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1 Introduction

The differential geometry of the space of n×n positive definite complex matrices turns

to be a relevant subject in problems coming from many different areas. To mention

only a few, we refer the reader to the work of Ohara et al [29], [30], in linear systems,

Amari [1], [2], Kass [21], Campbell [5], Murray and Rice [26] in statistics, Bougerol

[4] in Kalman-Bucy filters, Liverani and Wojtkowski [25] in Lagrangian geometry, Hiai

and Petz [19]-[20], Petz [31]-[32] in quantum systems. Moreover, Uhlmann [34], [35]

proposed the extension to mixed states of the Berry phase using techniques from dif-

ferential geometry on the set of density operators, i.e. trace class positive operators, on

a Hilbert space. Uhlmann’s work has been extended by Dabrowski and Jadczyk [12],

Dabrowski and Grosse [11], Dittmann [13], [14], Dittmann and Rudolph [15], [16] and

Uhlmann himself [36]. Uhlmann’s approach is an invitation to study the space L(H)+

of all positive bounded linear operators on the Hilbert space H from a differentiable

viewpoint. A description of the differential geometry of GL(H)+ (i.e. the set of in-

vertible positive linear operators) has been done in [9], [6] and extended to the set of

closed range positive operators in [7]. In [7], the set L(H)+ is partitioned in certain

”components”, following ideas of Thompson [33], and each component is studied as a

differential manifold. In [8] there is a comparison between these results and Uhlmann’s.

The present paper continues this line of research. Instead of working on L(H), we

shall deal in a C*-algebras setting. So, in what follows, A denotes a unital C∗-algebra

represented on a Hilbert space H, G is the group of invertible elements of A, U the

unitary group of A, A+ the set of positive (semidefinite) operators, A+
cr the subset of

A+ of positive operators with closed range and P the set of orthogonal projections

in A. There is a natural action of G over A+ defined by Lga = gag∗. In this paper

we study the geometric structure of the orbits Oa = {gag∗ : g ∈ G} corresponding to

elements of A+
cr. In particular, when a ∈ A+ is invertible, the orbit of a is G+, the

set of positive invertible operators. G+ is a homogeneous reductive space of G, with a

canonical connection and a Finsler structure for which geodesics are short. A complete

description of this structure and its properties can be found in [9], [6]. The cone A+

can also be described as a disjoint union of equivalence classes or ”components”, with

a complete metric defined on each of them, the so called Thompson metric (for more

details about this metric see [28]). Again each component is a homogeneous space of a

certain group and has a Finsler metric which coincides with the Thompson metric, even

if the elements of the component do not have closed range. In particular, the component

of any a ∈ G+ is G+, so that in this case the orbit is also the Thompson component; if

a ∈ A+
cr, the component of a can be identified with the invertible elements of L(R(a)),

and the acting group is the closed subgroup of G of the elements of G preserving R(a)

(see [6], [7]). It turns out that each orbit is the union of certain Thompson components:

the component of b is included in the orbit of a if and only if the orthogonal projection

onto the range of b belongs to the unitary orbit of the orthogonal projection onto the
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range of a, denoted by pa. The aim of this paper is to provide the orbit Oa with a

structure of differentiable homogeneous space such that each component belonging to

Oa remains a submanifold. The case A = L(H) is studied in detail in order to show

that some changes have to be done in the topology of Oa to obtain a structure of

that type. Thus, we define a metric d on Oa, which coincides with the one induced

by the usual norm on each component. With this new topology, (Oa, d) can be given

a structure of a differentiable manifold. Moreover, if UOp = {upu∗ : u ∈ U} is

the unitary orbit of p ∈ P, then the metric d guarantees the smoothness of the map

α : Oa → UOpa , b 7→ pb, whose fibres are the Thompson components. Also there exist

local cross sections for the projection πa : G → Oa, πa(g) = gag∗ and the diagram

G
πa−−→ Oa

πpa ↘
y α

UOpa

is commutative, where πpa(g) = pgpag−1 , g ∈ G, the natural action of G over UOpa

(see [3]). Moreover (Oa, d) becomes a differentiable homogeneous space of G and the

map α turns to be a locally trivial fibre bundle. A smooth connection is defined on

(G,Oa) which provides a transport equation and a parallel lift for any smooth curve in

Oa . The parallel lift of a given curve is the solution of a certain variational problem.

Finally, the existence of geodesics for this connection is studied and it is proved that

two points on the same component are connected by a unique geodesic.

Section 2 contains a description of the differential geometry of G+ and, in general,

of all Thompson components of A+. It also contains certain known results on the

geometry of the set P . There is a natural action of G over the set A+
cr of all closed

range positive elements of A given by (v, a) → vav∗ (v ∈ G, a ∈ A+
cr). Then A+

cr is

partitioned as the union of different orbits of this action and each orbit is the union

of disjoint (Thompson) components. In Section 3, the orbit Oa of a closed range

positive element a ∈ A is studied as a homogeneous space of G. Section 4 contains the

description of the orbit Oa as a differentiable manifold and the Thompson component

Ca as a submanifold of Oa. In section 5 a connection is defined on the homogeneous

space G → Oa, from which one gets a covariant derivative on the tangent bundle of

Oa and the geodesics of this connection are determined.

2 Preliminaries

Let H denote a Hilbert space, L(H) the algebra of all bounded linear operators on H
and A ⊆ L(H) a C∗-algebra. Let G be the group of invertible elements of A, U the

unitary group of A, A+ the set of positive semidefinite operators, A+
cr the subset of A+

of positive operators with closed range and P the set of orthogonal projections in A.
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For every c ∈ A, R(c) denotes the range of c and ker(c) its kernel. For c ∈ A+
cr, c†

denotes the Moore-Penrose pseudoinverse of c and pc = cc†, the orthogonal projection

onto R(c). For M⊆ H a closed subspace, PM ∈ L(H) denotes the orthogonal projec-

tion onto M. It is well known (see, for example, [18]) that, if c ∈ A+
cr, then c† ∈ A

and pc ∈ P ⊆ A. In this sense, c → c† is a well defined mapping from A+
cr into itself.

Its continuity properties have been determined by Labrousse and Mbekhta [23].

LEMMA 2.1 Let p ∈ P and q ∈ A such that q2 = q.

1. If q = gpg−1, for some g ∈ G, then there exists u ∈ U such that pq = PgR(p) =

upu∗.

2. If q = q∗ and ‖q − p‖ < 1, then there exists u ∈ U such that q = upu∗.

Proof. The first item has been proven in [3]. Item 2 has been proven by B. Sz.-Nagy

[27]. A nice proof of this fact, due to Kato [22], provides a positive invertible operator

a = 1− (p− q)2 ∈ G+ such that the unitary operator u = qa−1/2p + (1− q)a−1/2(1− p)

verifies u ∈ A and upu∗ = q.

Consider the following equivalence relation on the closed convex cone A+: for

a, b ∈ A+, a ∼ b if there exist r, s > 0, such that ra ≤ b ≤ sa. Ca denotes the

equivalence class or ”Thompson component” of a. Each component is a closed con-

vex cone and a complete metric can be naturally defined on it. As a consequence

of Douglas majorization theorem [17], it follows that a, b ∈ A+ belong to the same

component if and only if R(a1/2) = R(b1/2). For a, b ∈ A+
cr it turns out that a ∼ b

if and only if R(a) = R(b) because R(c) = R(c1/2) for all c ∈ A+
cr. In particular, for

a ∈ G+ it holds Ca = G+; observe that the orbit of a under the action of G over

A+, Oa = {gag∗ : g ∈ G}, also coincides with G+. In [6] there is a study of G+ as

a homogeneous space of G with structural group U . More generally, for every closed

subspace S of H and a ∈ A+
cr with range S, the Thompson component Ca is the set of

all b ∈ A+ such that R(b) = S, so that Ca can be naturally identified with the space

of all positive invertible operators in L(S) and, thus, Ca is a homogeneous space of

GL(S) (see [7] for details).

For p ∈ P , denote by UOp the unitary orbit of p, UOp = {upu∗ : u ∈ U}. The

following description of UOp can be found in [3]: the action of G over UOp given by the

map πp : G → UOp, πp(g) = pgpg−1 = PgR(p), g ∈ G defines an analytic homogeneous

space. The structure group is the isotropy group

Ip = {g ∈ G : PgR(p) = p} = {g ∈ G : (1− p)gp = 0 and pgp ∈ GpAp},

which is an union of connected components of the group of invertible elements of the

subalgebra

Tp(A) = {a ∈ A : (1− p)ap = 0} ⊆ A
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of p-upper triangular elements of A. This algebra is the tangent space at the identity

of the group Ip. It is also the kernel of the differential (Tπp)1 of πp at 1, because

(Tπp)1(a) = (1− p)ap, for all a ∈ A. The homogeneous space given by πp : G → UOp

admits a reductive structure given by the horizontal space Hp = (1− p)Ap which can

be homogeneously transported to all elements of G. Note that this horizontal space

can be naturally identified with the tangent space T (UOp)p of UOp at p, via the map

x 7→ x + x∗, x ∈ Hp. This connection gives rise to natural covariant derivative and

parallel transport on UOp. Given x ∈ (1 − p)Ap and X = x − x∗, the geodesic γx

starting at p with γ̇x(0) = x + x∗ is

γx(t) = etXpe−tX , t ∈ RI .

The Finsler structure of UOp is obtained by taking the usual norm of the tangent

vectors at any point. It allows to compute the length of smooth curves with the usual

formulae. In [10], it has been proved that if p, r ∈ UOp and ‖p − r‖ < 1, then there

exists a unique geodesic of UOp joining them and it has minimal length.

3 The orbit of a positive operator with closed range

Let A ⊆ L(H) be a C∗-algebra and consider the action L : G×A+ → A+

L(g, b) = Lg(b) = gbg∗ g ∈ G, b ∈ A+.

For every a ∈ A+
cr let pa be the orthogonal projection onto R(a). The orbit of a is

Oa = {Lga : g ∈ G} = {gag∗ : g ∈ G}.

Observe that Oa ⊆ A+
cr, i.e. Lg(A+

cr) ⊂ A+
cr, for all g ∈ G. Denote UOp the unitary

orbit of p, i.e. UOp = {upu∗ : u ∈ U}.

LEMMA 3.1 Let a ∈ A+
cr and p = pa. Then

1. Oa = Op.

2. If b ∈ A+
cr, then b ∈ Oa if and only if pb ∈ UOp.

Proof. Consider g = (a1/2)†+(1−p). Then g ∈ G and gag∗ = p, so that p and a belong

to the same orbit. Then Oa = Op, because two orbits which are not disjoint must be

equal.

If b ∈ Oa there exists g ∈ G such that gag∗ = b and then R(b) = g(R(a)) or,

equivalently, R(pb) = g(R(p)). Then q = gqg−1 is an oblique projection with R(q) =

R(pb). By Lemma 2.1, there exists u ∈ U such that pb = upu∗ and then pb ∈ Oa.

Conversely if pb ∈ UOp there exists a u ∈ U such that upu∗ = pb. If v = b1/2 +1−pb

then v ∈ G and b = vpbv
∗ = vupu∗v∗, so that b ∈ Oa.
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COROLLARY 3.2 Fix a ∈ A+
cr and p = pa. Then UOp = Oa ∩ P .

For a ∈ A+
cr let πa : G → Oa, πa(g) = Lga and define the retraction

α : Oa → UOpa α(b) = bb† = pb , b ∈ Oa.

Consider also the mapping πpa : G → UOpa πpa(g) = pgpag−1 , g ∈ G; πpa is a natural

action of G over UOpa (see [3]). Observe that α◦πa : G → UOpa , α◦πa(g) = α(gag∗) =

PgR(a) = πpa(g). Therefore the following diagram is commutative:

G
πa−−→ Oa

πpa ↘
y α

UOpa .

(1)

With this diagram it is easy to relate the orbit of a with the Thompson components

of its elements: in fact by Lemma 3.1 it follows that, if Ca is the Thompson component

of a, then b ∈ Oa if and only if there exists u ∈ U such that ubu∗ ∈ Ca. Then

Oa =
⋃

u∈U
uCau

∗ =
⋃

u∈U
Cupu∗ .

PROPOSITION 3.3 Let b ∈ Oa. Then α−1({pb}) = Ca.

Proof. From the characterization of the Thompson components stated in the Prelim-

inaries, c ∈ Cb if and only if R(c1/2) = R(b1/2), or equivalently R(c) = R(b) because

R(c) and R(b) are closed; but α(c) = cc† = pc, so that α(c) = pb if and only if pc = pb

if and only if R(c) = R(b), or equivalently c ∈ Cb.

Diagram (1) has at least two disadvantages: first, the map α may not be continuous ;

second, πa may not have local cross sections. see [18].

In the following theorem we state necessary and sufficient conditions for α to be

continuous and to obtain continuous local cross sections for πa, when A = L(H). We

also give another characterization of the orbits.

THEOREM 3.4 Let H be an infinite dimensional Hilbert space and A = L(H). For

n, m ∈ N ∪ {0,∞} such that n + m = ∞, define

A+
n,m = {a ∈ A+

cr : dim ker a = n, dim R(a) = m}.

Let a ∈ A+
n,m. Then:

1. A+
n,m = Oa.

2. The mapping α : Oa → UOp, α(b) = pb is continuous if and only if n < ∞ or

m < ∞.
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3. The map πa : G → Oa, πa(g) = gag∗ has continuous local cross sections if and

only if n < ∞ or m < ∞.

Proof. The identity Oa = A+
n,m if a ∈ A+

n,m can be easily deduced from Lemma 3.1.

Suppose that a ∈ A+
n,m with n < ∞ (the case m < ∞ is similar). We recall the

definition of the (Apostol’s) reduced minimum modulus of a ∈ A:

γ(a) = max{c ≥ 0 : ‖aξ‖ ≥ c‖ξ‖, ξ ∈ (ker a)⊥} = inf{‖aξ‖ : ξ ∈ (ker a)⊥, ‖ξ‖ = 1},

Observe that γ(a) > 0 if and only if R(a) is closed. In particular, if a ≥ 0, then

a ∈ A+
cr if and only if γ(a) > 0 if and only if 0 is an isolated point of the spectrum

of a. Denote by r = γ(a) > 0. We shall see that, if b ∈ Oa and ‖a − b‖ < r/2, then

γ(b) ≥ r/2. Indeed, for ξ ∈ R(a) = ker a⊥, ‖bξ‖ ≥ ‖aξ‖ − ‖(a − b)ξ‖ ≥ r/2. Hence

ker b∩R(a) = {0}. Since dim ker b = dim ker a = n < ∞ (resp. dim R(a) = dim R(b) <

∞), then ker b⊕ R(a) = H. Let q be the bounded projection onto R(a) given by this

decomposition. If η ∈ (ker b)⊥ then ‖q(η)‖ = (‖η‖2 + ‖(1− q)η‖2)1/2 ≥ ‖η‖ so that

‖bη‖ = ‖b(qη)‖ ≥ r

2
‖qη‖ ≥ r

2
‖η‖.

Hence γ(b) ≥ r/2 near a. Using the continuous functional calculus (the map f(t) =

t−1ℵ[r/2,∞)), the map b 7→ b† and therefore also the map b 7→ α(b) = bb† = pb are

continuous when restricted to Oa.

Since πa is surjective, in order to show that πa has local cross sections near every

b ∈ A+
n,m, it suffices to show this fact just near a. By Lemma 2.1 if p, q ∈ P and

‖p−q‖ < 1 then they are unitarily equivalent in A. Moreover, there exists a continuous

map

s : {q ∈ P : ‖p− q‖ < 1} → U

such that s(p) = 1 and s(q)ps(q)∗ = q for every q. See the proof of Lemma 2.1 or [10].

For b ∈ A+
n,m close to a, using that p 7→ pb is continuous, we can suppose ‖p−q‖ < 1.

Then by considering s(pb)
∗bs(pb), instead of b we can assume that b is still close to a

and pa = pb, i.e. ker b = ker a. In this case define g(b) = b1/2(a†)1/2 + (1 − pa). It is

clear that g(b)ag(b)∗ = b. Also g(b) ∈ G, because

‖1− g(b)‖ = ‖a1/2(a†)1/2 + (1− pa)− g(b)‖ = ‖(a1/2 − b1/2)(a†)1/2‖ < 1

for b close enough to a.

Let a ∈ A+
∞,∞ and consider q ∈ P such that q 6= 0, R(q) ⊂ ker(a) and dim(ker(a)	

R(q)) = ∞. Define an = a + 1
n

q, n ∈ N. Observe that ker(an) = ker(a) 	 R(q)

and R(an)) = R(a) ⊕ R(q) so that an ∈ A+
∞,∞ = Oa for every n. The fact that

ker(an) = ker(a) 	 R(q) is properly included in ker(a) clearly implies that the map

b → pb cannot be continuous.

Also, observe that it is not possible that an = gnag∗n, with gn ∈ G, gn → 1.

For, in this case it would be ker(an) = g∗n
−1(ker(a)) = R(g∗n

−1Pker(a)g
∗
n) for every n.
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But g∗n
−1Pker(a)g

∗
n → Pker(a) and this implies that Pker(an) → Pker(a) (see the proof of

Proposition 3.7 below) which is false. Thus, in this case there exists no local cross

section for the action of G on Oa.

REMARK 3.5 Observe that in the proof above it was shown that the map b → b† is

continuous when restricted to Oa = A+
n,m, with n < ∞ or m < ∞.

In many infinite dimensional problems, the lack of continuity is the only obstruction

for differentiability. Therefore we shall define a new metric on the orbits Oa, in order

to make α a continuous map. Doing this, Oa turns to be a homogeneous space of G.

The differentiable structure will be studied in the next section.

Consider the following metric on Oa:

d(b, c) = ‖b− c‖+ ‖pb − pc‖ = ‖b− c‖+ ‖α(b)− α(c)‖, b, c ∈ Oa.

PROPOSITION 3.6 1. The map α : (Oa, d ) → UOp is continuous.

2. For b, c ∈ Oa, d(b, c) = ‖b−c‖ if and only if b and c belong to the same Thompson

component; in particular d coincides with the usual metric in each component.

Proof. The continuity of α follows from the definition of d. If b , c ∈ Cb then pc = α(b) =

α(c) = pb so that d(b, c) = ‖b− c‖. Conversely, if d(b, c) = ‖b− c‖ then pb = pc so that

b and c belong to the same component.

Fix a ∈ A+
cr. For each b ∈ Oa consider the map πb : G → Oa, πb(g) = L(g, b) = gbg∗.

Denote π = πa and p = pa.

PROPOSITION 3.7 The map π : (G, ‖ · ‖) → (Oa, d) is continuous and it admits

continuous local cross sections.

Proof. Note that π is continuous if the norm metric is considered on Oa. Also, by

diagram (1), α ◦ π = πp , which is known to be continuous (see [3]). Therefore π :

(G, ‖ · ‖) → (Oa, d) is continuous. Let b ∈ Oa such that d(b, a) < 1; then ‖pb − p‖ < 1,

(1− (pb − p)2) ∈ G+ and it is easy to see that if

s(b) = b1/2(1− (pb − p)2)−1/2(a†)1/2 + (1− pb)(1− (pb − p)2)−1/2(1− p) ∈ G

then π ◦ s(b) = b on {b ∈ Oa : d(b, a) < 1}; thus s is a continuous local section of π in

a neighbourhood of a. If c = gag∗, g ∈ G, consider s′ = lg ◦ s ◦Lg−1 , where lg : G → G

is the left multiplication by g, then s′ is a local section of π in a neighbourhood of c.

This completes the proof.
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COROLLARY 3.8 Let a ∈ A+
cr. Denote by Ia = {g ∈ G : gag∗ = a}, the isotropy

group of a by the action of G. Then the metric space (Oa, d) is homeomorphic to the

quotient space G/Ia, where the quotient topology is considered.

REMARK 3.9 Observe that the continuity of b → pb on Oa is equivalent to the

continuity of the Moore-Penrose pseudoinverse b → b† on Oa (see [23]. Both are

provided by the metric d defined on the orbit.

4 Differentiable structure

Recall some definitions and results on Banach-Lie groups. As a general reference about

this subject, see, for example, [24].

DEFINITION 4.1 Given a Banach-Lie group G, a subgroup H of G is regular if it

is a Banach-Lie group and if (TH)1 is a closed and complemented subspace of (TG)1.

THEOREM 4.2 Let G be a Banch-Lie group, H ⊆ G a regular subgroup. Then

1. G/H has a unique structure of differentiable manifold such that G → G/H is a

submersion

2. G → G/H is a principal bundle with structure group H.

3. The action G×G/H → G/H is smooth.

In order to provide Oa ' G/Ia with a differential structure using Theorem 4.2, we need

to prove that Ia is a regular subgroup of G. First observe that if S is a closed subspace

of H then (S, 〈 , 〉) is a Hilbert space and every positive invertible operator c ∈ L(S)

determines an inner product on S by

〈ξ, η〉c = 〈cξ, η〉 , ξ, η ∈ S ;

〈 , 〉c is equivalent to the original inner product 〈 , 〉. Observe that, given v ∈ L(S),

w ∈ L(S) is the adjoint of v respect to 〈 , 〉c if

〈vξ, η〉c = 〈ξ, wη〉c, ξ, η ∈ S,

or, equivalently, if v∗c = cw.

Consider c ∈ A+
cr and Ac = pcApc; as R(x) ⊂ (ker c)⊥ for every x ∈ Ac we can naturally

identify Ac with a subalgebra of L(R(c)), by restricting the elements of Ac to (ker c)⊥.

Then c ∈ G+(Ac). Also Ac is a C∗-algebra when we consider the inner product 〈 , 〉c
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in R(c). Denote Uc the unitary group of (Ac, 〈 , 〉c), i.e. the operators v in G(Ac) such

that

v∗c = cv−1. (2)

The isotropy group Ib of b ∈ Oa is the group of all g ∈ G such that Lgb = b, i.e.

Ib = {g ∈ G : gbg∗ = b}.

The following proposition gives a characterization of Ia. First, let us denote by a0 ∈

L(R(a)) the compression of a to R(a), so that a =

(
a0 0
0 0

)
. Observe that a† =(

a−1
0 0
0 0

)
, hence a−1

0 = (a†)0 .

PROPOSITION 4.3 Let g ∈ A. Then g ∈ Ia if and only if g ∈ G and the matrix

representation of g induced by p is given by g =

(
g11 g12

0 g22

)
where g11 ∈ Ua0

−1.

Proof. Let g ∈ Ia. Then g(R(a)) = R(a) so that pgp = gp . As g ∈ Ia if and only if

g−1 ∈ Ia, also pg−1p = g−1p. Then if g11 = pgp and w11 = pg−1p, g11w11 = w11g11 = p

so that g11 ∈ G(Aa). Also g11a0g
∗
11 = a0 or a0g

∗
11 = g−1

11 a0. Then, by (2), g11 ∈ Ua−1
0

.

Easy matrix computations show that the invertibility of g11 implies that g21 = 0.

COROLLARY 4.4 Let b ∈ A+
cr. Then Ib is a Banach-Lie group, and

(TIb)1 = {X =

(
X11 X12

0 X22

)
∈ A : X11b = −bX∗

11},

where we use matrix representations in terms of pb. Therefore Ib is a regular subgroup

of G.

THEOREM 4.5 (Oa, d ) is a differentiable manifold and, for every b ∈ Oa, Cb is a

submanifold of Oa. Moreover, the d-open subsets Ub = {c ∈ Oa : ‖pc − pb‖ < 1} are

diffeomorphic to the product spaces Cb × Vpb
, where Vpb

= {q ∈ P : ‖q − pb‖ < 1}.

Proof. By Propositions 3.7 and 4.3, the space (Oa, d ) is homeomorphic to the quotient

space G/Ia. On the other hand, by Proposition 4.3, Ia is a regular subgroup of the

Lie-Banach group G. Therefore there exists a unique smooth manifold structure on

G/Ia which makes the quotient map (or, modulo the mentioned homeomorphism, the

map π) a submersion.

For every b ∈ Oa the Thompson component Cb of b is a differentiable manifold, [7];

also the unitary orbit of pb, UOpb
, is a differentiable manifold, [10]. Then Cb × UOpb

admits a structure of differentiable manifold. Fix b ∈ Oa and consider the d-open set

Ub = {c ∈ Oa : ‖pc − pb‖ < 1}. Now consider Vpb
= {q ∈ P : ‖q − pb‖ < 1}. Vpb

is a neighbourhood of pb in P and Vpb
⊂ UOpb

, (see Preliminaries). For q ∈ Vpb
, set
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e = 1−(q−pb)
2, then e ∈ G+ so that we can define φ(q) = qe−1/2pb+(1−q)e−1/2(1−pb).

It is easy to see that φ(q) ∈ U and φ(q)pbφ(q)∗ = q. Observe that φ(q)(R(b)) = R(q).

Define fb : Cb × Vpb
→ Ub ⊆ A, by fb(c, q) = φ(q)cφ(q)∗. As R(fb(c, q)) =

φ(q)(R(c)) = φ(q)(R(b)) = R(q), it follows that fb(c, q) ∈ Cq. Clearly fb is a C∞ map.

In order to see that fb is a diffeomorphism, observe that the map h : Ub → Cb × Vpb

defined by h(x) = (φ(px)
∗xφ(px), px) is the inverse of fb and h is a C∞ map, because

the map x 7→ px is C∞: this can be easily verified by composing with πb.

REMARK 4.6 The homogeneous space (GL(S), Ca, Ia) mentioned in the Prelimi-

naries is a subbundle of (G,Oa, Ia) with the same structure group Ia, see [7].

REMARK 4.7 Observe that, in general, Oa is not a submanifold of A (because the

topologies induced by d and the usual norm may be different, see Theorem 3.4). So

that, in principle, we can not identify its ”abstract” tangent space with the image of

the tangent map of the map π : G → Oa ⊆ A. Each tangent space (TOa)b should be

identify with the image of tangent map of πb : G → G/Ib, because this is the way the

manifold structure of Oa is constructed. However, both processes give the same result:

in fact, because the kernel of (Tπb)1 is the tangent space at 1 of the isotropy group, we

can identify (TOa)b with TG1/(TIb)1. Recall that (TG)1 = A and, by Proposition 4.3,

(TIb)1 = {X =

(
X11 X12

0 X22

)
∈ A : X11b = −bX∗

11},

where we use matrix representations in terms of pb. On the other hand, if we consider

(Tπb)1 : A → A, it is easy to see that (Tπb)1(Y ) = Y b + bY ∗, and it is clear that

ker(Tπb)1 = (TIb)1. So we shall identify any abstract tangent vector (Tπb)1(Y ), Y ∈ A,

in T (Oa)b with the concrete vector Y b + bY ∗ ∈ A.

PROPOSITION 4.8 For b ∈ Oa the tangent space (TOa)b identifies with the set

{X =

(
X1 W ∗

W 0

)
∈ A : X1 = X∗

1} = {X ∈ A : X = X∗, (1− pb)X(1− pb) = 0},

where the matrix representation of X is given by pb.

Proof. First consider b = a. Consider γ(t) ⊂ Oa a smooth curve such that γ(0) = a

and γ̇(0) = X. Using the existence of a local cross section in a neighbourhood of a, there

exists a curve g(t) ⊂ G such that γ(t) = g(t)ag(t)∗, g(0) = 1, ġ(0) = Y . Computing

the derivative of γ at t = 0 we get that γ̇(0) = ġ(0)a + aġ(0)∗ or X = Y a + aY ∗.

If Y =

(
Y11 Y12

Y21 Y22

)
is the matrix representation given by p, then

X =

(
Y11 a 0
Y21 a 0

)
+

(
aY ∗

11 aY ∗
21

0 0

)
=

(
Y11 a + aY ∗

11 aY ∗
21

Y21 a 0

)
.
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Hence X =

(
X1 W ∗

W 0

)
with X1 = X∗

1 . Conversely if X has this form consider

Y11 = 1
2
X1a

†, Y21 = Wa† and Y =

(
Y11 Y12

Y21 Y22

)
, then Y a + aY ∗ = X and if g(t) = eXt

we get that γ = gag∗, γ(0) = a and γ̇(0) = X. The proof is similar for any b ∈ Oa.

5 The transport equation

In this section we define a natural connection on the homogeneous space (G,Oa, Ia)

by giving a smooth distribution of horizontal spaces. The existence of a connection

allows to obtain the horizontal lift for any curve γ in Oa, as the solution to a linear

differential equation, the so called transport equation. Then, it is possible to define a

covariant derivative and an associated notion of geodesic. Some results of existence of

geodesics are given.

First observe that the tangent map of the projection π at 1 ∈ A, (Tπ)1 : A →
(TOa)a identifies with

(Tπ)1(X) = Xa + aX∗

and

ker(Tπ)1 = {
(

X11 X12

0 X22

)
∈ A : X11a = −aX∗

11} = (TIa)1.

Observe that X11 is a†-antisymmetric, if it is considered as an operator in L(R(a)).

Define the horizontal space at 1 as

Ha = {
(

X11 0
X21 0

)
∈ A : X11a = aX∗

11}

and the vertical space at 1 as Va = (TIa)1. It is easy to see that A = Va ⊕Ha and that

the restriction of (Tπ)1 to Ha, (Tπ)1|
Ha

: Ha → (TOa)a is an isomorphism. Explicitely,

(Tπ)1|
Ha

(X) = 2X11a + X21a + aX∗
21 , where X =

(
X11 0
X21 0

)
∈ Ha,

and the inverse map ((Tπ)1|
Ha

)−1 = Ka : (TOa)a → Ha is given by

Ka(X) =
1

2
pXpa† + (1− p)Xpa† =

1

2
pXa† + (1− p)Xa† = (1− p

2
)Xa†;

equivalently, if X =

(
X1 W ∗

W 0

)
then Ka(X) = 1

2
X1a

† + Wa†.

For every g ∈ G set Ha,g = gHa the horizontal space at g and Va,g = gVa the vertical

space at g. Then A = Ha,g ⊕ Va,g and this distribution of horizontal subspaces defines

a smooth connection.
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Given a smooth curve γ ⊂ Oa, a smooth curve Γ ⊂ G is a lift of γ if γ = π(Γ) =

ΓaΓ∗ and Γ is a horizontal lift of γ if Γ is a lift of γ and Γ̇ ∈ Ha,Γ.

LEMMA 5.1 Γ is a horizontal lift of γ if and only if Γ is a solution to Γ̇ = Kγ(γ̇)Γ.

Proof. To prove this assertion suppose first that Γ is a horizontal lift of γ. Differen-

tiating π(Γ) = γ we get (Tπ)Γ(Γ̇) = γ̇. Also, from π = Lg ◦ π ◦ lg−1 , g ∈ G, where lg is

the left multiplication by g, we obtain, at g = Γ, that (Tπ)Γ = (TLΓ)a(Tπ)1lΓ−1 , then

(TLγ)a(Tπ)1(Γ
−1Γ̇) = γ̇, or (Tπ)1(Γ

−1Γ̇) = (TLγ)
−1
a γ̇.

Γ̇ ∈ Ha,Γ because Γ is horizontal; then Γ−1Γ̇ ∈ Ha so that Γ−1Γ̇ = Ka(TLγ)
−1
a γ̇.

Now observe that Kγ = AutΓKa(TLγ)
−1
a , where Autg(h) = ghg−1, g, h ∈ G. Then

Γ̇ = Kγ(γ̇)Γ.

Conversely, if Γ is a solution to Γ̇ = Kγ(γ̇)Γ then Γ̇Γ−1 = Kγ(γ̇) ∈ HΓ = ΓHaΓ
−1;

therefore Γ̇ ∈ Ha = ΓHa,Γ and Γ is horizontal.

PROPOSITION 5.2 Consider γ : [0, 1] → Oa a smooth curve such that γ(0) = a

and Γ : [0, 1] → G a lift of γ. Then Γ is horizontal if and only if Γ is the solution to

the differential equations {
pγ(Γ̇Γ−1 − 1

2
γ̇γ†)pγ = 0

Γ̇Γ−1(1− pγ) = 0.

Proof. By Lemma 5.1 Γ is a horizontal lift of γ if and only if Γ is a solution to

Γ̇ = Kγ(γ̇)Γ, where Kγ(γ̇) = 1
2
pγ γ̇γ† + (1− pγ)γ̇γ†.

It is well known that the unique solution of a linear differential problem Γ̇ = KΓ,

Γ(0) = 1 satisfies Γ(t) ∈ G, for all t ∈ [0, 1]. Then, Γ̇ = Kγ(γ̇)Γ is equivalent to

Γ̇Γ−1 =
1

2
pγ γ̇γ† + (1− pγ)γ̇γ†,

or, what is the same, to{
Γ̇Γ−1pγ = 1

2
pγ γ̇γ† + (1− pγ)γ̇γ†

Γ̇Γ−1(1− pγ) = 0.

Multiplying conveniently by pγ and by 1− pγ we obtain the equivalent equations
pγ(Γ̇Γ−1 − 1

2
γ̇γ†)pγ = 0

(1− pγ)(Γ̇Γ−1 − γ̇γ†)pγ = 0

Γ̇Γ−1(1− pγ) = 0.

But the second equation is satisfied by every lift of γ, not necessarily horizontal. In fact

differentiating a = Γ−1γΓ∗−1 we get γ̇ = Γ̇Γ−1γ + γΓ∗−1Γ̇∗. Then (Γ̇Γ−1 − γ̇γ†)pγ =

−γΓ∗−1Γ̇∗γ† and the equation follows.

Then Γ is horizontal if and only if{
pγ(Γ̇Γ−1 − 1

2
γ̇γ†)pγ = 0

Γ̇Γ−1(1− pγ) = 0.
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REMARK 5.3 i) The equations in the proposition above can be rewritten as{
(pγΓ̇aΓ∗pγ)

∗ = pγΓ̇aΓ∗pγ

Γ̇Γ−1(1− pγ) = 0.

ii) As we have already seen Γ is a horizontal lift if and only if Γ̇ = Kγ(γ̇)Γ.

On the other side Kγ = AutΓKa(TLΓ)−1
a , where AutΓ(X) = ΓXΓ−1 and (TLΓ)−1

a

is the inverse of the tangent map of LΓ at a at each t ∈ [0, 1] and it is given by

(TLΓ(t))
−1

a
= LΓ(t)−1 . Then

Γ−1Γ̇ = Ka(LΓ−1 γ̇) = Ka(Γ
−1γ̇Γ−1∗)

so that

Γ−1Γ̇ =
1

2
p Γ−1γ̇Γ−1∗p + (1− p)Γ−1γ̇Γ−1∗p.

Or, equivalently, 
pΓ−1Γ̇p = 1

2
pΓ−1γ̇Γ−1∗p

(1− p)Γ−1Γ̇p = (1− p)Γ−1γ̇Γ−1∗p

Γ−1Γ̇(1− p) = 0 .

Again, the second equation is verified by every lift of γ and the first one is equivalent

to pΓ−1Γ̇p = (pΓ−1Γ̇p)∗ . Then a lift Γ of γ is horizontal if and only if it satisfies{
pΓ−1Γ̇p = (pΓ−1Γ̇p)∗

Γ−1Γ̇(1− p) = 0 .

If a ∈ G+ then Ca = Oa = G+. The geometric structure of this set has already

been described, [9] and [6]. If α : [0, 1] → G+ is a smooth curve the length of α is

defined as L(α) =
∫ 1
0 ‖α−1/2α̇α−1/2‖dt; this is the natural definition considering the

Finsler metric defined in G+ (see the references above).

Consider the map πp : G → Oa defined by πp(g) = gpg∗, g ∈ G.

PROPOSITION 5.4 If Γ0 : [0, 1] → G is a horizontal lift (with respect to πp) of

γ : [0, 1] → Oa then

‖Γ−1
0 γ̇Γ∗0

−1‖ = ‖Γ−1
0 Γ̇0 + (Γ−1

0 Γ̇0)
∗‖ = ‖α−1/2α̇α−1/2‖ = ‖α̇‖α

where α ⊂ G+ is the curve α = ΓΓ∗ so that L(α) =
∫ 1
0 ‖α̇‖αdt =

∫ 1
0 ‖Γ−1

0 γ̇Γ∗0
−1‖dt.

Moreover, Γ0 is a solution of the variational problem

min
∫ 1

0
‖pΓ−1Γ̇‖dt,

where the minimum is taken over all lifts of γ.
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Proof. Γ is a lift of γ if and only if γ = ΓpΓ∗. Then computing the derivative of

p = Γ−1γΓ∗−1 we get that Γ−1γ̇Γ∗−1 = Γ−1Γ̇p + pΓ̇∗Γ∗−1. If Γ0 is horizontal then Γ0

satisfies Γ−1
0 Γ̇0p = Γ−1

0 Γ̇0 so that Γ−1
0 γ̇Γ∗0

−1 = Γ−1
0 Γ̇0 + (Γ0

−1Γ̇0)
∗.

Now consider α = Γ0Γ
∗
0 ⊂ G+, then Γ0(t) = α1/2(t)u(t), with u(t) ⊂ U . Then

α̇ = Γ̇0Γ
∗
0 + Γ0Γ̇

∗
0 or Γ−1

0 α̇Γ∗0
−1 = Γ−1

0 Γ̇0 + (Γ0
−1Γ̇0)

∗ , so that ‖Γ−1
0 Γ̇0 + (Γ0

−1Γ̇0)
∗‖ =

‖Γ−1
0 α̇Γ∗0

−1‖ = ‖α−1/2α̇α−1/2‖.
Also pΓ−1

0 Γ̇0 = pΓ−1
0 Γ̇0p = 1

2
pΓ−1

0 γ̇Γ∗0
−1p so that ‖pΓ−1

0 Γ̇0‖ = 1
2
‖pΓ−1

0 γ̇Γ∗0
−1p‖.

If Γ is any lift of γ then γ = ΓpΓ∗ and ‖pΓ−1γ̇Γ∗−1p‖ = ‖pΓ−1Γ̇p + p(Γ−1Γ̇)∗p‖ ≤
2‖pΓ−1Γ̇p‖ ≤ 2‖pΓ−1Γ̇‖.

Given X ∈ (TOa)a, then X =

(
X1 W ∗

W 0

)
with X1 = X∗

1 . We look for a geodesic

γ ⊂ Oa such that γ(0) = a and γ̇(0) = X. If γ = ΓaΓ∗ then Γ verifies

Γ̇ = Ka(X)Γ

with Ka(X) = (1
2
X1 + W )a† = (1

2
X1 + W )ã−1 where ã =

(
a 0
0 1

)
∈ G. Then

Γ(t) = etKa(X) = et( 1
2
X1+W )a†

and

γ(t) = etY a†aeta†Y ∗

where Y = 1
2
X1 + W. Observe that Y + Y ∗ = X and Y = Y p. Easy computations

show that

γ(t) = ãet̃a−1Y et̃a−1Y ∗ − (1− p).

and that γ(0) = a, γ̇(0) = X.

REMARK 5.5 If a ∈ G, 1 − p = 0, ã = a and Y = X1 = X then γ(t) = aeta−1X is

the usual geodesic as in the invertible case. Observe that γ can also be expressed as

γ(t) = aet̃a−1Y et̃a−1Y ∗
+ (1− p)(et̃a−1Y et̃a−1Y ∗ − 1).

In particular, if a = p then ã = 1 and γ(t) = etY etY ∗− (1−p). Finally, if b and c belong

to the same component there exists a unique geodesic with endpoints b and c and it

coincides with the geodesic provided by the structure studied in [7].

Some questions: Some of the results about the orbit of a closed range positive

element remain valid if the closed range condition is dropped. However in this case

it is not obvious how to provide Oa with a differentiable structure compatible with

the structure of homogeneous reductive space of its Thompson components, as in the

closed range case.
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