SéMA Journal
n°57(2012), 107-134

A SURVEY ON DIRECT SOLVERS FOR GALERKIN METHODS

DAVID PARDO#:Z, MACIEJ PASZYNSKI®, NATHAN COLLIERD,
JULEN ALVAREZ#, LISANDRO DALCINZ, AND VICTOR M. CALOP

¢ Department of Applied Mathematics, Statistics, and Operational Research, University of the
Basque Country (UPV/EHU), Bilbao, Spain
® Ikerbasque, Bilbao, Spain
¢ AGH University of Science and Technology, Krakow, Poland
4 King Abdullah University of Science and Technology (KAUST), Saudi Arabia
¢ CONICET, Santa Fe, Argentina

Corresponding author e-mail: dzubiaur@gmail.com (David Pardo)

Abstract

In this paper we describe the history, performance, and design concepts of
direct solvers for algebraic systems resulting from Galerkin discretizations of
partial differential equations. Popular direct solver implementations of Gaussian
elimination (also known as LU factorization) are introduced and briefly analyzed.
We discuss three of the most relevant aspects influencing the performance of
direct solvers on this kind of algebraic systems. First, the ordering of the
degrees of freedom of the algebraic system has a significant impact on the solver
performance, solution speed and memory requirements. The impact of unknowns
ordering for elimination is exemplified and alternative ordering algorithms are
described and compared. Second, the effect of round-off error on the simulation
results is discussed. We detail this effect for uniform grids where the impact
of round-off error on the solution is controlled by the condition number of the
matrix in terms of the element size, but is independent of the polynomial order
of approximation. Additionally, we discuss the link between unknown ordering
and round-off error. Third, we describe the impact of the connectivity pattern
(graph) of the basis functions on the performance of direct solvers. Variations in
the connectivity structure of the resulting discrete system have severe impact on
performance of the solver. That is, the resources needed to factorize the system
strongly depend on its connectivity graph. Less connected graphs are cheaper to
solve, that is, C° finite element discretizations are cheaper to solve with direct
solvers than CP~" discretizations.

Key words: LU factorization, Gaussian elimination, frontal solver, multi-frontal solver,
hp-finite elements, isogeometric analysis, cost of regularity, parallel direct solvers
AMS subject classifications: 35-02, 65-02, 65F05, 65F50

Received: June 22, 2011. Accepted: November 15, 2011.

107

108 David Pardo and others

1 Introduction

Numerical simulation is fundamental to many technological and scientific endeavors.
These applications affect our daily life and our understanding of our world. At the
core of these scientific applications lies the efficient solution of linear systems of
equations generated by the discretization technique adopted. Over the last twenty
years, a revolution in Simulation-Based Engineering Science has occurred [71].
Simulations based on mathematical models that more faithfully account for the
details of reality while using high-accuracy discretization methods are the norm
presently (c.f., [63, 94]). Faster algorithms and faster hardware have made this
revolution possible. Thus, simulation is increasingly important in medicine (drug
delivery [18, 52, 62], stent design [6], tumor detection [37, 38], cardiovascular
disease [9, 11]), environmental hazard assessment (earthquake and tsunami early
warning systems, severe storm forecasting [69], climate change analysis [70]), energy
(oil recovery and prospection, alternative energies such as wind turbine design [12, 54]
and structural optimization [29, 30, 42]), and transportation, one of the biggest energy
expenditures of humanity (car, train, and airplanes design [43]). Most of these
simulations rely on the efficient solution of one or several large systems of linear
equations. Additionally, quantitative assessment of the uncertainty induced to the
simulation results by uncertainty in the data, error in the theoretical models as well
as numerical error in the representation imply that these large systems of equations
need to be repeatedly solved. For example, uncertainty in the simulation predictions
can be quantified using Monte Carlo simulations, which require a complete simulation
for every materialization of the model parameters [68].

In this paper, we focus on the solution of linear systems arising from the use of
Galerkin methods such as Finite Elements (FE) [17, 22, 31, 32, 56], Discontinuous-
Galerkin (DG) [23], Petrov-Galerkin (PG) [59], and Isogeometric Analysis (IGA) [27].
Galerkin methods are widely employed in the mathematical modeling of a variety
of industrial applications. For example, FE methods are routinely used for: (a) the
design of civil engineering structures such as bridges, skyscrapers, and other large
buildings by solving, for example, elasticity equations, (b) prospection of oil, gas, and
other precious materials in the Earth’s subsurface using electromagnetic, acoustic, and
nuclear measurements, (c) design of nanoparticles and meta-materials, (d) design of
sonars, radars, and other detection systems, (e) weather simulation and other fluid-
flow problems by solving Navier-Stokes equations, (f) image segmentation by solving
convection dominated diffusion equations, and so on. Other Galerkin methods such
as DG, PG, and IGA are also employed to solve either of the above applications,
and thousands of articles are published monthly on different applications of Galerkin
methods. The main difference between these Galerkin methods is the choice of basis
functions, which has far-reaching consequences: While DG utilizes discontinuous
basis functions, FE methods employ C°-continuous functions and IGA makes use of
basis functions with high regularity (C* with & > 0). PG employs different trial and
test basis function spaces to achieve stability and accuracy.

Although the focus is on linear systems arising from Galerkin discretizations,
we emphasize that most of the content presented in this paper is extensible to other
numerical methods such as finite differences (FD) and finite volumes (FV).

Direct Solvers for Galerkin Methods 109

There exist two classes of methods for solving a linear system of equations: (a)
direct methods, which deliver the exact solution in one step, and (b) iterative methods,
which provide an approximate solution of prescribed quality by following an iterative
process.

While the use of iterative solvers typically requires less computational resources
(time and memory) than direct solvers, they suffer from a number of problems. First,
iterative solvers often present severe convergence problems. Thus, different solvers are
needed for each application (elasticity [36], electromagnetism [50], fluid dynamics [5])
and numerical methods (h-FEM [16], p-FEM [7], hp-FEM [75, 76], DG [46], PG,
IGA [13, 20], etc.). Second, in addition to the convergence problems, iterative solvers
may be slower than direct solvers when a problem with multiple right-hand-side needs
to be solved, as it occurs in the case of gradient-based inverse methods in order to
compute the Jacobian and Hessian matrices. Iterative solvers may also be slower
than direct solvers when several matrices with a common set of rows and columns
need to be solved, as it occurs in mesh-based methods when local grid-refinements
are performed. Moreover, direct solvers are a main building block of most iterative
solvers. Thus, direct solvers become essential in many applications. Thus, here we
focus on the history, performance, and design of direct solvers.

There exist several direct methods for the solution of a linear system of equations,
including LU factorization, QR factorization, and singular value decomposition [45].
The fastest method is LU factorization, also known as Gaussian elimination, which is
by far the most used algorithm for the direct solution of a system of linear equations.
While other methods such as QR factorization may offer added stability minimizing the
effect of round-off error, they are simply non-competitive in terms of computational
efficiency. The main principle of the LU factorization algorithm is to decompose
the original matrix A into the product of a lower triangular matrix L with an upper
triangular matrix U.

There exist several variations of the LU factorization algorithm. For the case of
a symmetric matrix A, then U becomes L7, and LU factorization is called Choleski
factorization [45]. Additional alternatives are left-looking, right-looking, and Crout
variants [33], which may be convenient for particular applications mainly in context
of parallel computations. For the case of sparse matrices, it is also important to avoid
operations with the zeros of the matrix, and to produce L and U factors that are as
sparse as possible. State-of-the-art implementations of the LU factorization algorithm
for sparse matrices include the frontal [34, 58] and multi-frontal solvers [35, 39].
The latest trends on this area include efficient parallelization techniques (see e.g., [3,
48, 64]) and application-specific implementations that take advantage of the data-
structures of the Galerkin method, such as the work of [14, 61, 79-82]. In the literature
there is a number of review papers about direct multi-frontal solvers (e.g., [65]), while
detailed performance comparison of the most prominent solver implementations can
be found in [47].

The main approach of all existing papers, books, and reviews has been to design
the best possible direct solver of linear equations for a given discretization. In
here, in addition to provide a comprehensive review of direct solvers for non-expert
readers, we present a unique approach that significantly differs from previous works:
we analyze how the best existing direct solvers perform when applied to different

110 David Pardo and others

Galerkin discretizations. Thus, the work presented herein is an introduction and
review of direct solvers as well as a guide to select the optimal Galerkin method
(discretization) from the point of view of the direct solver performance. This analysis
complements the existing one on different Galerkin methods, where they typically
display only the discretization error versus problem size [1, 28]. The analysis of
problem size versus computational resources described in this paper complements the
existing results and provides a complete picture of the advantages and disadvantages
of each Galerkin method (discretization). This description follows closely our work on
the area [19, 24, 25]

In this review paper, we discuss the main advantages and disadvantages of most
interesting variations of the LU solver when applied to systems arising from Galerkin
discretizations. We describe in detail the main ingredient to achieve good performance,
namely, correct ordering of the unknowns. We also provide a comparison of the
performance of some of the most efficient direct solver implementations when applied
to systems arising from different Galerkin discretizations. From this analysis, we
conclude that some discretizations deliver matrices that are easier to solve.

Before closing this introduction we briefly describe a family of solvers introduced
over the last ten years. This family of solvers based on the idea of H-matrices [49]
and other compression methods has been proposed by several researchers (e.g., [87,
88, 98]). Some authors referred to them as “direct solvers” or “fast direct solvers”.
Clearly, they cannot be classified as iterative solvers, since they provide a solution in
one step (no iteration occurs). However, and in contrast to traditional direct solvers,
this new family only provides an approximate solution. Furthermore, their accuracy
depends upon the discretization and equation to be solved, and different compression
strategies need to be designed for each equation. Thus, we believe a more adequate
name perhaps could be “one step solvers” or “approximate direct solvers”. In any
case, we shall not consider them in this paper, in the same way we do not consider
iterative solvers that converge in one step.

The structure of the paper is as follows. We first describe the frontal and multi-
frontal solvers, including the most popular commercial and non-commercial direct
solver implementations. Then, we analyze in detail the issue of ordering of the
unknowns, which is at the core of obtaining superior performance. At this point, we
review the latest trends on the newest mesh-based ordering algorithms. Since ordering
also affects to the round-off error delivered by the solver, this issue is illustrated with a
one-dimensional example. Then, we study the performance of two direct solvers when
applied to different Galerkin methods. Following, we provide a short discussion on
parallel direct solvers, we describe a number of real-world applications to motivate the
open issues and future challenges on the topic, and we state some conclusions.

2 Frontal and Multi-frontal solvers

We begin with a short introduction of existing algorithms for performing LU
factorization on sparse matrices. The most typical state-of-the-art algorithms are
the frontal and multi-frontal solvers. The frontal solver [34, 58] browses blocks of
unknowns (typically finite element contributions), one-by-one, and when possible it

Direct Solvers for Galerkin Methods 111

performs Gaussian elimination of fully assembled unknowns from the single front
matrix. The multi-frontal solver [35, 39] constructs the assembly tree based on
the analysis of the connectivity (graph) of the matrix, that is, the topology of the
computational mesh. Then, finite elements are joint into pairs and unknowns are
eliminated within frontal matrices associated to multiple branches of the elimination
tree. The process is repeated until the root of the assembly tree is reached. Finally, the
common interface problem is solved and partial backward substitutions are recursively
performed on the assembly tree.

The process of elimination of frontal and multi-frontal solvers is performed via the
Schur complement operation. Let the square matrix A be decomposed into a block

structure as:
B C

where each block is full (all logical entries may be non-zero). The Schur complement
method consists of performing partial LU factorization of the square submatrix B to

obtain:
I 0 B 0 I B IC
A_[DBl IHO E—DB1C]'[O I } @

where the term E-DB~!C is known as the Schur complement.

Some of the most popular and efficient direct solvers of sparse matrices include
MUMPS [67], PARDISO [72], and HSL [53]. All of them are designed for both
sequential and parallel machines. Other solvers include SuperLU [95], SPOOLES [93]
and UMFPACK [97]. A comparison on the performance and features of these solvers is
given in, for example, [47]. Recently developed solvers that use the grid data structures
to produce connectivity trees and elimination ordering are [14, 82].

3 The issue of ordering

A proper ordering of the unknowns is fundamental to obtain optimal performance
from a direct solver. Although a different ordering does not modify the number of
nonzero entries of the original matrix A, it strongly affects to the sparsity pattern of
both factors L and U. In particular, different orderings of the same matrix may produce
factorizations with dramatically different number of nonzero entries (the so-called “fill-
in” of L and U). To illustrate this fact, we consider the following example:

9 15 6 07 3
1.5 05 0 O 0
A=1] 6 0 120 0
0.7% 0 0 0625 0
3 0 0 O 1

112 David Pardo and others

where
3
0.5 0.5
L= 2 -2 2
0.25 —-0.25 —-0.5 0.5
1 -1 -2 -3 1

Notice that A = I:LT. After proper re-ordering of A, we obtain an equivalent matrix
A, whose factors L and L” have a different and more convenient sparsity pattern with
less nonzero entries:

6 0 0 0 3
0 05 0 0 1.5
A= 0 0 12 0 6
0 0 0 062 075
3 15 6 075 9
where
4
0 0.707
L=1]0 0 3.464
0 0 0 0.79
0.75 2.121 1.732 0.949 0.194

In computations relevant to engineering science, a proper ordering of the unknowns
may affect the performance of the direct solver in terms of time and memory by at
least an order of magnitude. An example with just 100.000 unknowns for a 3D Laplace
equation problem is described in Table 1.

SOLVER MUMPS | MUMPS | MUMPS | PARDISO
ORDERING N. O. AMD METIS METIS
Time(sec) 686 332 73 73
Number of nonzero 488 181 95 95
entries (millions)

Table 1: Time and number of nonzero entries in the factors L and U needed to
solve the Laplace problem over a unit cube using a lowest order finite element (FE)
method with 100.000 unknowns. (A detailed description of the problem setup is
given in [24].) Different columns correspond to different solvers (MUMPS and
PARDISO) and ordering algorithms: Natural ordering given by the FE software (N.O.),
approximate minimum degree (AMD), and METIS.

We can divide the existing ordering algorithms into two groups. The first group
of algorithms is based on the following idea. Once the matrix has been constructed,
it is possible to create a graph with its connectivities, that is, for each unknown, one
can easily determine the remaining unknowns interacting with it by just looking at

Direct Solvers for Galerkin Methods 113

the nonzero entries of a particular row/column. After the connectivity graph has been
built, the objective is to solve a global optimization problem that consists of selecting
the ordering that minimizes the fill-in of matrices L and U. Approximate solutions
to this problem give rise to different ordering algorithms. The most popular ordering
algorithm is nested dissection [40], which is based on recursive graph partitioning.
State-of-the-art implementations of nested dissection are available in METIS [66]
and SCOTCH [90]. There also exist several other algorithms such as the minimum
degree (see [41] and references therein) and the approximate minimum degree ordering
algorithms AMD [2, 4] and their many variants. The main advantage of these ordering
algorithms is that they provide an optimal ordering (up to a constant) for the case of
matrices arising from uniform regular grids, as shown in [40, 51]. Thus, the most
popular solvers of linear equations employ these ordering methods. Even though
their optimality in matrices delivered by general unstructured meshes is unknown, our
experience indicates that they perform reasonably well in any grid (we do not observe
a major deterioration in performance for practical problems).

A second group of ordering algorithms is based on the idea that the information
to build the connectivity graph is present in the numerical method employed for
constructing the matrix. Therefore, it should be possible to design a proper grid-
based ordering algorithm directly from the data-structures of the numerical method
rather than by re-constructing the connectivity graph from the matrix. It is believed
by many authors (including the authors of this article) that one should be able to
achieve a better performance with this type of ordering algorithms, at least, in the
case of high polynomial order methods on unstructured and irregular meshes. For this
case, unknowns associated to the interior of an element should be eliminated first (this
is called static condensation), since they do not interact with unknowns associated
to other elements. Numerical experiments prove that performance of METIS and
other general ordering algorithms significantly increases when one hard-codes static
condensation [14] in the element assembly process. One disadvantage of grid-based
ordering algorithms is that the algorithm is discretization-specific, since it is closely
tied to the particular numerical scheme. In the following, we present recent efforts
oriented towards designing efficient grid-based ordering algorithms for high-order
finite element methods.

3.1 Next generation of solvers: ordering based on the grid

For high-order finite element methods, unknowns can be grouped into supernodes, that
is, a set of unknowns (nodes) with the same connectivity pattern. Data-structures of any
finite-element method easily identify supernodes. For example, all interior unknowns
to a given element have the same connectivity structure, and therefore, they constitute
a supernode. Similarly, unknowns associated to a single face, edge, or vertex constitute
supernodes.

The structure of supernode has two clear advantages. First, it naturally gives rise to
LU factorization algorithms in terms of blocks, that can be very efficiently executed by
using BLAS3 routines, which are tuned to take advantage of the cache memory of the
particular hardware available. Second, they facilitate proper ordering of the unknowns,
since they reduce the size of the ordering problem from the total number of unknowns

114 David Pardo and others

to the total number of supernodes. This significant dimensional reduction for the
optimization problem reduces the cost of the process while increasing the chances of
finding the global minimum rather than one of the local minima.

Using finite element data structures, a multi-frontal solver algorithm can be
designed in the following way. After static condensation, one assembles pairs of
neighboring elements in what we will call a “super-element” in order to perform LU
factorization of fully assembled supernodes. Then, one can join a set of two super-
elements and continue with the LU factorization, recursively. This algorithm only
requires a proper ordering of elements, reducing even more the size of the ordering
problem, due to the close link between elements and their respective supernodes.
A first attempt in this direction consists of using the natural ordering of elements
provided by the finite element software. However, this ordering becomes inefficient
when significant refinements around some types of singularities are present [61].
Other promising finite element based orderings are currently being studied by different
research groups (e.g., [14, 61, 82]).

While a proper re-ordering algorithm is essential to obtain superior performance,
it is also crucial in order to guarantee numerical stability of the solution. Otherwise,
round-off errors could jeopardize the quality of the solution. In the next section, we
briefly discuss a few basic concepts pertinent to round-off errors associated to direct
solvers of linear equations.

4 Round-off errors

To reduce the impact of round-off errors on the solution of the algebraic system, it is
necessary to employ some type of pivoting technique. Typically, most solvers employ
some variation of partial row or column pivoting. To prevent deterioration of the
solver performance (operation counts and memory requirements), one needs to ensure
that “local” techniques are used, that is, the pivoting technique should only affect the
ordering of unknowns.

A careful study of round-off error in context of Galerkin discretizations is
cumbersome, since it is highly dependent upon the discretization method, that is, basis
functions, quadrature rule, refinement method and so on. To simplify this analysis,
keeping it tractable while showing the relevant features of the problem, we restrict
our attention to a one-dimensional model problem. We choose to solve the Laplace
equation on a uniform grid where all elements in the mesh have the same length
(diameter) and polynomial order. The simulation results are shown in Figure 1. This
figure plots the relative error of the approximation for p = 1, 2, 3, 4 versus the number
of elements used in the uniform mesh. Note that the abscissa spans from several
dozen to a million elements. The straight dashes line shown that the relative error
grows proportional to the number of elements squared. That is, the approximation
error is proportional to the matrix’s condition number (ratio of largest to smallest
eigenvalue which is proportional to the inverse of the mesh size squared), but it is
almost insensitive to the polynomial order of approximation used. =~ However, in
the case of non-uniform grids, this conclusion is known to be false (the error is
not proportional simply to the condition number), and a complete analysis becomes

Direct Solvers for Galerkin Methods

107

115

L
=)

—
o

Relative Error in L — norm

L
o

-
o
T

2 3

10
Number of Elements

Figure 1: Round-off error for 1D Laplace problem discretized with uniform grids using
Peano shape functions and MUMPS solver with PORD [89] ordering.

-5

10 T
€ Peano,p=5 =
s | N
c

|
8 -10
- 10 R
c \
= \
5 slope = 2
w
o I -7
= 1 Peano,p=7 -
k] .
! \
o \
_15] Legendre, p = 7 Legendre,p=5
10 " b
1 I I I I

1 2 103
Number of Elements

Figure 2: Round-off error for 1D Laplace problem discretized with uniform grids using

MUMPS solver with PORD ordering.

107 T

NATURAL
ORDERING

PORD

-

o
L
=)

slop? =2

Relative Error in L™ — norm

-
o
L
o
T
Y
Y
»
-

1 2 3
Number of Elements

Figure 3: Round-off error for 1D Laplace problem discretized with uniform grids using
integrated Legendre polynomial shape functions of order p = 5 and MUMPS solver

with different ordering techniques.

116 David Pardo and others

challenging.

Furthermore, the choice of basis functions could also affect significantly to the
condition number of the matrix [8, 21, 26, 55, 73], and therefore, one could also expect
an increase on the round-off error of direct solvers. However, in the 1D case, we
observe no significant influence of the choice of shape functions in the round-off error.
As shown in Figure 2, results using Peano [60, 83, 84] shape functions are similar to
those using integrated Legendre polynomials [96].

Nevertheless, when designing a solver one should be aware of the round-off error,
since otherwise the solver may provide inaccurate results, specially in the case of
some indefinite problems (with both positive and negative eigenvalues) such as wave
propagation problems. In particular, at near resonant frequencies, a proper pivoting
strategy (reordering of the unknowns) may be needed to control the round-off error,
since different pivoting techniques affect to the performance of the solver.

Figure 3 illustrates how different ordering techniques may significantly affect
round-off error. In particular, the AMF ordering minimizes this error for the considered
1D Laplace problem. Thus, while the most important aspect to control round-off
error is the condition number of the original matrix (in terms of element size h), the
reordering of the unknowns is also relevant.

5 Performance of direct solvers when applied to different Galerkin methods

The amount of computational resources employed by a direct solver of linear equations
is highly dependant upon the particular choice of the discrete Galerkin method. This
choice has a significant effect on the structure (connectivity, condition number) of the
linear system of equations. In this section we analyze the direct solver costs associated
to some of the most popular Galerkin discretization schemes. All numerical examples
correspond to solving the Laplace equation over the unit cube. A detailed description
of the equation and boundary conditions used is given in [24].

For traditional C°-continuous FEM, the performance of the solver is affected by
the order of approximation within each element. For 3D problems, it is know that the
number of floating point operations and amount of memory scale as [24]:

FLOPS= O(NpS + N?), 3)
Memory= O(Np® + N*4/3),

where N refers to the number of degrees of freedom and p is a constant global
polynomial order. The first term in each of the above estimates corresponds to the
cost of “static condensation”, that is, Gaussian elimination of the interior unknowns,
while the second term corresponds to the cost of solving the remaining skeleton
problem. We note that the estimates given in (3) were derived for regular meshes with
approximately the same number of degrees of freedom in each coordinate direction
and a constant polynomial order for all elements in the mesh. Nevertheless, these
estimates are appropriate for other mesh configurations provided a sufficient number
of elements is present in each coordinate direction. That is, the estimates can be used
for arbitrary meshes if they have a sufficiently large number of unknowns, N, for a
given polynomial order, p.

Direct Solvers for Galerkin Methods 117

6 200 160, 2000
s Time ;’ e Time d
/1180 150 /

st Memory / w7 Memory /

/ 140 /11800
/1160 /

a / = 130 / =
0 /1M 5 v/ {16002
G = =120 / -
v 3| f 1205 @ / 5
£ g E119 1 £
= /i w008 1400 §

2 /./ = 100 =

80 v
90
1 i S . 1200
* v 60 804 v
. . v —
¢ 7 T 5 ¢ 000
polynomial order polynomial order
(a) 10,000 degrees of freedom (b) 100,000 degrees of freedom

Figure 4: Solution time and memory usage for 10,000 (left) and 100,000 (right)
unknowns using C continuous basis functions.

2700 7000,
e Time ¢—e Time 14000
v
100 *¥ Memory 1600 6000f| ¥—v Memory
v 12000
] 5000 ¥
80F v 500325 100003
a la00= @ 4000 z
g 60 v z g 8000 2
. c v
s 300§ 53000 6000 5
a0r v = =
1200 2000 v 4000
| v
0 1100 1000 2000
N5 4 5 & T ¢ 0=) 3 4 0
polynomial order polynomial order
(a) 10,000 degrees of freedom (b) 100,000 degrees of freedom

Figure 5: Solution time and memory usage for 10,000 (left) and 100,000 (right)
unknowns using CP~! continuous basis functions.

250 u 10000 T
— C"~0 — C"0
2000/ C7tP1}] 8000 Cip-1}
0 -
o)
£ 1500f Z 6000
s oy
c
S 1000t E 4000
3 £
"
500t] 2000 _/-/_/-
A s
I e — -".7___,_,-" ol
50000 100000 150000 200000 i 50000 100000 150000 200000
number of degrees of freedom number of degrees of freedom
(a) Solution time (b) Memory

Figure 6: Comparison of how time and memory scale with the number of degrees of
freedom for p = 2

118 David Pardo and others

The above estimates indicate that if IV is large enough with respect to p, then both
time and memory are independent of the polynomial order of approximation. Figure 4
displays numerical results for 10,000 and 100,000 unknowns when solving Laplace
equation over a unit cube. For the case N = 10, 000, the solver requires 3 times more
memory when using p = 7 than with p = 1. As we increase /N to 100, 000 unknowns,
this ratio decreases to a factor of 1.7. Similar results are observed in terms of CPU
time.

The above estimates are dimension dependent. That is, for 2D and 1D problems,
one obtains [19, 25]:

FLOPS 2D)= O(Np* + N'9)
Memory (2D)= (’)(N + Nlog(N/p?))
FLOPS (ID)= O(Np?),

O(N

Memory (1D)=)

Another important example is the case of isogeometric analysis (IGA) [27, 57],
which differs from traditional finite element analysis in the choice of basis functions.
IGA uses the Non-uniform Rational B-spline (NURBS) basis, which is an important
tool in commercial Computer Aided Design (CAD) packages [10, 57, 85]. While
standard basis functions used in finite elements are C° continuous, NURBS basis can
be constructed to possess an arbitrary order of continuity, C* with k& < p. In CAD,
typically C? cubic spaces are used such that curves and surfaces may be designed
where the curvature will be at least continuous. In terms of finite elements, the order of
continuity k provides an added dimension to the choice of refinement, the hpk-finite
element method.

The choice of higher continuous basis functions also has an effect on the structure
of the resulting linear system. The higher order continuity of the basis extends the
support of the basis functions into neighboring elements. This also means that there
are fewer, if any, degrees of freedom fully assembled in the element stiffness matrix.
Higher continuous methods, therefore, do not benefit as much from static condensation.
Thus, the final complexity estimates for 3D problems using C?~!-spaces become [24]:

FLOPS= O(NZ2p?)
Memory= O(p>N*/3)

According to these estimates, the number of FLOPS of the CP~1 method is p3 times
more expensive than the C° if N is large enough. While the amount of memory
required by the CP~! B-spline spaces is p? times more expensive than that required
by the C? spaces for sufficiently large N.

Figure 5 displays numerical results for 10,000 and 100,000 unknowns when solving
3D model problem. For the case N = 10,000, the solver requires 10 times more
memory when using p = 5 than with p = 1. As we increase N to 100, 000 unknowns,
this ratio increases to a factor of 15. Similar trends are observed in terms of CPU time.

To further illustrate the dependance of the performance of direct solvers with
respect to the discretization method, we consider again a 3D Laplace problem over
a unit cube, with the polynomial order of approximation p = 2 (see Fig. 6). For
CP~1 = (Cl-basis functions, we observe a great deterioration in performance with

Direct Solvers for Galerkin Methods 119

respect to the C%-counterparts. For N = 200,000 unknowns, the C!-continuous
method is about 6 times slower and consumes about 3 times more memory.

In summary, in traditional C° spaces, the time and memory needed to solve
the system is relatively insensitive to the polynomial order p if N is large enough.
However, the time and memory required to solve systems using CP~! spaces is not
only larger but also drastically increases with higher p. This effect is particularly
noticeable when solving problems in three spatial dimensions. This dependence on
p which the CP~1 spaces possess should be taken into account when selecting the
discretization method or when designing a grid-refinement algorithm. Since the cost
of solving systems using the hp finite element method is relatively insensitive to p, the
cost of a refinement may be considered in terms of the number of degrees of freedom
added, independently if they resulted from a h-refinement or a p-refinement. For
higher-continuous spaces, the choice is not as simple, since the increased solution cost
has to be factored into the analysis, that is, the reduction in the number of unknowns in
the system that higher continuity of the basis functions grants [1, 28], does not directly
translate in faster solution time when using direct methods. This open issue warrants
further study.

Other finite element methods make different choices in the strong and weak form
of the partial differential equation. Some of these methods include the discontinuous
Galerkin method (DG) [23] and the discontinuous Petrov-Galerkin method (DPG).
These methods lead to local problems which are linked to each other via traces and
fluxes on element boundaries. In each method, the use of static condensation typically
leads to a clear improvement in the performance of the solution of the algebraic
system. In the past, this efficiency has mislead authors to believe that it is cheaper
than traditional C° finite elements. However, the same is done in C? finite elements
and so there is no real advantage of discontinuous methods over continuous ones, in
terms of the direct solver.

6 Parallel Direct Solvers

Parallelization of multi-frontal solvers is typically performed by dividing the original
matrix (domain) among different processors, and by starting with one or several
elimination fronts within each processor. Then, sub-matrices of different subdomains
are joint into pairs and, in the next level of the elimination tree, unknowns that do not
interact with those of other processors are eliminated. This process is iterated until all
unknowns are eliminated in the last step of the elimination tree. This procedure is a
generalization of the multifrontal solver where different fronts are concurrently dealt
in each processor. The hardware architecture (shared, distributed, or hybrid memory)
imposes constraints on the particular algorithmic implementation to be used, while
the multifrontal solver remains the core idea. Different memory architectures require
different synchronization and communication constraints making the optimization
process to construct the elimination tree harder.

The parallelization of the direct solver on distributed memory machines can be
achieved using a sub-structuring method with non-overlapping sub-domains [44, 91,
92]. In this procedure, one first eliminates the internal unknowns of each sub-

120 David Pardo and others

domain with respect to the interface unknowns, then solves the interface problem,
and finally performs backward substitution on each sub-domain. The sub-structuring
method can be used as a way of parallelization of either the frontal or multi-frontal
solver. If the sub-structuring method is used as a way of parallelization of the
multi-frontal algorithm, an elimination tree is generated by the multi-frontal solver
over each sub-domain independently, with the root nodes related to the sub-domain
interface unknowns. On the contrary, if the sub-structuring method is used as a way of
parallelization of the frontal algorithm, the frontal solver eliminates subdomain internal
unknowns leaving the interface unknowns untouched. As discussed in Section 2,
in each block, fully assembled degrees of freedom are eliminated and the Schur
complement is formed for the partially assembled degrees of freedom. Figure 7
displays graphically the different steps taken by a parallel direct solver with multiple
fronts.

In a distributed memory machine, as sub-matrices are joint into pairs, the number
of processors in use is also divided by two. In the last step of the elimination, only
one processor is working while all others remain idle. This fact clearly reflects the
poor scalability that one should expect from conventional direct solvers, specially,
for large and complex 3D problems. To overcome the above problem it is possible
to redistribute the partially factorized matrix at each step of the elimination process.
A naive redistribution based on calling an existing parallel library package such as
ScaLAPACK [86] creates additional overhead that quickly deteriorates the parallel
scalability. Thus, one needs to consider more sophisticated implementations of the
redistribution step such as the one described in [64], where they achieve approx. a
60% scalability using a few thousand processors for a 2D problem. Notice that this
scalability result is really high in context of direct solvers.

Another partial remedy to the above scalability problem is to use “hybrid memory
machines”, and most popular parallel solvers already incorporate the possibility of
using multiple threads (e.g., [67, 72]).

Another option to increase scalability is to employ massively parallel, shared
memory architectures, such as the ones provided by General-Purpose Graphical
Processing Units (GPGPU’s). The shared memory allows to store all frontal matrices
and to perform multi-thread computations. If the number of threads is large
enough, all the computations within a level of the elimination tree can be performed
simultaneously. This implies that for a problem of size N, the computational cost
in terms of time is of the order O(log N) for 1D problems, since the depth of the
elimination tree for a 1D problem is of order O(log N). For 2D problems, the
computational cost is of the order O(N log N) if the number of threads is large enough.
These estimates are illustrated in Figure 8 for a Laplace problem over regular 1D and
2D grids. Notice that in large and complex problems the number of processors is
not large enough, and the above estimates are not achieved. Thus, when the number
of unknowns is larger than the maximum number of threads, the above estimates
O(log N) and O(N log N) for 1D and 2D problems, respectively, should be multiplied
by N/t, where t is the number of threads available. Similar scalability has been
obtained for higher-continuous isogeometric basis functions for 1d and 2d problems,
when implemented in GPUs in application specific implementations [79-81].

Direct Solvers for Galerkin Methods 121

—
()
=4

(b)

S T ®
™

B R

(d)

r

i(e)

Figure 7: Summary of multiple front solver: (a) Distribution of the computational
domain among different subdomains/processors, (b) matrix representation of each
subdomain, (c) matrix representation of Gaussian elimination of interior unknowns of
each subdomain, (d) matrix representation of the construction of the interface problem,
and (e) matrix representation of Gaussian elimination of the interface problem.

122 David Pardo and others

clock ticks

7

10° 10° 10
number of degrees of freedom

Figure 8: Computational cost of the parallel direct solver for a 1D and 2D Laplace
problem over a regular grid. The experiment has been performed on NVIDIA GeForce
8800gt graphic card with 14 multiprocessors and § cores per processor.

7 Real-World Applications and Open Challenges

In this section, we illustrate the main properties of direct solvers by selecting a
particular real-world application. Based on the numerical results obtained for that
application, we discuss the main open challenges in the area of direct solvers that need
to be overcome in the near future.

We consider the simulation and inversion of resistivity logging measurements in the
Earth’s subsurface, an application of great interest to quantify the amount and type of
hydrocarbons possibly existing in a reservoir. We consider two different measurement
systems: (a) marine controlled-source electromagnetic (CSEM) measurements [77]
(see Figure 9, left panel), where the source an receivers are located at the bottom of the
sea, and (b) borehole resistivity logging measurements in a deviated well (see Figure 9,
right panel). Both types of measurements are extensively used nowadays by the oil
industry.

To accurately solve the above applications we employ a discretization based on
a Fourier series expansion in one spatial dimension, and a 2D self-adaptive hp-FE
method [31, 32] in the remaining spatial dimensions, where both element size & and
polynomial order of approximation p vary locally throughout the grid. This hp-Fourier
Finite Element method has proven to be very efficient for simulation of resistivity
geophysical measurements [74, 78].

For solving these applications, there exist several reasons to prefer the of direct
solvers as opposed to iterative solvers. First, due to the presence of elongated elements,
convergence of iterative solvers rapidly deteriorates. Second, since these applications
are governed by Maxwell’s equations, iterative solvers need to be properly designed

Direct Solvers for Galerkin Methods 123

Figure 9: Left panel: marine controlled-source electromagnetics (CSEM) scenario
composed of air, water, and a subsurface containing an oil-saturated layer. Right panel:
logging instrument in a deviated well composed of several materials in the subsurface
and a logging instrument equipped with one transmitter and two receiver antennas.

to deal with the kernel of the curl operator (see [5, 50]), which complicates the
implementation. Finally, these applications require solution of a problem with multiple
right hand sides for computing the Jacobian and Hessian matrices needed to invert
the recorded measurements and obtain a map of the Earth’s subsurface. The cost of
iterative solvers increases with the number of right hand sides, while the cost of direct
solvers is almost insensitive to this number.

The use of GPU’s for solving these problems is not possible yet, due to the lack of
RAM available in these devices, presently. Therefore, we solve them in a workstation
equipped with a large amount of RAM (some applications exceeded 128 GB) or in a
parallel computer.

Figure 10 compares the performance of two of the most popular direct solvers —
MUMPS and PARDISO— when applied to a marine CSEM problem. We consider
only the sequential version of both solvers, and we include in the comparison both the
in-core and out-of-core versions. We report the CPU time (top panel of Figure 10)
and random access memory (RAM) (bottom panel of Figure 10) necessary to solve the
problems. Results indicate that the out-of-core version of PARDISO utilizes roughly
twice as much RAM and is twice slower than MUMPS out-of-core. However, the in-
core version of PARDISO is the fastest of all. These results indicate that there is still
large room for improvement on the out-of-core implementations of the direct solver
PARDISO. The use of efficient out-of-core implementations is important to reduce the
needed amount of RAM. In our practical application, we could not solve the problem
with 3.2 million unknowns using PARDISO, because the solver stopped with an error
indicating the lack of available RAM (32 GB).

As described in previous sections, different performance of direct solvers can be
due to implementation aspects and/or better ordering of the unknowns. In the case of
solvers PARDISO and MUMPS, both solvers use the ordering of unknowns provided
by METIS. Thus, it seems that in-core PARDISO is able to handle zeros in a more
efficient way (reason why we observe less memory consumption), while the out-of-
core implementation is clearly less efficient than the one performed by MUMPS.

124 David Pardo and others

Comparison of Direct Solvers (Time)

500

| === MUMFS (In-core} .
[| = ®=MUMPS (Out-of-core) -’

|| =il PARDISO (In-core) .
H = H=PARDISO (QOut-of-core

n
[=]

CPU Time (s)

in

15000 90000 540000 3200000
Mumber of Unknowns

Comparison of Direct Solvers (Memory)

|| il MUMPS (In—core})
10000F . @ = MUMPS (Out-of-core)
| =t PARDISO (In-core)
H = H=PARDISO (Out-of-core

1000

Memory (in MB)

100}

3200000

15000 90000 540000
Mumber of Unknowns

Figure 10: CPU time (top panel) and memory (bottom panel) used by different direct
solvers (analysis and LU factorization) vs. problem size when applied to a marine
CSEM problem using a Fourier hp-Finite Element Method. Tests performed on a
computer equipped with 32 GB of RAM and using only one core of the available 2
GHz dual-core processor.

Direct Solvers for Galerkin Methods 125

We now consider the in-core version of MUMPS, we analyze its parallel scalability
when applied to our marine CSEM problem with a system of linear equations arising
from the hp-Fourier Finite Element discretization. From the time (Figure 11, top panel)
and memory (Figure 11, bottom panel) results, we observe a rapid decrease on the
needed computational resources as we augment the number of available processors.
However, the actual scalability attained by the solver is quite poor. Specifically, for 16
processors, the scalability is approx. 30% in terms of CPU time and about 50% in terms
of CPU memory. For 64 processors, the CPU time scalability results further deteriorate
to a level of about 10%, while the memory scalability results do not change drastically.
These results indicate that the LU factorization for 64 processors is dominated by the
communication costs, since otherwise, we would observe a very strong correlation
between the CPU time and memory scalability results. Indeed, in our application, the
problem size is too small for each processor, which results in computations dominated
by the communication costs. Nevertheless, the memory scalability is only about 50%,
and this is due to the problem of matrix redistribution described in Section 6 that
naturally arises in LU factorization algorithms.

Another possible improvement of direct solvers when applied to real-world
applications is related to the use of the so-called supernodes. A supernode is a set
of unknowns (degrees of freedom) that share the same connectivities, and therefore,
can be treated from the solver point of view as a single block square dense matrix of
dimension equal to the number of unknowns of the supernode. For the case of a single
equation discretized with a lowest order finite element method, all unknowns share
different connectivities, and the use of supernodes becomes unnecessary. However, for
high-order Galerkin discretizations, supernodes becomes critical, since they provide
an additional boost in performance by enabling the use of BLAS3 [15] routines that
efficiently utilize the computer cache memory. Additionally, supernodes reduce the
size of the problem of ordering the unknowns, since they are treated as a single node
with an additional weight accounting for the size of the supernode.

MUMPS (as well as other solvers) employ supernodes. However, numerical results
in real-world applications suggest some inefficiencies on their implementation. Specif-
ically, we considered the problem of simulating resistivity logging measurements in a
deviated well mentioned above. We compared results obtained from solving the result-
ing linear system of equations with MUMPS against performing static condensation
of the unknowns interior to each element and then calling MUMPS over the interface
problem. This second approach was twice as fast, indicating that either the ordering
of the unknowns using MUMPS with METIS was not optimal or that the identifica-
tion or use of supernodes was suboptimal. This result also suggests that perhaps one
should utilize the information available in the Galerkin software rather than ignoring it
and then trying to reproduce it from the resulting matrix, which is a more difficult task.
That is, the time is ripe to stop using direct solvers as black boxes. Their robustness has
allowed us to treat them this way, but higher-order methods are testing this assertion.

To summarize, we encounter several challenges and open issues on the existing
direct solver implementations when solving real-world applications. First, an efficient
out-of-core implementation is often needed, since the amount of memory used by
direct solvers rapidly increases, specially in the case of 3D simulations. These memory
requirements also prevent the usage of GPU’s. Second, direct solvers typically display

126 David Pardo and others

Scalability Parallel Version (time)

Time (s)

1 2 4 a8 16 32 64
Number of Processors

Scalability Parallel Version (memaory)

600

3000

150071

Memory (MB

750}

1 2 4 8 16 32 o4
Number of Processors

Figure 11: CPU time (top panel) and memory (bottom panel) used by the parallel

execution of MUMPS when applied to a marine CSEM problem using a Fourier hp-
Finite Element Method.

Direct Solvers for Galerkin Methods 127

a non-optimal parallel scalability in distributed-memory machines, which is an area
of active research. Finally, the efficient use of supernodes as well as better ordering
techniques could lead to increased efficient. In this area, perhaps the use of the
connectivity information already available in the Galerkin simulation software could
lead to a simplification and even an improvement on the currently existing ordering
algorithms. This will lead to further integration of the discretization with the solution
strategy.

8 Conclusions

We give a brief introduction to direct solvers for linear algebraic systems resulting
from Galerkin discretizations. We describe the most important variants of Gaussian
elimination, which is the standard direct solution technique. @We explain the
frontal and multi-frontal approaches and their relation with Schur complement and
static condensation concepts. State-of-the-art implementations of direct solvers are
described, including MUMPS and PARDISO, which are among the most popular
versions, due to their ease of access and robustness. Following, the effect of ordering
in the solver performance is shown with a simple example, which leads to the
presentation of the optimal graph-based ordering, such as the one produced by METIS.
In the opinion of the authors, an optimal ordering that uses information from the
discretization, that is, a grid-based ordering could be the most efficient. However,
these optimal algorithms are more specific and thus less portable than graph-partitioned
ones. Additionally, ordering algorithms should account for the pivoting needed to
minimize the round-off error, which is analyzed and illustrated with a 1D problem
in Section 4. Section 5 exemplifies how different Galerkin methods lead to different
connectivities and in turn, this affects solver performance. In particular, systems with
less connected graphs are easier to solve, as the comparison of standard C° against
CP~! finite elements exemplified. In the next section of the paper we discuss how
parallel direct solvers are implemented and the effect of how the interplay between
multi-threading and problem size affects performance. Finally, Section 7 is devoted
to illustrate the performance of two popular direct solvers when applied to real-world
applications, which leads to a discussion on the most important open problems in the
area of direct solvers, namely, efficient: (a) ordering algorithms, (b) parallelization
techniques, (c) out-of-core implementations, and (d) use of supernodes.

9 Acknowledgments

The work reported in this paper was partially funded by the Spanish Ministry of
Sciences and Innovation under project MTM2010-16511. The work of the second
author has been partially supported by Polish MNiSW grant no. 519 447 739.

References

[1] T Akkerman, Y Bazilevs, V M Calo, T J R Hughes, and S Hulshoff. The role
of continuity in residual-based variational multiscale modeling of turbulence.

128 David Pardo and others

Computational Mechanics, 41(3):371-378, 2007.

[2] AMD. Approximate Minimum Degree (AMD). Webpage
http://www.cise.ufl.edu/research/sparse/amd/, 2011.

[3] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid
scheduling for the parallel solution of linear systems. Parallel Computing,
32:136-156, 2006.

[4] PR. Amestoy, T.A. Davis, L.S. Duff, et al. An approximate minimum degree
ordering algorithm. SIAM Journal on Matrix Analysis and Applications,
17(4):886-905, 1996.

[5] D.N. Arnold, R. S. Falk, and R. Winther. Multigrid in H(div) and H(curl). Numer:
Math., 85(2):197-217, 2000.

[6] F. Auricchio, M. Conti, S. Morganti, and A. Reali. Shape memory alloys: from
constitutive modeling to finite element analysis of stent deployment. Computer
Modeling in Engineering & Sciences, 57:225-243, 2010.

[7] 1. Babuska, A. Craig, J. Mandel, and J. Pitkaranta. Efficient preconditioning for
the p-version finite element method in two dimensions. SIAM J. Numer. Anal.,
28(3):624-661, 1991.

[8]1 Y Bazilevs, V Calo, J Cottrell, T Hughes, A Reali, and G Scovazzi.
Variational multiscale residual-based turbulence modeling for large eddy
simulation of incompressible flows. Computer Methods in Applied Mechanics
and Engineering, 197(1-4):173-201, 2007.

[9] Y Bazilevs, VM Calo, Y Zhang, and T J R Hughes. Isogeometric Fluid Structure
Interaction Analysis with Applications to Arterial Blood Flow. Computational
Mechanics, 38(4-5):310-322, 2006.

[10] Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M. A.
Scott, and T.W. Sederberg. Isogeometric analysis using T-splines. Computer
Methods in Applied Mechanics and Engineering, page 34, 2010.

[11] Y Bazilevs, J R Gohean, T J R Hughes, R D Moser, and Y Zhang. Patient-specific
isogeometric fluid-structure interaction analysis of thoracic aortic blood flow
due to implantation of the Jarvik 2000 left ventricular assist device. Computer
Methods in Applied Mechanics and Engineering, 198(45-46):3534-3550, 2009.

[12] Y Bazilevs, M Hsu, I Akkerman, S Wright, K Takizawa, and B Henicke.
3D simulation of wind turbine rotors at full scale. International Journal for
Numerical Methods in Fluids, (August 2010):207-235, 2011.

[13] Y Bazilevs, C Michler, V M Calo, and T J R Hughes. Isogeometric variational
multiscale modeling of wall-bounded turbulent flows with weakly enforced
boundary conditions on unstretched meshes. Computer Methods in Applied
Mechanics and Engineering, 199(13-16):780-790, 2010.

Direct Solvers for Galerkin Methods 129

[14]

[15]
[16]

[17]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

P. Bientinesi, V. Eijkhout, K. Kim, J. Kurtz, and R. van de Geijn. Sparse
Direct Factorizations through Unassembled Hyper-Matrices. Computer Methods
in Applied Mechanics and Engineering, 199:430-438, 2010.

BLAS. Basic linear algebra subprograms. http://netlib.org/blas, 2011.

J. H. Bramble. Multigrid Methods. Pitman Research Notes in Mathematics
Series. 294. Harlow: Longman Scientific & Technical. viii, 161 p., 1993.

F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-
Verlag, Berlin, 1991.

V M Calo, N F Brasher, Y Bazilevs, and T J R Hughes. Multiphysics model for
blood flow and drug transport with application to patient-specific coronary artery
flow. Computational Mechanics, 43(1):161-177, 2008.

V.M. Calo, N. O. Collier, D. Pardo, and M. Paszyriski. Computational complexity
and memory usage for multi-frontal direct solvers used in p finite element
analysis. Procedia Computer Science, 4:1854-1861, 2011.

V.M. Calo, H. Gémez, Y. Bazilevs, G.P. Johnson, and T.J.R. Hughes. Simulation
of engineering applications using isogeometric analysis. In TeraGrid08, 2008.

GF Carey and E. Barragy. Basis function selection and preconditioning high
degree finite element and spectral methods. BIT Numerical Mathematics,
29(4):794-804, 1989.

P.G. Ciarlet. The finite element method for elliptic problems. North-Holland,
Amsterdam, 1978.

B. Cockburn, G.E. Karniadakis, and C.-W. Shu (Eds.). In Discontinuous Galerkin
Methods, Lecture Notes in Computational Science and Engineering 11. Springer,
Berlin, 2000.

N. Collier, D. Pardo, L. Dalcin, M. Paszynski, and V. M. Calo. The cost of
continuity: a study of the performance of isogeometric finite elements using
direct solvers. Computer Methods in Applied Mechanics and Engineering,
submitted 2011.

N.O. Collier, M.R D. Pardo, Paszynski, and V.M. Calo. = Computational
complexity and memory usage estimates for multi-frontal direct solvers for
structured finite elements. Journal of Computational Science, 2011. Submitted.

J A Cottrell, A Reali, Y Bazilevs, and T J R Hughes. Isogeometric analysis of
structural vibrations. Computer Methods in Applied Mechanics and Engineering,
195(41-43):5257-5296, 2006.

J. Austin Cottrell, T. J. R. Hughes, and Yuri Bazilevs. Isogeometric Analysis:
Toward Unification of CAD and FEA. John Wiley and Sons, 2009.

130

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

David Pardo and others

J.A. Cottrell, T.J.R. Hughes, and A. Reali. Studies of refinement and continuity in
isogeometric structural analysis. Computer Methods in Applied Mechanics and
Engineering, page 23, 2007.

L Dede, T J R Hughes, and S Lipton. Isogeometric Analysis of Topology
Optimization Problems Based on the Phase-Field Model Design Optimization.
Optimization, 45(3):1630-1633, 2011.

Luca Dede, T J R Hughes, Scott Lipton, and V M Calo. Structural
topology optimization with isogeometric analysis in a phase field approach.
In USNCTAM2010, 16th US National Congree of Theoretical and Applied
Mechanics, 2010.

L. Demkowicz. Computing with hp-Adaptive Finite Elements. Volume I: One and
Two Dimensional Elliptic and Maxwell Problems. Chapman and Hall, 2006.

L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, and A. Zdunek.
Computing with hp-Adaptive Finite Elements. Volume II. Frontiers: Three-
Dimensional Elliptic and Maxwell Problems with Applications. Chapman and
Hall, 2007. chapters 8-12.

J.J. Dongarra, L.S. Duff, D.C. Sorensen, and H.A.V. Vorst. Numerical Linear
Algebra for High Performance Computers. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1998.

L. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric
linear. ACM Trans. Math. Softw., 9:302-325, 1983.

I. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of linear
systems. SIAM J. Sci. Stat. Comput., 5:633-641, 1984.

A. El maliki, M. Fortin, N. Tardieu, and A. Fortin. Iterative solvers for 3d
linear and nonlinear elasticity problems: Displacement and mixed formulations.
International Journal for Numerical Methods in Engineering, 83:1780 — 1802,
2010.

M. Ferrari. Cancer nanotechnology: opportunities and challenges. Nature
Reviews Cancer, 5(3):161-171, Mar 2005.

M. Ferrari. Nanovector therapeutics. Current Opinions in Chemical Biology,
9(4):343-346, August 2005.

P. Geng, T. J. Oden, and R. A. Van de Geijn. A parallel multifrontal algorithm
and its implementation. Comput. Methods in Appl. Mech. Eng., 149:289-301,
1997.

A. George. Nested dissection of a regular finite element mesh. SIAM Journal on
Numerical Analysis, pages 345-363, 1973.

A. George and J.LW.H. Liu. The evolution of the minimum degree ordering
algorithm. Siam review, pages 1-19, 1989.

Direct Solvers for Galerkin Methods 131

[42] M. Ghommem, M.R Hajj, D.T. Mook, B.K. Stanford, P.S. Beran, R.D. Snyder,
and L.T. Watson. Global optimization of apping kinematics for micro air vehicles.
Journal of Fluids and Structures, 2011. Under review.

[43] M. Ghommem, M.R. Hajj, C. L. Pettit, and P.S. Beran. Stochastic modeling of
incident gust effects on aerodynamic lift. Journal of Aircraft, 47(5):1720-1729,
2010.

[44] L. Giraud, A. Marocco, and Rioual J.-C. Iterative versus direct parallel
substructuring methods in semiconductor device modeling. Numerical Linear
Algebra with Applications, 12:33-55, 2005.

[45] G.H. Golub and C.F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

[46] J. Gopalakrishnan and G. Kanschat. A multilevel discontinuous galerkin method.
Numerische Mathematik, 95:527-550, 2003. 10.1007/s002110200392.

[47] N.ILM. Gould, J.A. Scott, and Y. Hu. A numerical evaluation of sparse direct
solvers for the solution of large sparse symmetric linear systems of equations.
ACM Trans. Math. Softw., 33, June 2007.

[48] L. Grigori, J.W. Demmel, and X.S. Li. Parallel symbolic factorization for sparse
LU with static pivoting. SIAM J. Scientific Computing, 29(3):1289-1314, 2007.

[49] W. Hackbusch, L. Grasedyck, and S. Borm. An introduction to hierarchical
matrices. Math. Bohem, 127(2):229-241, 2002.

[50] R. Hiptmair. Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal.,
36(1):204-225, 1998.

[51] A.J. Hoffman, M.S. Martin, and D.J. Rose. Complexity bounds for regular finite
difference and finite element grids. SIAM Journal on Numerical Analysis, pages
364-369, 1973.

[52] S. Hossain, S.F.A. Hossainy, Y. Bazilevs amd V.M. Calo, and T.J.R. Hughes.
Mathematical modeling of coupled drug and drug-encapsulated nanoparticle
transport in patient-specific coronary artery walls. Computational Mechanics,
doi: 10.1007/s00466-011-0633-2,2011.

[53] HSL. Harwell Subroutine Library. http://www.cse.scitech.ac.uk/nag/hsl/, 2008.

[54] M.-C. Hsu, I. Akkerman, and Y. Bazilevs. High-performance computing of wind
turbine aerodynamics using isogeometric analysis. Computers and Fluids, 2011.

[55] T J R Hughes, A Reali, and G Sangalli. Efficient quadrature for NURBS-
based isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering, 199(5-8):301-313, 2010.

[56] T.J.R. Hughes. The finite element method: Linear static and dynamic finite
element analysis. Prentice Hall, Englewood Cliffs, NJ, 1987.

132 David Pardo and others

[57] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry, and mesh refinement. Computer Methods in
Applied Mechanics and Engineering, 194:4135-4195, 2005.

[58] B. Irons. A frontal solution program for finite-element analysis. Int. J. Num.
Meth. Eng., 2:5-32, 1970.

[59] C. Johnson. Numerical solution of partial differential equations by the finite
element method. Cambridge University Press, Sweden, 1987.

[60] I. N. Katz, A. G. Peano, and M. P. Rossow. Nodal variables for
complete conforming finite elements of arbitrary polynomial order. Computers
Mathematics with Applications, 4:85-112, 1978.

[61] K. Kim. Personal Communication, 2010.

[62] D.A. LaVan, T. McGuire, and R. Langer. Small-scale systems for in vivo drug
delivery. Nature Biotechnology, 21:1184-1191, 2003.

[63] Luc L. Lavier and Gianreto Manatschal. A mechanism to thin the continental
lithosphere at magma-poor margins. Nature, 440:324-328, 2006.

[64] L. Lin, C. Yang, J. Lu, L. Ying, and E. Weinan. A fast parallel algorithm for
selected inversion of structured sparse matrices wtih application to 2D electronic
structure calculations. SIAM J. Scientific Computing, 33:1329-1351, 2011.

[65] JJW.H. Liu. The multifrontal method for sparse matrix solution: Theory and
practice. Siam Review, pages 82—109, 1992.

[66] METIS. Family = of Multilevel Partitioning Algorithms.
http://glaros.dtc.umn.edu/gkhome/views/metis, 2007.

[67] MUMPS. A multifrontal massively parallel sparse direct solver. http://graal.ens-
lyon.fr/MUMPS/, 2010.

[68] F. Nobile, R. T. Rockafellar, C. Schwab, R. F. Tempone, and R. J-B Wets. Ima
annual program year workshop, 2011, computing with uncertainty: Mathematical
modeling, numerical approximation and large scale optimization of complex
systems with uncertainty. http://www.ima.umn.edu/2010-2011/W10.18-22.10/,
2011.

[69] Intergovernmental Panel on Climate Change. http://srren.ipcc-wg3.de/, 2011.

[70] Intergovernmental Panel on Climate Change. http://www.ipcc.ch/index.htm,
2011.

[71] NSF Blue Ribbon Panel on Simulation-Based Engineering Science.
www.nsf.gov/pubs/reports/sbes_final_report.pdf, 2006.

[72] PARDISO. Thread-safe solver of linear equations.
http://www.pardiso_ project.org/, 2008.

Direct Solvers for Galerkin Methods 133

[73] D. Pardo. Integration of hp-adaptivity with a two grid solver: applications to
electromagnetics. PhD thesis, The University of Texas at Austin, April 2004.

[74] D. Pardo, V. M. Calo, C. Torres-Verdin, and M. J. Nam. Fourier series
expansion in a non-orthogonal system of coordinates for simulation of 3D DC
borehole resistivity measurements. Computer Methods in Applied Mechanics
and Engineering, 197(1-3):1906-1925, 2008.

[75] D. Pardo and L. Demkowicz. Integration of hp-adaptivity with a two grid solver
for elliptic problems. Computer Methods in Applied Mechanics and Engineering,
195:674-710, 2006.

[76] D.Pardo, L. Demkowicz, and J. Gopalakrishnan. Integration of hp-adaptivity and
a two grid solver for electromagnetic problems. Computer Methods in Applied
Mechanics and Engineering, 195:2533-2573, 2006.

[77] D. Pardo, M. J. Nam, C. Torres-Verdin, M. Hoversten, and I. Garay. Simulation
of Marine Controlled Source Electromagnetic (CSEM) Measurements Using
a Parallel Fourier hp-Finite Element Method. Computational Geosciences,
15(1):53-67, 2011.

[78] D. Pardo, C. Torres-Verdin, M. J. Nam, M. Paszynski, and V. M. Calo. Fourier
series expansion in a non-orthogonal system of coordinates for simulation of
3D alternating current borehole resistivity measurements. Computer Methods
in Applied Mechanics and Engineering, 197:3836-3849, 2008.

[79] M. Paszynski, K. Kuznik, and V.M. Calo. Graph grammar-based multi-frontal
parallel direct solver for two-dimensional isogeometric analysis. Submitted
to 26th IEEE International Parallel & Distributed Processing Symposium,
Shanghai, China, May 21-25, 2012.

[80] M. Paszyniski, K. KuZnik, and V.M. Calo. Grammar-based multi-frontal solver
for isogeometric analysis in 1d. Scientific Programming, 2011. Submitted.

[81] M. Paszynski, K. KuZnik, and V.M. Calo. Parallel multi-frontal direct solver for
isogeometric analysis of 2d problems. Computer Methods in Applied Mechanics
and Engineering, 2011. Submitted.

[82] M. Paszynski, D. Pardo, C. Torres-Verdin, L. Demkowicz, and V.M. Calo. A
parallel direct solver for the self-adaptive hp finite element method. Journal of
Parallel and Distributed Computing, 70(3):270 — 281, 2010.

[83] A. G. Peano. Hierarchies of Conforming Finite Elements. PhD thesis, Sever
Institute of Technology, Washington University, St. Luis, 1975.

[84] A. G. Peano. Hierarchies of conforming finite elements for plane elasticity and
plate bending. Computers Mathematics with Applications, 2:211 -224, 1976.

[85] L. Piegl and W. Tiller. The NURBS Book (Monographs in Visual
Communication), 2nd ed. Springer-Verlag, New York, 1997.

134 David Pardo and others

[86] ScaLAPACK. Scalable linear algebra package. http://netlib.org/scalapack, 2011.

[871 P. Schmitz and L. Ying. A fast direct solver for ellip-
tic problems on Cartesian meshes in 2d, submitted, 2011.
http://www.math.utexas.edu/users/lexing/publications/index.html.

[88] P. Schmitz and L. Ying. A fast direct solver for ellip-
tic problems on Cartesian meshes in 3d, submitted, 2011.
http://www.math.utexas.edu/users/lexing/publications/index.html.

[89] J. Schulze. Towards a tighter coupling of bottom-up and top-down sparse matrix
ordering methods. BIT, 41:2001, 2001.

[90] SCOTCH. Graph partitioning, static mapping, and sparse matrix block ordering.
http://www.labri.fr/perso/pelegrin/scotch/, 2011.

[91] A. Scott. Parallel frontal solvers for large sparse linear systems. ACM Trans. on
Math. Soft., 29:395-417, 2003.

[92] B. F. Smith, P. Bjorstad, and Gropp W. Domain Decomposition, Parallel Multi-
Level Methods for Elliptic Partial Differential Equations. Cambridge University
Press, New York, 1996.

[93] SPOOLES. SParse Object Oriented Linear Equations Solver.
http://www.netlib.org/linalg/spooles/spooles.2.2.html, 2011.

[94] G. Stadler, M. Gurnis, C. Burstedde, L. C. Wilcox, L. Alisic, and O. Ghattas.
The dynamics of plate tectonics and mantle flow: From local to global scales.
Science, 329:1033-1038, 2010.

[95] SuperLU. A general purpose package for solution of large sparse systems of
linear equations. http://crd.Ibl.gov/%7Exiaoye/SuperLU/, 2008.

[96] B. A. Szabo and I. Babuska. Finite Element Analysis. John Wiley and Sons, Ney
York, 1991.

[97] UMFPACK. Unsymmetric Multi-Frontal Package.
http://www.cise.ufl.edu/research/sparse/umfpack/, 2011.

[98] J. Xia, S. Chandrasekaran, M. Gu, and X.S. Li. Superfast multifrontal method
for large structured linear systems of equations. SIAM J. Matrix Anal. Appl,
31(3):1382-1411, 2009.

