HOCHSCHILD COHOMOLOGY OF FROBENIUS ALGEBRAS

JORGE A. GUCCIONE AND JUAN J. GUCCIONE

Abstract. Let k be a field, A a finite dimensional Frobenius k-algebra and $\rho: A \to A$, the Nakayama automorphism of A with respect to a Frobenius homomorphism $\varphi: A \to k$. Assume that ρ has finite order m and that k has a primitive m-th root of unity ω. Consider the decomposition $A = A_0 \oplus \cdots \oplus A_{m-1}$ of A, obtained defining $A_i = \{a \in A : \rho(a) = \omega^i a\}$, and the decomposition $\text{HH}^*(A) = \bigoplus_{i=0}^{m-1} \text{HH}^i(A)$ of the Hochschild cohomology of A, obtained from the decomposition of A. In this paper we prove that $\text{HH}^*(A) = \text{HH}^0(A)$ and that if decomposition of A is strongly $\mathbb{Z}/m\mathbb{Z}$-graded, then $\mathbb{Z}/m\mathbb{Z}$ acts on $\text{HH}^*(A_0)$ and $\text{HH}^*(A) = \text{HH}^0(A_0)\mathbb{Z}/m\mathbb{Z}$.

1. Introduction

Let k be a field, A a finite dimensional k-algebra and $DA = \text{Hom}_k(A, k)$ endowed with the usual A-bimodule structure. Recall that A is said to be a Frobenius algebra if there exists a linear form $\varphi: A \to k$, such that the map $A \to DA$, defined by $x \mapsto x\varphi$ is a left A-module isomorphism. This linear form $\varphi: A \to k$ is called a Frobenius homomorphism. It is well known that this is equivalent to say that the map $x \mapsto \varphi x$, from A to DA, is an isomorphism of right A-modules. From this it follows easily that there exists an automorphism ρ of A, called the Nakayama automorphism of A with respect to φ, such that $x\varphi = \varphi \rho(x)$, for all $x \in A$. It is easy to check that a linear form $\tilde{\varphi}: A \to k$ is another Frobenius homomorphism if and only if there exists $x \in A$ invertible, such that $\tilde{\varphi} = x\varphi$. It is also easy to check that the Nakayama automorphism of A with respect to $\tilde{\varphi}$ is the map given by $a \mapsto \rho(x)^{-1} \rho(a) \rho(x)$.

Let A be a Frobenius k-algebra, $\varphi: A \to k$ a Frobenius homomorphism and $\rho: A \to A$ the Nakayama automorphism of A with respect to φ.

Definition 1.1. We say that ρ has order $m \in \mathbb{N}$ and we write $\text{ord}_\rho = m$ if $\rho^m = \text{id}_A$ and $\rho^r \neq \text{id}_A$, for all $r < m$.

Assume that ρ has finite order and that k has a primitive ord_ρ-th root of unity ω. Since the polynomial $X^{\text{ord}_\rho} - 1$ has distinct roots ω^i ($0 \leq i < \text{ord}_\rho$), the algebra A becomes a $\mathbb{Z}/\text{ord}_\rho\mathbb{Z}$-graded algebra

$$A = A_0 \oplus \cdots \oplus A_{\text{ord}_\rho - 1}, \quad \text{where } A_i = \{a \in A : \rho(a) = \omega^i a\}.$$

Let $(\text{Hom}_k(A^{\otimes r}, A), b^*)$ be the cochain Hochschild complex of A with coefficients in A. For each $0 \leq i < \text{ord}_\rho$, we let $(\text{Hom}_k(A^{\otimes r}, A), b^*)$ denote the subcomplex of

2000 Mathematics Subject Classification. Primary 16C40; Secondary 16D20.
Supported by UBACYT X193 and CONICET.
Supported by UBACYT X193 and CONICET.
(Hom_k(A^\otimes^*, A), b^*)$, defined by

\[\text{Hom}_k(A^\otimes^*, A)_i = \bigoplus_{\bar{B}_{i,n}} \text{Hom}_k(A_{u_1} \otimes \cdots \otimes A_{u_n}, A), \]

where $\bar{B}_{i,n} = \{ (u_1, \ldots, u_n, v) \text{ such that } v - u_1 - \cdots - u_n \equiv i \pmod{\text{ord}_\rho} \}$. The cochain Hochschild complex $(\text{Hom}_k(A^\otimes^*, A), b^*)$ decomposes as the direct sum

\[(\text{Hom}_k(A^\otimes^*, A), b^*) = \bigoplus_{i=0}^{\text{ord}_\rho - 1} (\text{Hom}_k(A^\otimes^*, A)_i, b^*). \]

Thus, the Hochschild cohomology $\text{HH}^n(A)$, of A with coefficients in A, decomposes as the direct sum

\[\text{HH}^n(A) = \bigoplus_{i=0}^{\text{ord}_\rho - 1} \text{HH}^n_i(A), \]

where $\text{HH}^n_i(A) = H^n(\text{Hom}_k(A^\otimes^*, A)_i, b^*)$.

The aim of this paper is to prove the following results:

Theorem 1.2. Let A be a Frobenius k-algebra, $\varphi: A \to k$ a Frobenius homomorphism and $\rho: A \to A$ the Nakayama automorphism of A with respect to φ. If ρ has finite order and k has a primitive ord_ρ-th root of unity w, then

\[\text{HH}^n(A) = \text{HH}^n_0(A), \quad \text{for all } n \geq 0. \]

Recall that $A = A_0 \oplus \cdots \oplus A_{\text{ord}_\rho - 1}$ is said to be strongly $\mathbb{Z}/\text{ord}_\rho \mathbb{Z}$-graded if $A_i A_j = A_{i+j}$, for all $i, j \in \{0, \ldots, \text{ord}_\rho - 1\}$, where $i + j$ denotes the sum of i and j in $\mathbb{Z}/\text{ord}_\rho \mathbb{Z}$.

Theorem 1.3. Let A be a Frobenius k-algebra, $\varphi: A \to k$ a Frobenius homomorphism and $\rho: A \to A$ the Nakayama automorphism of A with respect to φ. If ρ has finite order, k has a primitive ord_ρ-th root of unity w and $A = A_0 \oplus \cdots \oplus A_{\text{ord}_\rho - 1}$ is strongly $\mathbb{Z}/\text{ord}_\rho \mathbb{Z}$-graded, then

\[\text{HH}^n(A) = \text{HH}^n_0(A_0)^{\mathbb{Z}/\text{ord}_\rho \mathbb{Z}}, \quad \text{for all } n \geq 0. \]

Corollary 1.4. Assume that the hypothesis of Theorem 1.3 are verified. If the Hochschild cohomology $\text{HH}^2(A_0) = 0$, then A is rigid.

Remark 1.5. As it is well known, every finite dimensional Hopf algebra H is Frobenius, being a Frobenius homomorphism any right integral $\varphi \in H^* \setminus \{0\}$. Moreover, by Proposition 3.6 of [S], the composition inverse of the Nakayama map ρ with respect to φ, is given by

\[\rho^{-1}(h) = \alpha(h_{(1)}) \overline{S}^2(h_{(2)}), \]

where $\alpha \in H^*$ is the modular element of H^* and \overline{S} is the composition inverse of S (note that the automorphism of Nakayama considered in [S] is the composition inverse of the one considered by us). Using this formula and that $\alpha \circ S^2 = \alpha$, it is easy to check that $\rho(h) = \alpha(S(h_{(1)})) \overline{S}^2(h_{(2)})$, and more generally, that

\[\rho^i(h) = \alpha^i(S(h_{(1)})) \overline{S}^2(h_{(2)}), \]
where \(\alpha^t\) denotes the \(t\)-fold convolution product of \(\alpha\). Since \(\alpha\) has finite order respect to the convolution product and, by the Radford formula for \(S^4\) (see Theorem 3.8 of [S]), the antipode \(S\) has finite order respect to the composition, we have that \(\rho\) has finite order. So, the above theorems apply to finite dimensional Hopf algebras.

We think that the decomposition of \(H\) associated with \(\rho\) can be useful to study the structure of finite dimensional Hopf algebras. In this paper we exploit it in a cohomological level. Recently has been considered another decomposition of \(H\), similar to this one, but distinct. Namely the one associated to \(\alpha\), where the action of \(C\) is isomorphic to the skew product of \(H\). Hence, \(H = H_0 \oplus \cdots \oplus H_{N-1}\), where

\[
H_i = \{a \in H : \rho(a) = w^{-i}a\}
\]

\[
= \langle x^i, x^{i+1}g, \ldots, x^{N-1}g^{N-i-1}, g^{N-i}, xg^{N-i+1}, \ldots, x^{-1}g^{N-1}\rangle.
\]

Let \(C_N = \{1, t, \ldots, t^{N-1}\}\) be the cyclic group of order \(N\). It is easy to see that \(C_N\) acts on \(H_0\) via \(t \cdot x^i g^j = w^i x^i g^j\) and that \(H\) is isomorphic to the skew product of \(H_0 \# C_N\). By Theorem 1.3,

\[
HH^p(H) = HH^p(H_0)^{C_N} \quad \text{for all } n \geq 0,
\]

where the action of \(C_N\) on \(HH^p(H_0)\) is induced by the one of \(C_N\) on \(\text{Hom}_k(H_0^{\otimes n}, H_0)\), given by

\[
t \cdot \varphi(x^i g^j \otimes \cdots \otimes x^h g^s) = g^{N-i} \varphi(t \cdot x^i g^j \otimes \cdots \otimes t \cdot x^h g^s) g.
\]

2. Proof of Theorems 1.2 and 1.3

Let \(k\) be a field, \(A\) a \(k\)-algebra and \(V\) a \(k\)-module. To begin, we fix some notations:

1. As in the introduction, we let \(DA\) denote \(\text{Hom}_k(A, k)\), endowed with the usual \(A\)-bimodule structure.

2. We let \(V^{\otimes n}\) denote the \(n\)-fold tensor product \(V \otimes \cdots \otimes V\).

3. Given \(x \in A \cup DA\), we write

\[
\pi_A(x) = \begin{cases}
 x & \text{if } x \in A, \\
 0 & \text{if } x \in DA,
\end{cases}
\]

and

\[
\pi_{DA}(x) = \begin{cases}
 x & \text{if } x \in DA, \\
 0 & \text{if } x \in A,
\end{cases}
\]
2.1. The complex $X^{*,*}(A)$. For each k-algebra A, we consider the double complex

$$
X^{*,*}(A) := \cdots \xrightarrow{\delta^{1,3}} \text{Hom}_k(A^{\otimes 3}, A) \xrightarrow{\delta^{1,2}} \text{Hom}_k(A^{\otimes 2}, A) \xrightarrow{\delta^{1,1}} \text{Hom}_k(A, A) \xrightarrow{\delta^{1,0}} \text{Hom}_k(k, A)
$$

where

$$
\langle \langle (\delta^{0,n+1}, f), x_{1,n+1} \rangle, x_{1,n+1} \rangle = x_1(f, x_{2,n+1}) + \sum_{i=1}^{n} (-1)^i \langle f, x_{1,i-1} \otimes x_i x_{i+1} \otimes x_{i+1,n+1} \rangle
$$

$$
+ (-1)^{n+1} \langle f, x_{1,n} \rangle x_{n+1},
$$

$$
\langle \langle (\delta^{1,n}, g), y_{1,n+1} \rangle, y_{1,n+1} \rangle = (\pi_A, y_1) \langle g, y_{2,n+1} \rangle + \sum_{i=1}^{n} (-1)^i \langle g, y_{1,i-1} \otimes y_i y_{i+1} \otimes y_{i+1,n+1} \rangle
$$

$$
+ (-1)^{n+1} \langle g, y_{1,n} \rangle (\pi_A, y_{n+1}),
$$

$$
\langle \langle (\delta^{1,n}, f), y_{1,n+1} \rangle, y_{1,n+1} \rangle = (\pi_{DA}, y_1) \langle f, y_{2,n+1} \rangle + (-1)^{n+1} \langle f, y_{1,n} \rangle (\pi_{DA}, y_{n+1}),
$$

for $f \in \text{Hom}_k(A^{\otimes n}, A)$, $g \in \text{Hom}_k(B^n, DA)$, $x_{1,n+1} = x_1 \otimes \cdots \otimes x_{n+1} \in A^{\otimes n+1}$ and $y_{1,n+1} = y_1 \otimes \cdots \otimes y_{n+1} \in B^n$.

Proposition 2.1. Let $X^*(A)$ be the total complex of $X^{*,*}(A)$. It is true that

$$
H^n(X^*(A)) = \begin{cases}
H^0(X^{0,*}(A)) & \text{if } n = 0, \\
H^n(X^{0,*}(A)) \oplus H^{n-1}(X^{0,*}(A)) & \text{if } n \geq 1.
\end{cases}
$$

Proof. Let

$$
\delta^{1,*} : (\text{Hom}_k(A^{\otimes *}, A), -\delta^{0,*+1}) \to (\text{Hom}_k(B^{*+1}, DA), \delta^{1,*+1})
$$

be the map defined by

$$
\langle \langle (\delta^{1,n}, f), x_{1,n+1} \rangle, x_{1,n+1} \rangle = (\pi_{DA}, x_1) \langle f, x_{2,n+1} \rangle + (-1)^{n+1} \langle f, x_{1,n} \rangle (\pi_{DA}, x_{n+1}).
$$
Since $X^*(A)$ is the mapping cone of $\delta^{1,*}$, in order to obtain the result it suffices to check that $\delta^{1,*}$ is null homotopic. Let $\sigma_*: \text{Hom}_k(A^{\otimes n}, A) \to \text{Hom}_k(B^*, DA)$ be the family of maps defined by

$$
\langle \langle \langle \sigma_n, f \rangle, x_{1,n} \rangle, a \rangle = (-1)^{n+1} \langle x_j, \langle f, x_{j+1, n} \otimes a \otimes x_{1,j-1} \rangle \rangle \quad \text{if } x_j \in DA.
$$

We assert that σ_* is an homotopy from $\delta^{1,*}$ to 0. By definition,

$$
\langle \langle \langle b^{1,n}, \sigma_n, f \rangle, x_{1,n+1} \rangle, \rangle = \langle \pi_A, x_1 \rangle \langle \langle \sigma_n, f \rangle, x_{2,n+1} \rangle
$$

$$
+ \sum_{i=1}^{n} (-1)^i \langle \langle \sigma_n, f \rangle, x_{1,i-1} \otimes x_i x_{i+1} \otimes x_{i+2,n+1} \rangle
$$

$$
+ (-1)^{n+1} \langle \langle \sigma_n, f \rangle, x_{1,n} \rangle \langle \pi_A, x_{n+1} \rangle.
$$

Hence, if $x_1 \in DA$, then

$$
\langle \langle \langle b^{1,n}, \sigma_n, f \rangle, x_{1,n+1} \rangle, x_{n+2} \rangle = (-1)^{n+2} \langle x_1, x_2 \langle f, x_{3,n+2} \rangle \rangle
$$

$$
- \sum_{i=2}^{n} (-1)^{n+i} \langle x_1, \langle f, x_{2,i-1} \otimes x_i x_{i+1} \otimes x_{i+2,n+2} \rangle \rangle;
$$

if $x_j \in DA$ for $1 < j \leq n$, then

$$
\langle \langle \langle b^{1,n}, \sigma_n, f \rangle, x_{1,n+1} \rangle, x_0 \rangle = (-1)^{j-1} \langle x_j, \langle f, x_{j+1,n+1} \otimes x_{0,j-2} \rangle x_{j-1} \rangle
$$

$$
- \sum_{i=0}^{j-2} (-1)^{(j-1)n+i} \langle x_j, \langle f, x_{j+1,n+1} \otimes x_{0,i-1} \otimes x_i x_{i+1} \otimes x_{i+2,j-1} \rangle \rangle
$$

$$
+ (-1)^{j+1} \langle x_j, \langle f, x_{j+2,n+1} \otimes x_{0,j-1} \rangle \rangle
$$

$$
- \sum_{i=j+1}^{n} (-1)^{n+i} \langle x_j, \langle f, x_{j+1,i-1} \otimes x_i x_{i+1} \otimes x_{i+2,n+1} \otimes x_{0,j-1} \rangle \rangle
$$

$$
+ (-1)^{n+n} \langle x_j, \langle f, x_{j+1,n} \otimes x_{n+1} x_0 \otimes x_{1,j-1} \rangle \rangle;
$$

and if $x_{n+1} \in DA$, then

$$
\langle \langle \langle b^{1,n}, \sigma_n, f \rangle, x_{1,n+1} \rangle, x_0 \rangle = \sum_{i=0}^{n-1} (-1)^{n+i+1} \langle x_{n+1}, \langle f, x_{0,i-1} \otimes x_i x_{i+1} \otimes x_{i+2,n} \rangle \rangle
$$

$$
- \langle x_{n+1}, \langle f, x_{0,n} \rangle x_n \rangle.
$$

On the other hand, if $x_1 \in DA$, then

$$
\langle \langle \langle \sigma_{n+1}, \{-b^{0,n+1}, f\}, x_{1,n+1} \rangle, x_{n+2} \rangle = (-1)^{n+1} \langle x_1, \langle b^{0,n+1}(f)(x_{2,n+2}) \rangle \rangle
$$

$$
= (-1)^{n+1} \langle x_1, x_2 \langle f, x_{3,n+2} \rangle \rangle + \langle x_1, \langle f, x_{2,n+1} \rangle x_{n+2} \rangle
$$

$$
+ \sum_{i=2}^{n+1} (-1)^{n+i} \langle x_1, \langle f, x_{2,i-1} \otimes x_i x_{i+1} \otimes x_{i+2,n+2} \rangle \rangle;\]
if \(x_j \in DA \) for \(1 < j \leq n \), then

\[
\langle \langle \sigma_{n+1}, - \langle b^{1,n+1}, f \rangle, x_{1,n+1} \rangle, x_0 \rangle = (-1)^{j(n+1)} \langle x_j, \langle b^{1,n+1}, f \rangle, x_{j+1,n+1} \otimes x_{0,j-1} \rangle = (-1)^{j(n+1)} \langle x_j, x_{j+1} \langle f, x_{j+2,n+1} \otimes x_{0,j-1} \rangle \rangle
\]

\[
+ \sum_{i=j+1}^{n} (-1)^{j(n+1)+i-j} \langle x_j, \langle f, x_{j+1,n} \otimes x_{n+1} \otimes x_{1,j-1} \rangle \rangle
\]

\[
+ (-1)^{j(n+1)+n-j+1} \langle x_j, \langle f, x_{j+1,n} \otimes x_{0,i-1} \otimes x_{i+1} \otimes x_{i+2,j-1} \rangle \rangle
\]

\[
+ (-1)^{j(n+1)+n+1} \langle x_j, \langle f, x_{j+1,n} \otimes x_{0,j-2} \rangle \rangle.
\]

and if \(x_{n+1} \in DA \), then

\[
\langle \langle \sigma_{n+1}, - \langle b^{1,n+1}, f \rangle, x_{1,n+1} \rangle, x_0 \rangle = (-1)^{n+1} \langle x_{n+1}, \langle b^{1,n+1}, f \rangle, x_0 \rangle
\]

\[
= (-1)^{n+1} \langle x_{n+1}, x_0 \langle f, x_{1,n} \rangle \rangle + \langle x_{n+1}, \langle f, x_{0,n-1} \rangle x_n \rangle
\]

\[
+ \sum_{i=0}^{n-1} (-1)^{n+i} \langle x_{n+1}, \langle f, x_{i,j-1} \otimes x_{i+1} \otimes x_{i+2,n+1} \rangle \rangle.
\]

The assertion follows immediately from these equalities. \(\square \)

2.2. The complex \(Y^{**}(A) \). From now on we fix a Frobenius algebra \(A \), a Frobenius homomorphism \(\varphi: A \to k \) of \(A \) and we let denote \(\rho \) the Nakayama automorphism of \(A \) with respect to \(\varphi \). Let \(A_{\rho} \) be \(A \), endowed with the \(A \)-bimodule structure given by \(a \cdot x \cdot b := \rho(a)xb \). Let \(\Theta: DA \to A_{\rho} \) be the \(A \)-bimodule isomorphism given by \(\Theta(\varphi x) = x \) and let

\[
A_{\rho} \xrightarrow{\mu} A \otimes A_{\rho} \xrightarrow{b^1} A^{\otimes 2} \otimes A_{\rho} \xrightarrow{b^2} A^{\otimes 3} \otimes A_{\rho} \xrightarrow{b^3} A^{\otimes 4} \otimes A_{\rho} \xrightarrow{b^4} \cdots,
\]

be the bar resolution of \(A_{\rho} \).

Proposition 2.2. The following assertions hold:

1. The complex

\[
DA \xrightarrow{\mu'} A \otimes B^1 \otimes A \xrightarrow{b^1'} A \otimes B^2 \otimes A \xrightarrow{b^2'} A \otimes B^3 \otimes A \xrightarrow{b^3'} \cdots,
\]

where \(\langle \mu', x_0 \otimes x_1 \otimes x_2 \rangle = x_0x_1x_2 \) and

\[
\langle b^i', x_{0,n+2} \rangle = x_0 \langle \pi_A, x_1 \rangle \otimes x_{2,n+2} + \sum_{i=1}^{n} (-1)^i x_{0,i-1} \otimes x_{i+1} \otimes x_{i+2,n+2} + (-1)^{n+1} x_{0,n} \otimes \langle \pi_A, x_{n+1} \rangle x_{n+2},
\]

is a projective resolution of \(DA \).

2. There is a chain map \(\Psi'_n: (A^{\otimes n+1} \otimes A_{\rho}, b'_n) \to (A \otimes B^{**} \otimes A, b'_n) \), given by

\[
\langle \Psi'_n, x_{0,n+1} \rangle = \sum_{i=0}^{n} (-1)^{i+n} x_{0,i} \otimes \varphi \otimes \langle \rho, x_{i+1} \rangle \otimes \cdots \otimes \langle \rho, x_n \rangle \otimes x_{n+1}.
\]
Proposition 2.3. \(\Theta \circ \mu' \circ \Psi'_0 = \mu. \)

Proof. Items (2) and (3) follow by a direct computation and item (1) is well known. For instance, the family of maps

\[\sigma_0: DA \to A \otimes B^1 \otimes A \quad \text{and} \quad \sigma_n: A \otimes B^n \otimes A \to A \otimes B^{n+1} \otimes A \quad (n \geq 1), \]
given by

\[
\begin{align*}
\langle \sigma_0, x \rangle &= 1 \otimes x \otimes 1, \\
\langle \sigma_{n+1}, x_{0,n+1} \rangle &= \begin{cases}
1 \otimes x_{0,n+1} + (-1)^{n+1} \otimes x_0 x_1 \otimes x_{2,n+1} \otimes 1 & \text{if } x_1 \in DA, \\
1 \otimes x_{0,n+1} & \text{if } x_1 \notin DA,
\end{cases}
\end{align*}
\]

where \(x_{0,n+1} = x_0 \otimes \cdots \otimes x_{n+1} \in A \otimes B^n \otimes A, \) is a contracting homotopy of the complex of item (1) as a \(k \)-module complex. \(\square \)

Let \(Y^{*,*}(A) \) be the double complex

\[
Y^{*,*}(A) := \begin{array}{c}
\vdots \\
\downarrow \tilde{\delta}^{0,3} \\
\downarrow \tilde{\delta}^{0,2} \\
\downarrow \tilde{\delta}^{0,1} \\
\vdots
\end{array}
\]

with boundary maps

\[
\begin{align*}
\langle \tilde{\delta}^{u,n}, f, x_1 \rangle &= x_1 f(x_{2,n}) + \sum_{i=1}^{n-1} (-1)^i \langle f, x_{1,i-1} \otimes x_i x_{i+1} \otimes x_{i+2,n} \rangle \\
&\quad + (-1)^n \langle f, x_{1,n-1} \rangle x_n, \\
\langle \tilde{\delta}^{1,n-1}, f, x_{1,n-1} \rangle &= (-1)^n \langle f, x_{1,n-1} \rangle \\
&\quad + (-1)^{n-1} \langle \rho^{-1}, \{ f, \rho, x_1 \} \otimes \cdots \otimes \{ \rho, x_{n-1} \} \rangle,
\end{align*}
\]

where \(u = 0, 1, f \in \text{Hom}_k(A^{\otimes n-1}, A) \) and \(x_{1,n} = x_1 \otimes \cdots \otimes x_n \in A^{\otimes n}. \)

Proposition 2.3. The double complexes \(X^{*,*}(A) \) and \(Y^{*,*}(A) \) are quasiisomorphic.

Proof. It is immediate that \(X^{1,*}(A) \simeq \text{Hom}_{A^*}((A \otimes B^{*+1} \otimes A, b'_\rho), DA). \) Moreover, by Proposition 2.2, the map \(\Psi^*: := \text{Hom}_{A^*}(\Psi'_*, DA) \) is a quasiisomorphism from \(\text{Hom}_{A^*}((A \otimes B^{*+1} \otimes A, b'_\rho), DA) \) to \(\text{Hom}_{A^*}((A^{\otimes*+1} \otimes A, b'_\rho), DA). \) On the other hand the family of bijective maps

\[\Upsilon^n: Y^{1,n}(A) \to \text{Hom}_{A^*}(A^{\otimes n+1} \otimes A, DA) \quad (n \geq 0), \]
Hence, to finish the proof it suffices to check that Υ^* is an isomorphism of complexes from $Y^{1,*}(A)$ to $\text{Hom}_{\mathcal{C}}\left((A_{y+1} \otimes A_{\nu}), DA\right)$. In fact, we have

$$\langle\langle \Upsilon^{n+1}, (\bar{b}_{1,y+1}, f)\rangle, x_{0,n+2}\rangle = x_0\langle\langle \bar{b}_{1,y+1}, f\rangle, x_{1,n+1}\rangle \varphi x_{n+2}$$

$$\exists x_0x_1(f, x_{2,n+1}) \varphi x_{n+2} + \sum_{i=1}^{n} (-1)^i x_0(f, x_{1,i-1} \otimes x_i x_{i+1} \otimes x_{i+2,n+1}) \varphi x_{n+2}$$

$$+ (-1)^{n+1} x_0(f, x_{1,n}) \varphi x_{n+2} = x_0 x_1(f, x_{2,n+1}) \varphi x_{n+2} + \sum_{i=1}^{n} (-1)^i x_0(f, x_{1,i-1} \otimes x_i x_{i+1} \otimes x_{i+2,n+1}) \varphi x_{n+2}$$

$$+ (-1)^{n+1} x_0(f, x_{1,n}) \varphi \langle \rho, x_{n+1} \rangle x_{n+2}$$

$$= \sum_{i=0}^{n} (-1)^i \langle\langle \Upsilon^n, f\rangle, x_{0,i-1} \otimes x_i x_{i+1} \otimes x_{i+2,n+2}\rangle$$

$$+ (-1)^{n+1} \langle\langle \Upsilon^n, f\rangle, x_{0,n} \otimes \langle \rho, x_{n+1} \rangle x_{n+2}\rangle$$

$$= \langle\langle \Upsilon^n, f\rangle, (b_{1,y+1}, x_{0,n+2})\rangle.$$

Hence, to finish the proof it suffices to check that $\Upsilon^* \circ \bar{\delta}_{1,*} = \Psi \circ \delta_{1,*}$. But,

$$\langle\langle \Psi^n, (\bar{\delta}_{1,n}, f)\rangle, x_{0,n+1}\rangle$$

$$= \sum_{i=0}^{n} (-1)^{i+n} x_0\langle\langle \bar{\delta}_{1,n}, f\rangle, x_{1,i} \otimes \varphi \otimes \langle \rho, x_{i+1} \rangle \otimes \cdots \otimes \langle \rho, x_n\rangle \rangle x_{n+1}$$

$$= (-1)^{n} x_0 \varphi \langle \rho, x_{1} \rangle \otimes \cdots \otimes \langle \rho, x_{n}\rangle \rangle x_{n+1} + (-1)^{n+1} x_0(f, x_{1,n}) \varphi x_{n+1}$$

$$= (-1)^{n} x_0 \langle \rho, x_{1} \rangle \otimes \cdots \otimes \langle \rho, x_{n}\rangle \rangle x_{n+1} + (-1)^{n+1} x_0(f, x_{1,n}) \varphi x_{n+1}$$

$$= x_0\langle\langle \bar{\delta}_{1,n}, f\rangle, x_{1,n}\rangle \varphi x_{n+1}$$

$$= \langle\langle \Upsilon^n, (\bar{\delta}_{1,n}, f)\rangle, x_{0,n+1}\rangle,$$

as desired. \hfill \Box

Proposition 2.4. Let $Y^*(A)$ denote the total complex of $Y^{*,*}(A)$. If the Nakayama automorphism ρ has finite order and k has a primitive ord_{v}-th root of unity w, then

$$H^n(Y^*(A)) = \begin{cases} \text{HH}_0^n(A) & \text{if } n = 0, \\ \text{HH}_0^n(A) \otimes \text{HH}_0^{n-1}(A) & \text{if } n \geq 1. \end{cases}$$

Proof. For each $0 \leq i < \text{ord}_{v}$, let $Y_i^{*,*}(A)$ be the subcomplex of $Y^{*,*}(A)$ defined by

$$Y_i^{u,n} = \bigoplus_{B_{i,n}} \text{Hom}(A_{u_1} \otimes \cdots \otimes A_{u_n}, A_v),$$

where $B_{i,n} = \{(u_1, \ldots, u_n, v) \text{ such that } v - u_1 - \cdots - u_n \equiv i \pmod{\text{ord}_{v}}\}$. It is clear that $Y^{*,*}(A) = \bigoplus_{i=0}^{\text{ord}_{v}} Y_i^{*,*}(A)$. Let $f \in Y_i^{0,n}(A)$. A direct computation shows that

$$\langle\langle b_{1,n}, f\rangle, x_{1,n}\rangle = (-1)^{n+1} (1 - w^{-i})(f, x_{1,n}).$$
Hence the horizontal boundary maps of $Y_1^{\ast, \ast}(A)$ are isomorphisms if $i \neq 0$, and they are zero maps if $i = 0$. So,

$$H^n(Y_1^{\ast}(A)) = \begin{cases} 0 & \text{if } i \neq 0, \\ H^0(Y_0^{\ast, \ast}(A)) & \text{if } i = 0 \text{ and } n = 0, \\ H^n(Y_1^{\ast, \ast}(A)) \oplus H^{n-1}(Y_1^{1, \ast}(A)) & \text{if } i = 0 \text{ and } n > 0, \end{cases}$$

where $Y_1^{\ast}(A)$ is the total complex of $Y_1^{\ast, \ast}(A)$. The result follows easily from this fact, since $Y_0^{\ast, \ast}(A) = Y_1^{1, \ast}(A) \simeq (\text{Hom}_k(A^{\otimes n}, A)_0, b^*)$.

Proof of Theorem 1.2. By Proposition 2.3,

$$H^n(Y^{\ast}(A)) = H^n(X^{\ast}(A)) \quad \text{and} \quad H^n(Y^{u, \ast}(A)) = H^n(X^{u, \ast}(A)),$$

for $u = 0, 1$. Hence, by Propositions 2.1 and 2.4,

$$\text{HH}_0^0(A) = H^0(Y^{\ast}(A)) = H^0(X^{\ast}(A))$$

$$= H^0(X^{0, \ast}(A)) = H^0(Y^{0, \ast}(A)) = \text{HH}_0^0(A)$$

and

$$\text{HH}_0^n(A) \oplus \text{HH}_0^{n-1}(A) = H^n(Y^{\ast}(A)) = H^n(X^{\ast}(A))$$

$$= H^n(X^{0, \ast}(A)) \oplus H^{n-1}(X^{1, \ast}(A))$$

$$= H^n(Y^{0, \ast}(A)) \oplus H^{n-1}(Y^{1, \ast}(A))$$

$$= \text{HH}_0^n(A) \oplus \text{HH}_0^{n-1}(A),$$

for all $n \geq 1$. From this it follows easily that $\text{HH}_0^n(A) = \text{HH}_0^n(A)$, for all $n \geq 0$, as desired.

Proof of Theorem 1.3. By [St] or the cohomological version of [L], $\mathbb{Z}/\text{ord}_p\mathbb{Z}$ acts on $H^i(A_0, A)$ and there is a converging spectral sequence

$$E_2^{pq} = H^p(\mathbb{Z}/\text{ord}_p\mathbb{Z}, H^q(A_0, A)) \Rightarrow \text{HH}^{p+q}(A).$$

Since k has a primitive ord_p-th root of unity, ord_p is invertible in k. Hence, the above spectral sequence gives isomorphisms

$$\text{HH}^n(A) = H^n(A_0, A)^{\mathbb{Z}/\text{ord}_p\mathbb{Z}} \quad (n \geq 0).$$

These maps are induced by the canonical inclusion of A_0 in A, and the action of $i \in \mathbb{Z}/\text{ord}_p\mathbb{Z}$ on $H^n(A_0, A)$ is induced by the map of complexes

$$\theta^i_!: (\text{Hom}_k(A_0^{\otimes n}, A), b^*) \to (\text{Hom}_k(A_0^{\otimes n}, A), b^*),$$

defined by

$$\theta^i_!(\varphi)(a_1 \otimes \cdots \otimes a_n) = \sum_{j_1, \ldots, j_{n+1} \in J_i} s'_{t_{j_1}} \varphi(s_{i, j_1} a_1 s'_{t_{j_2}} \otimes s_{i, j_2} a_2 s'_{t_{j_3}} \otimes \cdots \otimes s_{i, j_n} a_n s'_{t_{j_{n+1}}} s_{i, j_{n+1}}),$$

where $(s_{i, j})_{j \in J_i}$ and $(s'_{t_{j}})_{j \in J_i}$ are families of elements of A_i and A_{n-1} respectively, that satisfy $\sum_{j \in J_i} s'_{t_{j}} s_{i, j} = 1$. From this it follows easily that we have isomorphisms

$$\text{HH}^n(A) = H^n(A_0, A)^{\mathbb{Z}/\text{ord}_p\mathbb{Z}} \quad (n \geq 0, 0 \leq i < \text{ord}_p).$$

By combining this result with Theorem 1.2, we obtain the desired result.
References

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Pabellón 1 - Ciudad Universitaria, (1428) Buenos Aires, Argentina.

E-mail address: vanderdm.uba.ar

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Pabellón 1 - Ciudad Universitaria, (1428) Buenos Aires, Argentina.

E-mail address: jjguccidm.uba.ar