with a = a1 ⊗ · · · ⊗ ar ∈ A
r
and

h = h0 ⊗ · · · ⊗ hs ∈ H ⊗H
s
. We have:

1) d1rs is the map given by

d1rs(x) =
s−1∑

i=0

(−1)i+ra0f(h
(1)
i , h

(1)
i+1)

h
(1)
0,i−1 ⊗ h

(2)
0,i−1 ⊗ h

(2)
i h

(2)
i+1 ⊗ hi+2,s ⊗ a⊗ 1E

+ (−1)r+sa0 ⊗ h0,s−1 ⊗ ah
(1)
s ⊗ 1#h(2)s ,

2) For each l ≥ 2, there are maps F
(l)
0 : H

l
→ Al−1 and F

(l)
r : H

l
⊗ A

r
→ Ar+l−1

(r ≥ 1), whose image is included in the k-submodule of Ar+l−1 generated by all
the elementary tensors a1 ⊗ · · · ⊗ ar+l−1 with l − 1 coordinates in the image of
f , such that for 2 ≤ l ≤ s,

dlrs(x) = (−1)l(r+s)a0 ⊗ h0,s−l ⊗ F
(l)
r (h

(1)
s−l+1,s ⊗ a) ⊗ 1#h

(2)
s−l+1,s,

where F
(l)
r (h

(1)
s−l+1,s ⊗ a) = F

(l)
0 (hs−l+1,s) if r = 0.

Proof. The computation of d1rs can be obtained easily by induction on r, using that
d10s = −σ0

0,s−1 ∂s µ
0
s and d1rs = −σ0

r,s−1 d
1
r−1,s d

0
rs for r ≥ 1. The assertion for dlrs,

with l ≥ 2, follows easily by induction on l and r, using the recursive definition of
dlrs �

In Appendix B we will give more precise formulas for the maps F
(l)
r completing

the computation of the dlrs’s.

1.2. Comparison with the canonical resolution

Let (B∗(E), b′∗) be the normalized Hochschild resolution of E. As it is well
known, the complex

E
µ
←− E ⊗ E

b′1←− B1(E)
b′2←− B2(E)

b′3←− B3(E)
b′4←− . . .

is contractible as a complex of left E-modules, with contracting homotopy ξn(x)=
(−1)nx⊗1. Let σ∗ be the contracting homotopy of (1) introduced in Remark 1.1.2.
Let φ∗ : (X∗, d∗) → (B∗(E), b′∗) and ψ∗ : (B∗(E), b′∗) → (X∗, d∗) be the morphisms
of E-bimodule complexes, recursively defined by φ0 = id, ψ0 = id, φn+1(x ⊗ 1) =
ξn+1 φn dn+1(x⊗ 1) and ψn+1(y ⊗ 1) = σn+1 ψn b

′
n+1(y ⊗ 1).

Proposition 1.2.1. ψ∗ φ∗ = id∗ and φ∗ ψ∗ is homotopically equivalent to the iden-

tity map. An homotopy φ∗ ψ∗

ω∗+1
−−−→ id∗ is recursively defined by ω1 = 0 and

ωn+1(x) = ξn+1 (φn ψn − id− ωn b
′
n)(x), for x ∈ E ⊗ E

n
⊗ k.

Proof. We prove both assertions by induction. Let Un = φn ψn − idn and Tn =
Un−ωn b

′
n. Assuming that b′n ωn + ωn−1 b

′
n−1 = Un−1, we get that on E ⊗E

n
⊗ k,

b′n+1 ωn+1 + ωn b
′
n = b′n+1 ξn+1 Tn + ωn b

′
n

= Tn − ξn b
′
n Tn + ωn b

′
n

= Un − ξn Un−1 b
′
n + ξn b

′
n ωn b

′
n

= Un − ξn Un−1 b
′
n + ξn Tn−1 b

′
n = Un.
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Hence, b′n+1 ωn+1 + ωn b
′
n = Un on Bn(E). Next, we prove that ψ∗ φ∗ = id∗. It is

clear that ψ0 φ0 = id0. Assume that ψn φn = idn. Since φn+1(E ⊗H
s
⊗A

r
⊗ k) ⊆

E ⊗ E
n+1
⊗ k, we have that, on k ⊗H

s
⊗A

n+1−s
⊗ k,

ψn+1 φn+1 = σn+1 ψn b
′
n+1 φn+1

= σn+1 ψn b
′
n+1 ξn+1 φn dn+1

= σn+1 ψn φn dn+1 − σn+1 ψn ξn b
′
n φn dn+1

= σn+1 dn+1 = idn+2 − dn+2 σn+2.

So, to finish the proof it suffices to check that σn+2(k ⊗ H
s
⊗ A

n+1−s
⊗ k) = 0,

which follows easily from the definition of σ∗ �

Let F i(Xn) =
⊕

0≤s≤i E⊗H
s
⊗A

n−s
⊗E and let F i(Bn(E)) be the sub-bimodule

of Bn(E) generated by the tensors 1 ⊗ x1 ⊗ · · · ⊗ xn ⊗ 1 such that at least n − i
of the xj ’s belong to A. The normalized Hochschild resolution (B∗(E), b′∗) and the
resolution (X∗, d∗) are filtered by F 0(B∗(E)) ⊆ F 1(B∗(E)) ⊆ F 2(B∗(E)) ⊆ . . .
and F 0(X∗) ⊆ F

1(X∗) ⊆ F
2(X∗) ⊆ . . . , respectively

Proposition 1.2.2. The maps φ∗, ψ∗ and ω∗+1 preserve filtrations.

Proof. Let Qi
j = E ⊗H

i
⊗A

n−j
⊗ k. We claim that

a) σn+1(F
i(Xn)) ⊆ F

i(Xn+1) for all 0 ≤ i < n,

b) σn+1(E ⊗H
i
⊗A

n−i
⊗A) ⊆ Qi

i−1 + F i−1(Xn+1) for all 0 ≤ i ≤ n,

c) σn+1(E ⊗H
n
⊗ E) ⊆ E ⊗H

n+1
⊗ k + Fn(Xn+1) for all n ≥ 0,

d) ψn(F
i(Bn(E)) ∩ E ⊗ E

n
⊗ k) ⊆ Qi

i + F i−1(Xn).

In fact a), b) and c) follow immediately from the definition of σn+1. Suppose d)

is valid for n. Let x = x0 ⊗ · · · ⊗ xn+1 ⊗ 1 ∈ F i(Bn+1(E)) ∩ E ⊗ E
n+1
⊗ k. Using

a) and b), we get that for 1 ≤ j ≤ n,

σn+1(ψn(x0,j−1⊗xjxj+1⊗xj+2,n+1⊗1)) ⊆ σn+1(Q
i
i+F

i−1(Xn)) ⊆ Q
i
i−1+F

i−1(Xn).

Since ψn+1(x) = σn+1 ψn b
′
n+1(x), to prove d) for n + 1 we only must check that

σn+1(ψn(x0,n+1)) ⊆ Q
i
i−1 + F i−1(Xn). If xn+1 ∈ A, then using a) and b), we get

σn+1(ψn(x0,n+1)) = σn+1(ψn(x0n ⊗ 1E)xn+1)

⊆ σn+1(E ⊗H
i
⊗A

n−i
⊗A+ F i−1(Xn))

⊆ Qi
i−1 + F i−1(Xn),

and if xn+1 /∈ A, then x0,n+1 ∈ F i−1(Bn(E)), which together a) and c), implies
that

σn+1(ψn(x0,n+1)) ⊆ σn+1(F
i−1(Xn)) ⊆ Q

i
i−1 + F i−1(Xn+1).

From d) follows immediately that ψ∗ preserves filtrations. Next, assuming that φn
preserve filtrations, we prove that φn+1 does it. Let x ∈ F i(Xn+1) ∩ Q

i
i−1. Since

φn+1(x) = ξn+1 φn dn(x) and

ξn+1(φn(d
l
rs(x))) ⊆ ξn+1(φn(F

i−l(Xn))) ⊆ ξn+1(F
i−l(Bn(E))) ⊆ F i−l+1(Bn+1(E)),
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it suffices to see that ξn+1(φn(d
0
rs(x))) ⊆ F

i(Bn+1(E)) for x = 1⊗ h⊗ a⊗ 1, with

h = h1 ⊗ · · · ⊗ hi and a = a1 ⊗ · · · ⊗ an+1−i. Since φn(Q
i
i) ⊆ E ⊗E

n
⊗ k, we have

ξn+1 φn d
0
rs(x) = (−1)rξn+1 φn(1⊗ h⊗ a)

= (−1)rξn+1(φn(1⊗ h⊗ a1,n−i ⊗ 1)an+1−i)

⊆ ξn+1(F
i(Bn(E)) ∩ E ⊗ E

n
⊗A)

⊆ F i(Bn+1(E)).

Next, we prove that ω∗ preserves filtrations. Assume that ωn does it. Let x =
x0 ⊗ · · · ⊗ xn ⊗ 1 ∈ F i(Bn(E)) ∩ E ⊗ E

n
⊗ k. It is evident that ωn+1(x) =

ξn+1 φn ψn(x) − ξn+1 ωn b
′
n(x). Since ξn+1(φn(Q

i
i)) ⊆ ξn+1(E ⊗ E

n
⊗ k) = 0, from

d) we get

ξn+1 φn ψn(x) ∈ ξn+1 φn
(
Qi

i + F i−1(Xn)
)
⊆ ξn+1(F

i−1(Bn(E))) ⊆ F i(Bn(E)).

It remains to check that ξn+1 ωn b
′
n(x) ⊆ F i(Bn(E)). Since ωn(E ⊗ E

n−1
⊗ k) ⊆

E⊗E
n
⊗k, we have ξn+1 ωn b

′
n(x) = (−1)n−1ξn+1 ωn(x0n). Hence, if xn ∈ A, then

ξn+1 ωn b
′
n(x) = (−1)n−1ξn+1(ωn(x0,n−1 ⊗ 1)xn)

⊆ ξn+1(F
i(Bn(E)) ∩ E ⊗ E

n
⊗A)

⊆ F i(Bn+1(E)),

and if xn /∈ A, then x ∈ F i−1(Bn−1(E)), and so

ξn+1 ωn b
′
n(x) = (−1)n−1ξn+1 ωn(x0n) ⊆ ξn+1(F

i−1(Bn(E))) ⊆ F i(Bn+1E) �

2. The Hochschild (co)homology of a crossed product

Let E = A#fH and M an E-bimodule. In this section we use Theorem 1.1.1 in

order to construct complexes X̂∗(E,M) and X̂∗(E,M), simpler than the canonical
ones, giving the Hochschild homology and cohomology of A with coefficients in
M respectively. These complexes have natural filtrations that allow us to obtain
spectral sequences converging to H∗(E,M) and H∗(E,M) respectively.

2.1. Hochschild homology

Let d̂lrs : M ⊗H
s
⊗A

r
→M ⊗H

s−l
⊗A

r+l−1
(r, s ≥ 0, 0 ≤ l ≤ s and r+ l > 0)

be the morphisms defined by:

d̂0rs(x) = mah
(1)

1 ⊗ h(2) ⊗ a2r + (−1)rarm⊗ h⊗ a1,r−1

+
r−1∑

i=1

(−1)im⊗ h⊗ a1,i−1 ⊗ aiai+1 ⊗ ai+2,r ,

d̂1rs(x) = (−1)rm(1#h1)⊗ h2s ⊗ a+ (−1)r+s(1#h(2)s )m⊗ h
(1)
1,s−1 ⊗ ah

(1)
s

+

s−1∑

i=1

(−1)r+imf(h
(1)
i , h

(1)
i+1)

h
(1)
1,i−1 ⊗ h

(2)
1,i−1 ⊗ h

(2)
i h

(2)
i+1 ⊗ hi+2,s ⊗ a

d̂lrs(x) = (−1)l(r+s)(1#h
(2)
s−l+1,s)m⊗ h1,s−l ⊗ F

(l)
r (h

(1)
s−l+1,s ⊗ a),

where x = m⊗ h⊗ a, with a = a1 ⊗ · · · ⊗ ar and h = h1 ⊗ · · · ⊗ hs.



8 JORGE A. GUCCIONE AND JUAN J. GUCCIONE

Theorem 2.1.1. The Hochschild homology of E with coefficients in M is the ho-
mology of the chain complex

X̂∗(E,M) = X̂0
d̂1←− X̂1

d̂2←− X̂2
d̂3←− X̂3

d̂4←− X̂4
d̂5←− X̂5

d̂6←− X̂6
d̂7←− . . . ,

where X̂n =
⊕

r+s=n

M ⊗H
s
⊗A

r
and d̂n =

∑

r+s=n

r+l>0

s∑

l=0

d̂lrs.

Proof. It follows from the fact that X̂∗(E,M) ≃M ⊗Ee (X∗, d∗). An isomorphism

is provided by the maps θ̂rs : M⊗H
s
⊗A

r
−→M⊗EeXrs, defined by θ̂rs(m⊗h⊗a) =

m⊗ (1E ⊗ h⊗ a⊗ 1E) �

2.1.2. A spectral sequence. Let F i(X̂n) =
⊕

0≤s≤iM ⊗ H
s
⊗ A

n−s
. Clearly

F 0(X̂∗) ⊆ F
1(X̂∗) ⊆ . . . is a filtration of X̂∗(E,M). Using this fact we obtain:

Corollary 2.1.2.1. There is a convergent spectral sequence

E1
rs = Hr(A,M ⊗H

s
)⇒ Hr+s(E,M),

where M⊗H
s
is considered as an A-bimodule via a1(m⊗h1s)a2 = a1ma

h
(1)
1s

2 ⊗h
(2)
1s .

The normalized Hochschild complex (M ⊗E
∗
, b∗) has a filtration F 0(M ⊗E

∗
) ⊆

F 1(M ⊗ E
∗
) ⊆ F 2(M ⊗ E

∗
) ⊆ . . . , where F i(M ⊗ E

n
) is the k-submodule of

M ⊗ E
n
generated by the tensors m ⊗ x1 ⊗ · · · ⊗ xn such that at least n − i of

the xj ’s belong to A. The spectral sequence associate to this filtration is called
the homological Hochschild-Serre spectral sequence. Since, for each extension of
groups N ⊆ G with N a normal subgroup, it is hold that k[G] is a crossed product
of k[G/N ] on k[N ], the following theorem (joint with Corollary 3.1.3 below) gives,
as a particular case, the homological version of the main results of [H-S].

Theorem 2.1.2.2. The homological Hochschild-Serre spectral sequence is isomor-
phic to the one obtained in Corollary 2.1.2.1.

Proof. It is an easy consequence of Propositions 1.2.1 and 1.2.2.

2.1.3. A decomposition of X̂∗(E,M). Let [H,H ] be the k-submodule of H
spanned by the set of all elements ab − ba (a, b ∈ H). It is easy to see that [H,H ]

is a coideal in H . Let H̆ be the quotient coalgebra H/[H,H ]. Given h ∈ H , we

let [h] denote the class of h in H̆. Given a subcoalgebra C of H̆ and a right H̆-
comodule (N, ρ), we put NC = {n ∈ N : ρ(n) ∈ N ⊗ C}. It is well known that if

H̆ decomposes as a direct sum of subcoalgebras Ci (i ∈ I), then N =
⊕

i∈I N
Ci .

Now, let us assume that M is a Hopf bimodule. That is, M is an E-bimodule
and a right H-comodule, and the coaction m 7→ m(0) ⊗m(1) verifies:

((a#h)m(b#l))(0)⊗((a#h)m(b#l))(1) = (a#h(1))m(0)(b#l(1))⊗(a#h(2))m(1)(b#l(2)).

For each n ≥ 0, X̂n is an H̆-comodule via

ρn(m⊗ h1s ⊗ a1r) = m(0) ⊗ h
(1)
1s ⊗ a1r ⊗ [m(1)h

(2)
1s ] (r + s = n).
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Moreover, the map ρ∗ : X̂∗(E,M) −→ X̂∗(E,M) ⊗ H̆ is a map of complexes. This

fact implies that if C is a subcoalgebra of H̆ , then d̂n(X̂
C
n ) ⊆ X̂C

n−1. We consider

the subcomplex X̂C
∗ (E,M) of X̂∗(E,M), with modules X̂C

n , and we let HC
∗ (E,M)

denote its homology. By the above discussion, if H̆ decomposes as a direct sum

of subcoalgebras Ci (i ∈ I), then X̂∗(E,M) =
⊕

i∈I X̂
Ci
∗ (E,M). Consequently

H∗(E,M) =
⊕

i∈I H
Ci

∗ (E,M). Finally, the filtration of X̂∗(E,M) induces a filtra-

tion on X̂C
∗ (E,M). Hence we have a convergent spectral sequence

E1
rs = Hr(A, (M ⊗H

s
)C)⇒ HC

r+s(E,M),

where (M ⊗H
s
)C is an A-bimodule via a1(m⊗ h1s)a2 = a1ma

h
(1)
1s

2 ⊗ h
(2)
1s .

2.1.4. Compatibility with the canonical decomposition. Let us assume that
k ⊇ Q, H is cocommutative, A is commutative, M is symmetric as an A-bimodule
and the cocycle f takes its values in k. In [G-S1] was obtained a decomposition of

the canonical Hochschild complex (M ⊗ A
∗
, b∗). It is easy to check that the maps

d̂0 and d̂1 are compatible with this decomposition. Since d̂l = 0 for all l ≥ 2, we

obtain a decomposition of X̂∗(E,M), and then a decomposition of H∗(E,M).

2.2. Hochschild cohomology

Let d̂rsl : Homk(H
s−l
⊗A

s+l−1
,M)→ Homk(H

s
⊗A

r
,M) (0 ≤ l ≤ s, r+ l > 0)

be the morphisms defined by:

d̂rs0 (ϕ)(x) = ah
(1)

1 ϕ(h(2) ⊗ a2r) + (−1)rϕ(h⊗ a1,r−1)ar

+

r−1∑

i=1

(−1)iϕ(h⊗ a1,i−1 ⊗ aiai+1 ⊗ ai+2,r),

d̂rs1 (ϕ)(x) = (−1)r(1#h1)ϕ(h2s ⊗ a) + (−1)r+sϕ(h1,s−1 ⊗ ah
(1)
s )(1#h(2)s )

+
s−1∑

i=1

(−1)r+if(h
(1)
i , h

(1)
i+1)

h
(1)
1,i−1ϕ(h

(2)
1,i−1 ⊗ h

(2)
i h

(2)
i+1 ⊗ hi+2,s ⊗ a),

d̂rsl (ϕ)(x) = (−1)l(r+s)ϕ
(
h1,s−l ⊗ F

(l)
r (h

(1)
s−l+1,s ⊗ a)

)
(1#h

(2)
s−l+1,s),

where x = h⊗ a, with a = a1 ⊗ · · · ⊗ ar and h = h1 ⊗ · · · ⊗ hs.

Theorem 2.2.1. The Hochschild cohomology of E with coefficients in M is the
homology of

X̂∗(E,M) = X̂0 d̂1

−→ X̂1 d̂2

−→ X̂2 d̂3

−→ X̂3 d̂4

−→ X̂4 d̂5−→ X̂5 d̂6

−→ X̂6 d̂7

−→ . . . ,

where X̂n =
⊕

r+s=n

Homk(H
s
⊗A

r
,M) and d̂n =

∑

r+s=n

r+l>0

s∑

l=0

d̂rsl .

Proof. It follows from the fact that X̂∗(E,M) ≃ HomEe((X∗, d∗),M). An iso-

morphism is provided by the maps θ̂rs : Homk(H
s
⊗ A

r
,M) −→ HomEe(Xrs,M),

defined by θ̂rs(ϕ)(1E ⊗ x⊗ 1E) = ϕ(x) �
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2.2.2. A spectral sequence. Let F i(X̂n) =
⊕

s≥i Homk(H
s
⊗A

n−s
,M). Clear-

ly F0 ⊇ F1 ⊇ F2 ⊇ . . . is a filtration of X̂∗(E,M). Using this fact we obtain:

Corollary 2.2.2.1. There is a convergent spectral sequence

Ers
1 = Hr(A,Homk(H

s
,M))⇒ Hr+s(E,M),

where Homk(H
s
,M) is considered as an A-bimodule via a1ϕa2(h) = ah

(1)

1 ϕ(h(2))a2.

Let Fi(Homk(E
n
,M)) be the k-submodule of (Homk(E

∗
,M), b∗) consisting of

maps f ∈ Homk(E
n
,M), for which f(x1 ⊗ · · · ⊗ xn) = 0 whenever n− i of the xj ’s

belong to A. The normalized Hochschild complex (Homk(E
∗
,M), b∗) is filtered by

F0(Homk(E
∗
,M)) ⊇ F1(Homk(E

∗
,M)) ⊇ F2(Homk(E

∗
,M)) ⊇ . . . . The spectral

sequence associated to this filtration is called the cohomological Hochschild-Serre
spectral sequence. The following theorem (joint with Corollary 3.2.3 below) gives,
as a particular case, of the main results of [H-S].

Theorem 2.2.2.2. The cohomological Hochschild-Serre spectral sequence is iso-
morphic to the one obtained in Corollary 2.2.2.1.

Proof. It is an easy consequence of Propositions 1.2.1 and 1.2.2.

2.2.3. Compatibility with the canonical decomposition. Assume that k ⊇
Q, H is cocommutative, A is commutative, M is symmetric as an A-bimodule and
the cocycle f takes its values in k. Then, the Hochschild cohomology H∗(E,M) has
a decomposition similar to the one obtained in 2.1.4 for the Hochschild homology.

3. The Hochschild (co)homology of a
crossed product with invertible cocycle

Let E = A#fH and M an E-bimodule. Assume that the cocycle f is invert-
ible. Then, the map h 7→ 1#h is convolution invertible and its inverse is the map
h 7→ (1#h)−1 = f−1(S(h(2)), h(3))#S(h(1)). Under this hypothesis, we prove that

the complexes X̂∗(E,M) and X̂∗(E,M) of Section 2 are isomorphic to simpler com-
plexes. These complexes have natural filtrations, which give the spectral sequences
obtained in [S]. Using these facts and a theorem of Gerstenhaber and Schack, we
prove that if the 2-cocycle f takes its values in a separable subalgebra of A, then
the Hochschild (co)homology of E with coefficients in M is the (co)homology of
H with coefficients in a (co)chain complex. Finally, as an application we obtain

some results about the TorE∗ and Ext∗E functors and an upper bound for the global
dimension of E.

3.1. Hochschild homology

Let d
l

rs : M ⊗A
r
⊗H

s
→M ⊗A

r+l−1
⊗H

s−l
(r, s ≥ 0, 0 ≤ l ≤ s and r+ l > 0)

be the morphisms defined by:

d
0

rs(x) = ma1 ⊗ a2r ⊗ h+ (−1)rarm⊗ a1,r−1 ⊗ h

+

r−1∑

i=1

(−1)im⊗ a1,i−1 ⊗ aiai+1 ⊗ ai+2,r ⊗ h,
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d
1

rs(x) = (−1)rmǫ(h1)⊗ a⊗ h2s + (−1)r+s(1#h(3)s )m(1#h(1)s )−1 ⊗ ah
(2)
s ⊗ h1,s−1

+

s−1∑

i=1

(−1)r+im⊗ a⊗ h1,i−1 ⊗ hihi+1 ⊗ hi+2,s,

d
l

rs(x) = (−1)l(r+s)(1#h
(3)
s−l+1,s)m(1#h

(1)
s−l+1,s)

−1 ⊗ F (l)
r (h

(2)
s−l+1,s ⊗ a),

where x = m⊗ a⊗h, with a = a1⊗ · · · ⊗ ar and h = h1⊗ · · · ⊗ hs. Let X∗(E,M)
be the complex

X∗(E,M) = X0
d1←− X1

d2←− X2
d3←− X3

d4←− X4
d5←− X5

d6←− X6
d7←− . . . ,

where Xn =
⊕

r+s=nM ⊗A
r
⊗H

s
and dn =

∑
r+s=n

r+l>0

∑s
l=0 d

l

rs.

Theorem 3.1.1. The map θ∗ : X̂∗(E,M) −→ X∗(E,M), given by

θn(m⊗ h⊗ a) = m(1#h
(1)
1 ) · · · (1#h(1)s )⊗ a⊗ h(2) (r + s = n),

is an isomorphism of complexes. Consequently, the Hochschild homology of E with
coefficients in M is the homology of X∗(E,M).

Proof. A direct computation shows that θ∗ is a morphism of complexes. The inverse

map of θn is the map m⊗ a⊗ h 7→ m(1#h
(1)
s )−1 · · · (1#h

(1)
1 )−1 ⊗ h(2) ⊗ a �

Note that when f takes its values in k, then X∗(E,M) is the total complex of

the double complex
(
M ⊗A

∗
⊗H

∗
, d

0

∗∗, d
1

∗∗

)
.

For each h ∈ H , we have the morphism θh∗ : (M⊗A
∗
, b∗) −→ (M⊗A

∗
, b∗), defined

by θhr (m⊗ a) = (1#h
(3)
s )m(1#h

(1)
s )−1 ⊗ ah

(2)
s .

Proposition 3.1.2. For each h, l ∈ H the endomorphisms of H∗(A,M) induced
by θh∗ θ

l
∗ and by θhl∗ coincide. Consequently H∗(A,M) is a left H-module.

Proof. By a standard argument it is sufficient to prove it for H0(A,M), and in this
case the result is immediate �

Corollary 3.1.3. The chain complex X∗(E,M) has a filtration F 0 ⊆ F 1 ⊆ . . . ,

where F i(Xn) =
⊕

0≤s≤iM ⊗ A
n−s
⊗ H

s
. The spectral sequence of this filtra-

tion is isomorphic to the one obtained in Corollary 2.1.2. From Proposition 3.1.2
it follows that if H is a flat k-module, then E1

rs = Hr(A,M) ⊗ H
s
and E2

rs =
Hs(H,Hr(A,M)).

Given an A-bimodule M we let [A,M ] denote the k-submodule of M generated
by the commutators am−ma (a ∈ A and m ∈M).

Remark 3.1.4. From Corollary 3.1.3 it follows immediately that if A is separable,
then H∗(E,M) = H∗(H,M/[A,M ]), and if A is quasi-free, then there is a long
exact sequence

. . . −→Hn+1(H,H0(A,M)) −→ Hn−1(H,H1(A,M)) −→ Hn(E,M) −→

Hn(H,H0(A,M)) −→ Hn−2(H,H1(A,M)) −→ Hn−1(E,M) −→ . . . .
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3.1.5. Separable subalgebras. Let S be a separable subalgebra of A. Next we
prove that if the 2-cocycle f takes its values in S, then the Hochschild homology of
E with coefficients in M is the homology of H with coefficients in a chain complex.
When S equals A we recover the first part of Remark 3.1.4. Assume that f(h, l) ∈ S

for all h, l ∈ H . Let Ã = A/S, Ã0 = S and Ãr = Ã⊗S · · ·⊗S Ã (r-times) for r > 0,

and let M ⊗S Ã
r⊗S = M ⊗Ae (A ⊗s Ã

r ⊗s A) = M ⊗S Ã
r ⊗Se S be the cyclic

tensor product over S of M and Ãr (see [G-S2] or [Q]). Using the fact that f takes

its values in S, it is easy to see that H acts on (M ⊗S Ã
r⊗S , b∗) via

h ·
(
m⊗S ã

)
= (1#h(3))m(1#h(1))−1 ⊗S ãh

(2)
,

where m⊗S ã = m⊗S a1 ⊗S · · · ⊗S ar⊗S and ãh
(2)

= ah
(2)

1 ⊗S · · · ⊗S a
h(r+1)

r ⊗S.

Theorem 3.1.5.1. The Hochschild homology H∗(E,M), of E with coefficients in

M , is the homology of H with coefficients in (M ⊗S Ã
r⊗S, b∗).

Proof. Let ((M ⊗S Ã
∗⊗S) ⊗ H

∗
, d̃0∗∗, d̃

1
∗∗) be the double complex with horizontal

differentials

d̃0rs(x) = ma1 ⊗S ã2r ⊗ h+ (−1)rarm⊗S ã1,r−1 ⊗ h

+

r−1∑

i=1

(−1)im⊗S ã1,i−1 ⊗S aiai+1 ⊗S ãi+2,r ⊗ h,

and vertical differentials

d̃1rs(x) = (−1)rm⊗s ã⊗ h2s + (−1)r+s(1#h(3)s )m(1#h(1)s )−1 ⊗S ãh
(2)
s ⊗ h1,s−1

+
s−1∑

i=1

(−1)r+im⊗S ã⊗ h
(2)
1,i−1 ⊗ h

(2)
i h

(2)
i+1 ⊗ hi+2,s,

where x = m ⊗ ã ⊗ h, with ã = a1 ⊗S · · · ⊗S ar⊗S and h = h1 ⊗ · · · ⊗ hs. Let

X
S

∗ (E,M) be the total complex of ((M ⊗S Ã
∗⊗S)⊗H

∗
, d̃0∗∗, d̃

1
∗∗). We must prove

that H∗(E,M) is the homology of X
S

∗ (E,M). Let π∗ : X∗(E,M) → X
S

∗ (E,M)
be the map m ⊗ a1r ⊗ h1s 7→ m ⊗S ã1r ⊗ h1s. Consider the filtration F 0S

∗ ⊆

F 1S
∗ ⊆ F 2S

∗ ⊆ . . . of X
S

∗ (E,M), where F iS
n =

⊕
0≤s≤i(M ⊗S Ã

n−s⊗S) ⊗ H
s
.

From Theorem 1.2 of [G-S2], it follows that π∗ is a morphism of filtered complexes
inducing an quasi-isomorphism between the graded complexes associated to the

filtrations of X∗(E,M) and X
S

∗ (E,M). Consequently π∗ is a quasi-isomorphism.
The proof can be finished by applying Theorem 3.1.1 �

3.1.6. A decomposition of X∗(E,M). Here we freely use the notations of
Subsection 2.1.3. SupposeM is a Hopf bimodule. A direct computation shows that

the H̆-coaction of X∗(E,M), obtained transporting the one of X̂∗(E,M) through

θ∗ : X̂∗(E,M) −→ X∗(E,M), is given by

(2) m⊗ a⊗ h 7→ m(0) ⊗ a⊗ h(2) ⊗m(1)S(h(1)s ) · · ·S(h
(1)
1 )h

(3)
1 · · ·h

(3)
s .
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For each subcoalgebra C of H̆ , we consider the subcomplexX
C

∗ (E,M) of X∗(E,M)

with modules X
C

n , and we let HC
∗ (E,M) denote its homology. If H̆ decomposes

as a direct sum of subcoalgebras Ci (i ∈ I), then X∗(E,M) =
⊕

i∈I X
Ci

∗ (E,M).

Consequently H∗(E,M) =
⊕

i∈I H
Ci

∗ (E,M). From (2) it follows that if H̆ is cocom-

mutative, then X
C

n =
⊕

r+s=nM
C ⊗A

r
⊗H

s
. Finally, the filtration of X∗(E,M)

induces a filtration on X
C

∗ (E,M). Hence, when H̆ is cocommutative and H is a
flat k-module, we have a convergent spectral sequence

E2
rs = Hr(H,Hs(A,M

C))⇒ HC
r+s(E,M),

where Hr(A,M
C) is a left H-module via the action introduced in Proposition 3.1.2.

3.1.7. An application to TorE∗ . Let k be a field, B an arbitrary k-algebra, M

a right B-module and N a left B-module. It is well known that TorB∗ (M,N) ≃
H∗(B,N ⊗M) (here N ⊗M is an B-bimodule via a(n⊗m)b = an⊗mb). This fact
and Corollary 3.1.3 show that if k is a field, M is a right E-module and N is a left
E-module, then there is a convergent spectral sequence

E2
rs = Hr(H,Tor

A
s (M,N))⇒ TorEr+s(M,N).

3.2. Hochschild cohomology

Let d
rs

l : Homk(A
r+l−1

⊗H
s−l

,M)→ Homk(A
r
⊗H

s
,M) (0 ≤ l ≤ s, r+ l > 0)

be the morphisms defined by:

d
rs

0 (ϕ)(x) = a1ϕ(a2r ⊗ h) + (−1)rϕ(a1,r−1 ⊗ h)ar

+

r−1∑

i=1

(−1)iϕ(a1,i−1 ⊗ aiai+1 ⊗ ai+2,r ⊗ h),

d
rs

1 (ϕ)(x) = (−1)rǫ(h1)ϕ(a ⊗ h2s) + (−1)r+s(1#h(1)s )−1ϕ(ah
(2)
s ⊗ h1,s−1)(1#h

(3)
s )

+

s−1∑

i=1

(−1)r+iϕ(a ⊗ h1,i−1 ⊗ hihi+1 ⊗ hi+2,s),

d
rs

l (ϕ)(x) = ((−1)l(r+s)#h
(1)
s−l+1,s)

−1ϕ
(
F (l)
r (h

(2)
s−l+1,s ⊗ a)⊗ h1,s−l

)
(1#h

(3)
s−l+1,s),

where x = a⊗ h, with a = a1 ⊗ · · · ⊗ ar and h = h1 ⊗ · · · ⊗ hs. Let X
∗
(E,M) be

the complex

X
∗
(E,M) = X

0 d
1

−→ X
1 d

2

−→ X
2 d

3

−→ X
3 d

4

−→ X
4 d5−→ X

5 d
6

−→ X
6 d

7

−→ . . . ,

where X
n
=
⊕

r+s=nHomk(A
r
⊗H

s
,M) and d

n
=
∑

r+s=n

r+l>0

∑s
l=0 d

rs

l .

Theorem 3.2.1. The map θ∗ : X
∗
(E,M) −→ X̂∗(E,M), given by

θn(ϕ)(h ⊗ a) = (1#h
(1)
1 ) · · · (1#h(1)s )ϕ(a ⊗ h(2)) (r + s = n),
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is an isomorphism of complexes. Consequently, the Hochschild cohomology of E

with coefficients in M is the homology of X
∗
(E,M).

Proof. It is similar to the proof of Theorem 3.1.1 �

Note that when f takes its values in k, then X
∗
(E,M) is the total complex of

the double complex
(
Homk(A

∗
⊗H

∗
,M), d

∗∗

0 , d
∗∗

1

)
.

For each h ∈ H we have the map θ∗h : (Homk(A
∗
,M), b∗) −→ (Homk(A

∗
,M), b∗),

defined by θrh(ϕ)(a) = (1#h(1))−1ϕ(ah
(2)

)(1#h(3)).

Proposition 3.2.2. For each h, l ∈ H the endomorphisms of H∗(A,M) induced
by θ∗l θ

∗
h and by θ∗hl coincide. Consequently H∗(A,M) is a right H-module.

Proof. By a standard argument it is sufficient to prove it for H0(A,M), and in this
case the result is immediate �

Corollary 3.2.3. The cochain complex X
∗
(E,M) has a filtration F0 ⊇ F1 ⊇ . . . ,

where Fi(X
n
) =

⊕
0≤r≤n−iHomk(A

r
⊗H

n−r
,M). The spectral sequence of this fil-

tration is isomorphic to the one obtained in Corollary 2.2.2. From Proposition 3.2.2
it follows that Ers

1 = Homk(H
s
,Hr(A,M)) and Ers

2 = Hs(H,Hr(A,M)).

Given an A-bimodule M , we let MA denote the k-submodule of M consisting of
the elements m verifying am = ma for all a ∈ A.

Remark 3.2.4. From Corollary 3.2.3, it follows immediately that if A is separable,
then H∗(E,M) = H∗

(
H,MA

)
and if A is quasi-free, then there is a long exact

sequence

. . . −→Hn−2(H,H1(A,M)) −→ Hn(H,H0(A,M)) −→ Hn(E,M) −→

Hn−1(H,H1(A,M)) −→ Hn+1(H,H0(A,M)) −→ Hn+1(E,M) −→ . . . .

3.2.5. Separable subalgebras. Let S be a separable subalgebra of A and let Ãr

(r ≥ 0) be as in 3.1.5. Suppose f(h, l) ∈ S for all h, l ∈ H . Using the fact that f

takes its values in S it is easy to see that H acts on
(
HomAe(A⊗s Ã

r⊗sA,M), b∗
)
=(

HomSe(Ãr ,M), b∗
)
via

(
ϕ · h

)
(ã) = (1#h(1))−1ϕ

(
ãh

(2))
(1#h(3)).

Theorem 3.2.5.1. The Hochschild cohomology H∗(E,M), of E with coefficients

in M , is the cohomology of H with coefficients in
(
HomSe(Ãr,M), b∗

)
.

Proof. It is similar to the proof of Theorem 3.1.5.1 �

3.2.6. An application to Ext∗E. Let k be a field, B an arbitrary k-algebra andM ,
N two left B-modules. It is well known that Ext∗B(M,N) ≃ H∗(B,Homk(M,N))
(here Homk(M,N) is an B-bimodule via (aϕb)(m) = aϕ(bm)). This fact and
Corollary 3.2.3 show that if k is a field and M and N are left E-modules, then
there is a convergent spectral sequence

Ers
2 = Hr(H,ExtsA(M,N))⇒ Extr+s

E (M,N).

As a corollary we obtain that gl. dim(E) ≤ gl. dim(A) + gl. dim(H), where gl. dim
denotes the left global dimension. Note that this result implies Maschke’s Theorem
for crossed product, as it was established in [B-M].
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4. The Cartan-Leray and Grothendieck spectral sequences

Assume that E is a crossed product with invertible cocycle. In this case another
two spectral sequences converging to H∗(E,M) and with E2-term H∗(H,H∗(A,M))
can be considered. They are the Cartan-Leray and the Grothendieck spectral se-
quences. The last one was introduced for the more general setting of Galois ex-
tension in [S]. In this Section we recall these constructions and we prove that both
coincide with the Hochschild-Serre spectral sequence. Similar results are valid in
the cohomological setting.

Let (H
∗
⊗ H, d∗) be the canonical resolution of k as a right H-module and

(Z∗, ∂∗) = (E ⊗E
∗
⊗E, b′∗)⊗ (H

∗
⊗H, d∗). Consider E ⊗E

r
⊗E ⊗H

s
⊗H as an

E-bimodule via

(a#l)(x⊗ h)(b#q) = ((a#l)x0 ⊗ x1r ⊗ xr+1(b#q
(1)))⊗ (h1s ⊗ hs+1q

(2)),

where x = x0 ⊗ · · · ⊗ xr+1 and h = h1 ⊗ · · · ⊗ hs+1. It is clear that

(3) E
µ
←− Z0

∂1←− Z1
∂2←− Z2

∂3←− Z3
∂4←− Z4

∂5←− Z5
∂6←− Z6

∂7←− Z7
∂8←− . . . ,

where µ((a0#h0 ⊗ a1#h1) ⊗ l) = ǫ(l)a0a1f(h
(1)
0 h

(1)
1 )#h

(2)
0 h

(2)
1 , is a complex of

E-bimodules. Moreover (3) is contractible as a complex of left E-modules, with
contracting homotopy ζn (n ≥ 0) given by ζ0(1E) = 1E ⊗ 1E ⊗ 1H and

ζn+1(y) =

{
−x⊗ 1E ⊗ h+ (−1)n+1x0x1 ⊗ 1E ⊗ h⊗ 1H if r = 0

(−1)r+1x⊗ 1E ⊗ h if r > 0
,

where y = x⊗ h, with x = x0 ⊗ · · · ⊗ xr+1 and h = h1 ⊗ · · · ⊗ hn−r+1. Since the
map

τ : E ⊗ E
r
⊗H

s
⊗H ⊗ E → E ⊗ E

r
⊗ E ⊗H

s
⊗H,

given by τ(x0r⊗h⊗xr+1) = (x0r⊗1E⊗h)xr+1, is an isomorphism of E-bimodules
(the inverse of τ is the map x0r⊗ a#h⊗h 7→ x0r ⊗h1s⊗hs+1S

−1(h(2))⊗ a#h(1)),
(Z∗, ∂∗) is a relative projective resolution of E.

LetM be an E-bimodule. The groupsM⊗E⊗Aop (E⊗E
r
⊗E) are leftH-modules

via h(m ⊗ x) = (1#h(2))m ⊗ x0r ⊗ xr+1(1#h
(1))−1, where x = x0 ⊗ · · · ⊗ xr+1.

There is an isomorphism

M ⊗Ee (Z∗, ∂∗) ≃ (H
∗
⊗H, d∗)⊗H (M ⊗E⊗Aop (E ⊗ E

∗
⊗ E, b′∗)).

Let F i =
⊕i

j=0(H
j
⊗ H) ⊗H (M ⊗A⊗Eop E ⊗ E

∗
⊗ E). It is immediate that

F 0 ⊆ F 1 ⊆ F 2 ⊆ F 3 ⊆ . . . , is a filtration of the last complex. The spec-
tral sequence associate to this filtration converges to H∗(E,M) and has E2-term
H∗(H,H∗(A,M)). This spectral sequence is called the homological Cartan-Leray

spectral sequence. Similarly the groups HomE⊗Aop(E ⊗ E
r
⊗ E,M) are right H

modules via f.h(x0,r+1) = f(x0r ⊗ xr+1(1#h
(1))−1)(1#h(2)) and there is an iso-

morphism

HomEe((Z∗, ∂∗),M) ≃ HomH

(
(H

∗
⊗H, d∗),HomE⊗Aop((E ⊗ E

∗
⊗ E, b′∗),M)

)
.
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This complex has a filtration F0 ⊇ F1 ⊇ F2 ⊇ F3 ⊇ F4 ⊇ . . . , defined by Fn
i =⊕

j≥i HomH

(
H

j
⊗H,HomE⊗Aop(E⊗E

n−j
⊗E,M)

)
. The spectral sequence asso-

ciate to this filtration converges to H∗(E,M) and has E2-term H∗(H,H∗(A,M)).
This spectral sequence is called the cohomological Cartan-Leray spectral sequence.

Let Φ∗ : (E ⊗ E
∗
⊗ E, b′∗) → (Z∗, ∂∗) and Ψ∗ : (Z∗, ∂∗) → (E ⊗ E

∗
⊗ E, b′∗) be

the morphisms of E-bimodule complexes, recursively defined by

Φ0(x⊗ 1E) = x⊗ 1E ⊗ 1H , Ψ0(x⊗ 1E ⊗ h) = ǫ(h)x⊗ 1E,

Φn+1(x⊗ 1E) = ζn+1 Φn b
′
n+1(x⊗ 1E) for x ∈ E ⊗ E

n+1
,

Ψn+1(x ⊗ 1E ⊗ h) = ξn+1 ψn ∂n+1(x ⊗ 1E ⊗ h) for x ∈ E ⊗ E
r
, h ∈ H

n+1−r
⊗H .

Proposition 4.1. It is hold that Ψ∗Φ∗ = id∗ and that Φ∗ Ψ∗ is homotopically

equivalent to the identity map. The homotopy Φ∗ Ψ∗

Ω∗+1
−−−→ id∗ is recursively defined

by Ω1(x ⊗ 1E ⊗ h) = x⊗ 1E ⊗ h⊗ 1H and

Ωn+1(x⊗ 1E ⊗ h) = ζn+1 (Φn Ψn − id− Ωn ∂n)(x ⊗ 1E ⊗ h),

for x = x0 ⊗ · · · ⊗ xr and h = h1 ⊗ · · · ⊗ hn+1−r.

Proof. It is easy to see that Φ∗ and Ψ∗ are morphisms of complexes. Arguing as
in Proposition 1.2.1 we get that Ω∗+1 is an homotopy from Φ∗ Ψ∗ to the identity
map. It remains to prove that Ψ∗ Φ∗ = id∗. It is clear that Ψ0 Φ0 = id0. Assume

that Ψn Φn = idn. Since Φn+1(E ⊗ E
n
⊗ k) ⊆

∑n+1
r=0 E ⊗ E

r
⊗ k ⊗H

n+1−r
⊗H ,

we have that on E ⊗ E
n
⊗ k

Ψn+1Φn+1 = ξn+1 Ψn ∂n+1 Φn+1 = ξn+1 Ψn ∂n+1 ζn+1 Φn b
′
n+1

= ξn+1 ΨnΦn b
′
n+1 − ξn+1 Ψn ζn ∂n Φn b

′
n+1 = ξn+1 b

′
n+1 = idn+1 �

Next, we consider the normalized Hochschild resolution (E⊗E
∗
⊗E, b′∗) filtered

as in Proposition 1.2.2 and the resolution (Z∗, ∂∗) filtered by F 0
∗ ⊆ F

1
∗ ⊆ F

2
∗ ⊆ . . . ,

where F i
∗ =

⊕i
j=0(E ⊗ E

n−j
⊗ E)⊗ (H

j
⊗H).

Proposition 4.2. We have that

Φn(a0#h0 ⊗ · · · ⊗ an+1#hn+1) =

n∑

j=0

(−1)j(n+1)(a0#h0)(a1#h
(1)
1 ) . . . (aj#h

(1)
j )

⊗ (aj+1#h
(1)
j+1)⊗ · · · ⊗ (an+1#h

(1)
n+1)⊗ h

(2)
1 ⊗ · · · ⊗ h

(2)
j ⊗ h

(2)
j+1 · · ·h

(2)
n+1.

Consequently the map Φ∗ preserve filtrations.

Proof. It follows by induction on n, using the recursive definition of Φ∗ �
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Proposition 4.3. The map Φ∗ induces an homotopy equivalence of E-bimodule
complexes between the graded complexes associated to the filtrations of (B∗(E), b′∗)

and (B∗(E), b′∗)⊗ (H
∗
⊗H, d∗).

Proof. Note that

F s(X∗, d∗)

F s−1(X∗, d∗)
= (X∗s, d

0
∗s) = (E ⊗H

s
⊗A

∗
⊗ E, d0∗s),

F s(Z∗, ∂∗)

F s−1(Z∗, ∂∗)
= (B∗(E), b′∗)⊗H

s
⊗H,

where d0∗,s is the boundary map introduced in Subsection 1.1. By Proposition 1.2.2

it suffices to check that Φ∗ = Φ∗ φ∗ induces an homotopy equivalence Φ̃s
∗ of E-

bimodules complexes, from (E⊗H
s
⊗A

∗
⊗E, d0∗,s) to (B∗(E), b′∗)⊗H

s
⊗H . Let Ys

and µs be as in Subsection 1.1 and Ỹs = E ⊗H
s
⊗H endowed with the structure

of E-bimodule given by x0(x1 ⊗ h)x2 = x0x1x2 ⊗ h, where h = h0 ⊗ · · · ⊗ hs+1.
Consider the diagram

(4)

Ys
µs

←−−−− E ⊗H
s
⊗ E

d0
1s←−−−− E ⊗H

s
⊗A⊗ E

d0
2s←−−−− . . .

yΦ̃s

yΦ̃s
0

yΦ̃s
1

Ỹs
µ̃s

←−−−− E ⊗ E ⊗H
s
⊗H

b′1←−−−− E ⊗ E ⊗ E ⊗H
s
⊗H

b′2←−−−− . . . ,

where µ̃s((x0⊗x1)⊗h) = x0x1⊗h and Φ̃s(x⊗h) = x(1#h
(1)
1 ) · · · (1#h

(1)
s+1)⊗h(2).

We assert that Φ̃s
0(x) = 1E⊗(1#h

(1)
1 ) · · · (1#h

(1)
s )⊗h(2)⊗1H , where x = 1E⊗h⊗1E ,

with h = h1 ⊗ · · · ⊗ hs. To prove this it suffices to check that

Φs φs(x) ∈ 1E ⊗ (1#h
(1)
1 ) · · · (1#h(1)s )⊗ h(2) ⊗ 1H + Fs−1,

which follows by induction on s, using that Φs φs(x) = ζs Φs−1 φs−1 ds(x). Now, it

is immediate that µ̃s Φ̃
s
0 = Φ̃s µs. Since Φ̃s is an isomorphism and the rows of (4)

are relative projective resolutions of Ys and Ỹs respectively, it follows that Φ̃s
∗ is an

homotopy equivalence �

Corollary 4.4. The (co)homological Cartan-Leray spectral sequence is isomorphic
to the (co)homological Hochschild-Serre spectral sequence.

4.5 The Grothendieck spectral sequence. If M is an E-bimodule, then the

group H0(A,M) =M/[A,M ] is a left H-module via h ·m = (1#h(2))m(1#h(1))−1,
where the m denotes the class of m in M/[A,M ]. Let us consider the functors
M 7→ H0(E,M) from the category of E-bimodules to the category of k-modules,
M 7→ H0(A,M) from the category ofE-bimodules to the category of leftH-modules
and M 7→ H0(H,M) from the category of left H-modules to the category of k-
modules. It is easy to see that H0(E,M) = H0(H,H0(A,M)) and that if M is
a relatively projective Ee/Eop-module, then H0(A,M) is a relatively projective

H/k-module. In fact, if M = E ⊗N , then the map h⊗n 7→ 1#h(2) ⊗ n(1#h(1))−1

is an isomorphism of left H-modules from H ⊗ N to H0(A,M). Thus we have a
Grothendieck spectral sequence

E2
rs = Hs(H,Hr(A,M))→ Hr+s(E,M)).
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We assert that the Grothendieck spectral sequence and the Cartan-Leray spectral
sequence coincide. To prove this we use a concrete construction of the Grothendieck

spectral sequence. Let (P∗, ∂∗) = (M ⊗ E
∗
⊗ E, b′∗) be the normalized canonical

resolution of M as a right Ee-module. Let us write (P ∗, ∂∗) = (P∗, ∂∗) ⊗Ae A.
Consider the double complex

C∗∗ :=

...
...

...
y

y
y

H ⊗H P 1 ←−−−− H ⊗H ⊗H P 1 ←−−−− H
2
⊗H ⊗H P 1 ←−−−− . . .

y
y

y

H ⊗H P 0 ←−−−− H ⊗H ⊗H P 0 ←−−−− H
2
⊗H ⊗H P 0 ←−−−− . . . ,

whose r-th column is (−1)r times H
r
⊗H ⊗H (P ∗, ∂∗) and whose s-th row is the

canonical complex (H
∗
⊗ H ⊗H P s, d∗) giving the homology H∗(H,P s) of k as

a trivial right H-module with coefficients in P s. By definition, the Grothendieck
spectral sequence is the spectral sequence associate to the filtrations by columns

of C∗∗. Since C∗∗ ≃ (H
∗
⊗ H, d∗) ⊗H (M ⊗E⊗Aop (E ⊗ E

∗
⊗ E, b′∗)) as filtered

complexes, the homological Cartan-Leray and the Grothendieck spectral sequence
coincide. The same is valid in the cohomological setting.

Appendix A

Let R → S be an unitary ring map and let N be a left S-module. In this
section, under suitable conditions, we construct a projective relative resolution of
N . We need this result (with R = E, S = Ee and N = E) to complete the proof
of Theorem 1.1.1. The general case considered here simplifies the notation and
enables us to consider other cases, for instance algebras of groups having particular
resolutions.

Let us consider a diagram of left S-modules and S-module maps

...
y∂2

Y1
µ1

←−−−− X01
d0
11←−−−− X11

d0
21←−−−− . . .

y∂1

Y0
µ0

←−−−− X00
d0
10←−−−− X10

d0
20←−−−− . . . ,

such that:

a) The column and the rows are chain complexes.

b) For each r, s ≥ 0 we have a left R-module Xrs and S-module maps

srs : Xrs → S ⊗Xrs and πrs : S ⊗Xrs → Xrs

verifying πrs srs = id.
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c) Each row is contractible as a complex of R-modules, with a chain contracting
homotopy σ0

0s : Ys → X0s and σ0
r+1,s : Xrs → Xr+1,s (r ≥ 0).

We are going to modify this diagram by adding S-module maps

dlrs : Xrs −→ Xr+l−1,s−l (r, s ≥ 0 and 1 ≤ l ≤ s).

Let Xn =
⊕

r+s=nXrs and dn =
∑

r+s=n

∑s
l=0

r+l>0
dlrs (n ≥ 1). Consider the maps

µ′
n : Xn → Yn (n ≥ 0), given by:

µ′
n(x) =

{
µn(x) for x ∈ X0n

0 for x ∈ Xr,n−r with r > 0.

We define the arrows dlrs in such a way that (X∗, d∗) becomes a chain complex of
S-modules and µ′

∗ : (X∗, d∗)→ (Y∗,−∂∗) becomes a chain homotopy equivalence of
complexes of R-modules. In fact, we are going to build R-module morphisms

σl
l,s−l : Ys → Xl,s−l and σl

r+l+1,s−l : Xrs → Xr+l+1,s−l (r, s ≥ 0 and 1 ≤ l ≤ s),

satisfying the following:

Theorem A.1. Let C∗(µ
′
∗) be the mapping cone of µ′

∗, that is, C∗(µ
′
∗) = (C∗, δ∗),

where Cn = Yn ⊕Xn−1 and δn(yn, xn−1) =
(
−∂(yn)− µ

′
n−1(xn−1),−dn−1(xn−1)

)
.

The family of R-module maps σn+1 : Cn(µ
′
∗)→ Cn+1(µ

′
∗) (n ≥ 0), defined by:

σn+1 = −
∑

r+s=n−1
r≥−1

s∑

l=0

σl
r+l+1,s−l,

is a chain contracting homotopy of C∗(µ
′
∗).

Corollary A.2. Let N be a left S-module. If there is a S-module map µ̃ : Y0 → N ,
such that

(*) N
µ̃
←− Y0

∂1←− Y1
∂2←− Y2

∂3←− Y3
∂4←− Y4

∂5←− Y6
∂7←− . . .

is contractible as a complex of left R-modules, then

(**) N
µ
←− X0

d1←− X1
d2←− X2

d3←− X3
d4←− X4

d5←− X5
d6←− X6

d7←− . . . ,

where µ = µ̃ µ0, is a relative projective resolution. Moreover, if σ−1
0 : N → Y0,

σ−1
n+1 : Yn → Yn+1 (n ≥ 0) is a chain contracting homotopy of (*), then we obtain

a chain contracting homotopy σ0 : N → X0, σn+1 : Xn → Xn+1 (n ≥ 0) of (**),
defining σ0 = σ0

00 σ
−1
0 and

σn+1 = −

n+1∑

l=0

σl
l,n−l+1 σ

−1
n+1 µn +

∑

r+s=n

s∑

l=0

σl
r+l+1,s−l.

Proof. Write

σ̃n =
∑

r+s=n−1
r≥0

s∑

l=0

σl
r+l+1,s−l (n ≥ 1) and σ̂n =

n∑

l=0

σl
l,n−l (n ≥ 0).
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From Theorem A.1, we have

(*n) σ̂n ∂n+1 =

n∑

l=0

σl
l,n−l ∂n+1 = −

n∑

l=0

l+1∑

i=0

dl+1−i
i,n+1−i σ

i
i,n+1−i = −dn+1 σ̂n+1.

It is clear that µσ0 = id. Moreover

σ0 µ = σ0
00 σ

−1
0 µ̃ µ0 = σ0

00 µ0 − σ
0
00 ∂1 σ

−1
1 µ0

= id− d010 σ
0
10 + d101 σ

0
01 σ

−1
1 µ0 + d010 σ

1
10 σ

−1
1 µ0,

where the last equality follows from (*0). Now, let n ≥ 1. Take x ∈ Xr,n−r. If
r ≥ 1, then the equality (0, x) = δn+2 σn+2(0, x) + σn+1 δn+1(0, x) implies that
x = dn+1 σ̃n+1(x) + σ̃n dn(x). Hence, we can suppose r = 0. Then, from (0, x) =
δn+2 σn+2(0, x) + σn+1 δn+1(0, x), we get

x = dn+1̃σn+1(x) + σ̃ndn(x) + σ̂nµn(x)

= dn+1̃σn+1(x) + σ̃ndn(x) + σ̂nσ
−1
n ∂nµn(x) + σ̂n∂n+1σ

−1
n+1µn(x)

= dn+1̃σn+1(x) + σ̃ndn(x)− σ̂nσ
−1
n µn−1dn(x) + σ̂n∂n+1σ

−1
n+1µn(x)

= dn+1̃σn+1(x) + σ̃ndn(x)− σ̂nσ
−1
n µn−1dn(x)− dn+1̂σn+1σ

−1
n+1µn(x),

where the last equality follows from (*n) �

Next we define the morphisms dlrs and we prove that (X∗, d∗) is a chain complex.

Definition A.3. We define the S-module maps dlrs : Xrs → Xr+l−1,s−l (r ≥ 0 and

1 ≤ l ≤ s), recursively by dlrs = d
l

rs srs, where d
l

rs : S ⊗Xrs → Xr+l−1,s−l (r ≥ 0
and 1 ≤ l ≤ s) is the S-module map defined by

d
l

rs(x) =





−σ0
0,s−1 ∂s µs π0s(x) if r = 0 and l = 1,

−
∑l−1

j=1 σ
0
l−1,s−l d

l−j
j−1,s−j d

j
0s π0s(x) if r = 0 and 1 < l ≤ s,

−
∑l−1

j=0 σ
0
r+l−1,s−l d

l−j
r+j−1,s−j d

j
rs πrs(x) if r > 0,

for each x = 1⊗ x ∈ S ⊗Xrs.

Proposition A.4. We have µs−1 d
1
0s = −∂s µs and

d0r+l−1,s−l d
l
rs =

{
−
∑l−1

j=1 d
l−j
j−1,s−j d

j
0s if r = 0 and 1 < l ≤ s

−
∑l−1

j=0 d
l−j
r+j−1,s−j d

j
rs if r > 0 and 1 ≤ l ≤ s.

Consequently (X∗, d∗) is a chain complex.

Proof. We prove the proposition by induction on l and r. To simplify the ex-
pressions we put d00s := µs, d

1
−1,s := ∂s and dl−1,s := 0 for all l > 1. Moreover

to abbreviate we do not write the subindices. Let x = 1 ⊗ x with x ∈ X0s.

Since d
1

0(x) = −σ
0 d1 d0 π(x), we have d0 d

1
(x) = −d0 σ0 d1 d0 π(x) = −d1 d0 π(x),

which implies d0 d1 = −d1 d0. Let l + r > 1 and suppose the result is valid for
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djp∗ with j < l or j = l and p < r. Let x = 1 ⊗ x with x ∈ Xrs. Since

d
l
(x) = −

∑l−1
j=0 σ

0 dl−j dj π(x), then

d0 d
l
(x) = −

l−1∑

j=0

d0 σ0 dl−j dj π(x) = −

l−1∑

j=0

dl−j dj π(x) +

l−1∑

j=0

σ0 d0 dl−j dj π(x).

Applying first the inductive hypothesis to d0 dl−j with (0 ≤ j < l) and then to
d0 dj with (0 < j < l), we obtain:

d0 d
l
(x) = −

l−1∑

j=0

dl−j dj π(x)−
l−1∑

j=0

l−j−1∑

i=0

σ0 dl−j−i di dj π(x)

= −

l−1∑

j=0

dl−j dj π(x)−

l−2∑

j=0

l−j−1∑

i=1

σ0 dl−j−i di dj π(x)

+

l−1∑

j=1

j−1∑

h=0

σ0 dl−j dj−h dh π(x) = −

l−1∑

j=0

dl−j dj π(x).

The desired equality follows immediately from this fact �

It is immediate that µ′
∗ : (X∗, d∗)→ (Y∗,−∂∗) is a morphism of S-module chain

complexes. Next, we construct the chain contracting homotopy of C∗(µ
′
∗).

Definition A.5. We define σl
l,s−l : Ys → Xl,s−l and σ

l
r+l+1,s−l : Xrs → Xr+l+1,s−l

(0 < l ≤ s, r ≥ 0), recursively by:

σl
r+l+1,s−l = −

l−1∑

i=0

σ0
r+l+1,s−l d

l−i
r+i+1,s−i σ

i
r+i+1,s−i (0 < l ≤ s and r ≥ −1).

Proof of Theorem A.1. To simplify the expressions we put d0−1,s := 0, d00s := µs,

d1−1,s := ∂s and dl−1,s := 0 for all l > 1. Because of the definitions of d∗ and σ∗, it

suffices to check that σ0
rs d

0
rs + d0r+1,s σ

0
r+1,s = id and

l∑

i=0

σl−i
r+l,s−l d

i
rs +

l∑

i=0

dl−i
r+i+1,s−i σ

i
r+i+1,s−i = 0 for l > 0,

where we put d0−1,s = 0. The first formula simply says that σ0
∗ is a chain contracting

homotopy of d0∗. Let us see the second one. To abbreviate we do not write the
subindices. From the definition of σl we have:

d0 σl = −

l−1∑

i=0

d0 σ0 dl−i σi =

l−1∑

i=0

σ0 d0 dl−i σi −

l−1∑

i=0

dl−i σi.

Consequently

l∑

i=0

σl−i di +

l∑

i=0

dl−i σi =

l∑

i=0

σl−i di +

l−1∑

i=0

σ0 d0 dl−i σi.
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Then, it suffices to prove that the term appearing on the right side of the equality
is zero. We prove this by induction on l. For l = 1 we have:

σ0 d0 d1 σ0 = −σ0 d1 d0 σ0 = σ0 d1 σ0 d0 − σ0 d1 = −σ1 d0 − σ0 d1.

Suppose l > 1. From Proposition A.5,

l−1∑

i=0

σ0 d0 dl−i σi = −

l−1∑

i=0

l−i−1∑

j=0

σ0 dl−i−j dj σi = −

l−1∑

h=0

h∑

i=0

σ0 dl−h dh−i σi.

So, applying the inductive hypothesis to
∑h

i=0 d
h−i σi (h ≥ 0), we obtain

l−1∑

i=0

σ0 d0 dl−i σi =

l−1∑

h=0

h∑

i=0

σ0 dl−h σh−i di − σ0 dl

=

l−1∑

i=0

l−i−1∑

j=0

σ0 dl−i−j σj di − σ0 dl

= −

l∑

i=0

σl−i di �

Appendix B

In this appendix we compute explicitly the maps dlrs introduced in Section 1,
completing the results of Theorem 1.1.3.

Definition B.1. Given h = h1 ⊗ · · · ⊗ hl ∈ H
l
, we define F

(l)
0 (h), recursively by:

F
(2)
0 (h) = −f(h1, h2),

F
(l+1)
0 (h) =

l∑

j=1

(−1)jf(h
(1)
j , h

(1)
j+1)

h
(1)
1,j−1 ⊗ F (l)(hj(2)),

where hj(2) = h
(2)
1,j−1 ⊗ h

(2)
j h

(2)
j+1 ⊗ hj+2,l+1. For instance, we have

F
(3)
0 (h) =f(h

(1)
1 , h

(1)
2 )⊗ f(h

(2)
12 , h3)− f(h

(1)
2 , h

(1)
3 )h

(1)
1 ⊗ f(h

(2)
1 , h

(2)
23 )

and

F
(4)
0 (h) =− f(h

(1)
1 , h

(1)
2 )⊗ f(h

(2)
12 , h

(1)
3 )⊗ f(h

(3)
12 h

(2)
3 , h4)

+ f(h
(1)
1 , h

(1)
2 )⊗ f(h

(1)
3 , h

(1)
4 )h

(2)
12 ⊗ f(h

(2)
12 , h

(2)
34 )

+ f(h
(1)
2 , h

(1)
3 )h

(1)
1 ⊗ f(h

(2)
1 , h

(2)
23 )⊗ f(h

(3)
13 , h4)

− f(h
(1)
2 , h

(1)
3 )h

(1)
1 ⊗ f(h

(2)
23 , h

(1)
4 )h

(2)
1 ⊗ f(h

(3)
1 , h

(3)
23 h

(2)
4 )

− f(h
(1)
3 , h

(1)
4 )h

(1)
12 ⊗ f(h

(2)
1 , h

(2)
2 )⊗ f(h

(3)
12 , h

(2)
34 )

+ f(h
(1)
3 , h

(1)
4 )h

(1)
12 ⊗ f(h

(2)
2 , h

(2)
34 )

h
(2)
1 ⊗ f(h

(3)
1 , h

(3)
24 ).

For the following definition we adopt the convention that a10 = ar+1,r = 1k ∈ k.
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Definition B.2. Given h = h1 ⊗ · · · ⊗ hl ∈ H
l
and a = a1 ⊗ · · · ⊗ ar ∈ A

r
, we

define F
(l)
r (h⊗ a), recursively by:

F (2)
r (h⊗ a) =

r∑

i=0

(−1)i+1a
h

(1)
12

1i ⊗ f(h
(2)
1 , h

(2)
2 )⊗ a

h
(3)
12

i+1,r,

F (l+1)
r (h⊗ a) =

l∑

j=1

r∑

i=0

(−1)il+ja
h

(1)
1,l+1

1i ⊗ f(h
(2)
j , h

(2)
j+1)

h
(2)
1,j−1 ⊗ F

(l)
r−i(h

j(3) ⊗ ai+1,r),

where hj(3) = h
(3)
1,j−1 ⊗ h

(3)
j h

(3)
j+1 ⊗ h

(2)
j+2,l+1 and F

(l)
0 (hj(3) ⊗ ar+1,r) = F

(l)
0 (hj(3)).

For instance, we have

F (3)
r (h⊗ a) =

∑

0≤i≤j≤r

(−1)i+ja
h

(1)
13

1i ⊗ f(h
(2)
1 , h

(2)
2 )⊗ a

h
1(3)
13

i+1,j ⊗ f(h
(4)
12 , h

(3)
3 )⊗ a

h
(5)
12 h

(4)
3

j+1,r

+
∑

0≤i≤j≤r

(−1)i+j+1a
h

(1)
13

1i ⊗ f(h
(2)
2 , h

(2)
3 )h

(2)
1 ⊗ a

h
2(3)
13

i+1,j ⊗ f(h
(4)
1 , h

(4)
23 )⊗ a

h
(5)
13

j+1,r .

We set F
(1)
0 (hs) = 1k ∈ k, F

(1)
r (hs ⊗ a) = ahs and F

(l)
0 (hs−l−1,s ⊗ 1k) =

F
(l)
0 (hs−l−1,s). Moreover, to abbreviate we write F (l)(h) = F

(l)
0 (h) and F (l)

(
a

h

)
=

F
(l)
r (h⊗ a).

Lemma B.3. Let a = a1 ⊗ · · · ⊗ ar and hs−l,s = hs−l ⊗ · · · ⊗ hl. We have:

F (l+1)(hs−l,s) =

l∑

i=1

(−1)iF (l−i+1)

(
F (i)(h

(1)
s−i+1,s)

h
(1)
s−l,s−i

)
⊗ f(h

(2)
s−l,s−i, h

(2)
s−i+1,s)

and

F (l+1)
(

a

hs−l,s

)
= F (l+1)

(
a1,r−1

h
(1)
s−l,s

)
⊗ a

h
(2)
s−l,s

r

+

l∑

i=1

(−1)r+iF (l−i+1)

(
F (i)

(
a

h
(1)
s−i+1,s

)

h
(1)
s−l,s−i

)
⊗ f(h

(2)
s−l,s−i, h

(2)
s−i+1,s).

where F (l+1)
(
a1,r−1

hs−l,s

)
= F (l+1)(hs−l,s) if r = 1.

Proof. We prove the second formula. The proof of the first one is similar. It is
clear that the lemma is valid for l = 1. Let l > 1 and suppose the result is valid for
l − 1. To abbreviate we put

ξ = u(l − 1) + j + s

h
j(4)
s−l,s = h

(4)
s−l,j+1h

(3)
j+2,s,

h
j(3)
s−l,s = h

(3)
s−l,j−1 ⊗ h

(3)
j h

(3)
j+1 ⊗ h

(2)
j+2,s,

f
(2)
j = f(h

(2)
j , h

(2)
j+1)

h
(2)
s−l,j−1 ,

f
j(4)
s−l,s−i,s = f(h

(4)
s−l,j+1h

(3)
j+2,s−i, h

(3)
s−i+1,s),

f
(4)j
s−l,s−i,s = f(h

(4)
s−l,s−i, h

(4)
s−i+1,j+1h

(3)
j+2,s)

f
(2)
s−l,s−i,s = f(h

(2)
s−l,s−i, h

(2)
s−i+1,s).
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We have:

F (l+1)
(

a

hs−l,s

)
=

s−1∑

j=s−l

r∑

u=0

(−1)ξ−1a
h

(1)
s−l,s

1u ⊗ f
(2)
j ⊗ F (l)

(
au+1,r

h
j(3)
s−l,s

)

=

s−1∑

j=s−l

r−1∑

u=0

(−1)ξ−1a
h

(1)
s−l,s

1u ⊗ f
(2)
j ⊗ F (l)

(
au+1,r−1

h
j(3)
s−l,s

)
⊗ a

h
j(4)
s−l,s

r

+

s−2∑

j=s−l

r∑

u=0

s−j−1∑

i=1

(−1)ξ−1+r−u+ia
h

(1)
s−l,s

1u ⊗ f
(2)
j ⊗ F (l−i)

(
F (i)

( au+1,r

h
(2)
s−i+1,s

)

h
j(3)
s−l,s−i

)
⊗ f

j(4)
s−l,s−i,s

+

s−1∑

j=s−l+1

r∑

u=0

l−1∑

i=s−j

(−1)ξ−1+r−u+ia
h

(1)
s−l,s

1u ⊗ f
(2)
j ⊗ F

(l−i)

(
F (i)

(au+1,r

h
j(3)
s−i,s

)

h
(3)
s−l,s−i−1

)
⊗ f

(4)j
s−l,s−i−1,s.

Permuting the order of the summands, we obtain

F (l+1)
(

a

hs−l,s

)
=

s−1∑

j=s−l

r−1∑

u=0

(−1)ξ−1a
h

(1)
s−l,s

1u ⊗ f
(2)
j ⊗ F (l)

(
au+1,r−1

h
j(3)
s−l,s

)
⊗ a

h
j(4)
s−l,s

r

+

l−1∑

i=1

r∑

u=0

s−i−1∑

j=s−l

(−1)ξ−1+r−u+ia
h

(1)
s−l,s

1u ⊗ f
(2)
j ⊗ F (l−i)

(
F (i)

( au+1,r

h
(2)
s−i+1,s

)

h
j(3)
s−l,s−i

)
⊗ f

j(4)
s−l,s−i,s

+

l∑

i=2

r∑

u=0

s−1∑

j=s−i+1

(−1)ξ+r−u+ia
h

(1)
s−l,s

1u ⊗ f
(2)
j ⊗ F (l−i+1)

(
F (i−1)

( au+1,r

h
j(3)
s−i+1,s

)

h
(3)
s−l,s−i

)
⊗ f

(4)j
s−l,s−i,s

= F (l+1)
(
a1,r−1

h
(1)
s−l,s

)
⊗ a

h
(2)
s−l,s

r +

l∑

i=1

(−1)r+iF (l−i+1)

(
F (i)

(
a1r

h
(1)
s−i+1,s

)

h
(1)
s−l,s−i

)
⊗ f

(2)
s−l,s−i,s,

which ends the proof �

Computation of dlrs. Let us compute dl+1
rs for l ≥ 1. First we suppose the formula

is valid for djrs with j ≤ l and we see that it is valid for dl+1
0s . To abbreviate we

write ζi = is+ (l − i + 1)(s − 1) + 1. Using the inductive hypothesis and the fact
that σ0 dl

(
a0 ⊗ h0s ⊗ 1#1

)
= 0, we obtain:

dl+1
(
1⊗ h⊗ 1E

)
= −

l∑

i=1

σ0 dl+1−i di
(
1⊗ h⊗ 1E

)

=
l∑

i=1

(−1)is+1σ0 dl+1−i
(
1⊗ h0,s−i ⊗ F

(i)(h
(1)
s−i+1,s)⊗ 1#h

(2)
s−i+1,s

)

=
l∑

i=1

σ0

(
(−1)ζi⊗ h0,s−l−1⊗ F

(l+1−i)

(
F (i)(h

(1)
s−i+1,s)

h
(1)
s−l,s−i

)
⊗f(h

(2)
s−l,s−i, h

(2)
s−i+1,s)#h

(3)
s−l,s

)

= (−1)(l+1)s1⊗ h0,s−l−1 ⊗ F
(l+1)(h

(1)
s−l,s)⊗ 1#h

(2)
s−l,s,

where the last equality follows from the definition of σ0 and Lemma B.3. Now, we
suppose the result is valid for dl+1

r′s with r′ < r and we show that it is valid for dl+1
rs .
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To abbreviate we write ζi = i(r + s) + (l − i+ 1)(r + s− 1) + 1.

dl+1
(
1⊗ h⊗ a⊗ 1E

)
= −

l∑

i=0

σ0 dl+1−i di
(
1⊗ h⊗ a⊗ 1E

)

= (−1)r+1σ0 d
l+1
(
1⊗ h⊗ a⊗ 1

)
− (−1)r+sσ0 d

l
(
1⊗ h0,s−1 ⊗ ah

(1)
s ⊗ 1#h(2)s

)

−

l∑

i=2

σ0 dl+1−i
(
(−1)i(r+s) ⊗ h0,s−i ⊗ F

(i)
(

a

h
(1)
s−i+1,s

)
⊗ 1#h

(2)
s−i+1,s

)

= (−1)r+1σ0 d
l+1
(
1⊗ h⊗ a⊗ 1

)

−

l∑

i=1

σ0 dl+1−i
(
(−1)i(r+s) ⊗ h0,s−i ⊗ F

(i)
(

a

h
(1)
s−i+1,s

)
⊗ 1#h

(2)
s−i+1,s

)

= σ0

(
(−1)(l+1)(r+s−1)+r+1 ⊗ h0,s−l−1 ⊗ F

(l+1)
(
a1,r−1

h
(1)
s−l,s

)
⊗ a

h
(2)
s−l,s

r #h
(3)
s−l,s

+
l∑

i=1

(−1)ζi ⊗ h0,s−l−1 ⊗ F
(l+1−i)

(
F (i)

(
a

h
(1)
s−i+1,s

)

h
(1)
s−l,s−i

)
⊗ f(h

(2)
s−l,s−i,h

(2)
s−i+1,s)#h

(3)
s−l,s

)

= (−1)(l+1)(r+s) ⊗ h0,s−l−1 ⊗ F
(l+1)

(
a

h
(1)
s−l,s

)
⊗ 1#h

(2)
s−l,s,

where the last equality follows from the definition of σ0 and Lemma B.3 �

Remark B.4. When H is a group algebra k[G] and the 2-cocycle f takes its values
in the center of A, then

dlrs
(
a0⊗g0s⊗a1r⊗ 1E

)
= (−1)l(r+s)a0⊗g0,s−l⊗F

(l)
0 (gs−l+1,s)∗a1r⊗ 1#gs−l+1,s,

where ∗ denotes the shuffle product:

a1r∗b1l =
∑

0≤i1≤···≤ir≤l

(−1)i1+···+ilb1⊗· · ·⊗bi1⊗a1⊗bi1+1⊗· · ·⊗bir⊗ar⊗bir+1⊗· · · .
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