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A characteristic feature of Shiba impurities is the existence of a spin- and parity-changing quan-
tum phase transition (known as “0-π” transition) which has been observed in scanning tunneling
microscopy (STM) and transport experiments. Using the Abelian bosonization technique, here we
analyze the ground-state properties and the quantum phase diagram of a classical (i.e., Ising-like)
Shiba impurity. In particular, we analyze the cases of an impurity in a three- and a one-dimensional
superconductor. Within the bosonization framework, the ground-state properties are determined
by simple soliton-like solutions of the classical equations of motion of the bosonic fields, whose
topological charge is related to the spin and parity quantum numbers. Our results indicate that
the quantum phase diagram of the superconductor can be strongly affected by geometrical and
dimensional effects. Exploiting this fact, in the one-dimensional case we propose an experimental
superconducting nanodevice in which a novel parity-preserving, spin-changing “0-0” transition is
predicted.

Introduction.— Yu-Shiba-Rusinov (or simply Shiba)
states are localized subgap states arising in a supercon-
ductor due to the local pair-breaking processes induced
by a magnetic impurity [1–4], or by a quantum dot
in superconductor-hybrid nanodevices, where they are
more commonly known as “Andreev bound states” [5–
8]. Recently, these systems have become the focus of
intensive research due to the prediction that Majorana
zero-modes (i.e., non-Abelian quasiparticles with poten-
tial uses in fault-tolerant topological quantum computa-
tion [9]) could be realized in a linear chain of magnetic
impurities deposited on top of a superconductor. In these
systems, the Shiba states can overlap and form a topo-
logical “Shiba band” [10–13] that mimics the physics of
the Kitaev one-dimensional model [14]. Subsequent STM
studies of chains of Fe atoms deposited on top of clean
Pb surfaces have shown compelling evidence for the Ma-
jorana scenario [15–17], generating a lot of excitement.

A salient feature of Shiba systems is the existence of
an experimentally accessible quantum phase transition,
known as the “0-π transition”, determined by the po-
sition of the level inside the superconducting gap: if
the Shiba state falls below the Fermi energy, it becomes
occupied and the nature of the collective ground state
changes from an even-parity BCS-like singlet to an odd-
parity spin-1/2 doublet [18]. This parity- and spin-
changing transition has been experimentally observed
both in adatom/superconductor systems with STM tech-
niques [19, 20], and in superconductor-quantum dot de-
vices via quantum transport experiments [6, 8, 21–23].

Recent progress in nanofabrication has allowed the re-
alization of ultrathin superconducting epitaxial nanos-
tructures [i.e., one-dimensional nanowires (1DNWs)] us-
ing the proximity effect [24, 25]. These advances pave the
way for novel technological applications, and can poten-
tially enable the study of Shiba states in systems with re-
duced dimensionality. A question which naturally arises

in this context is whether the different dimensionality or
geometrical properties of the superconductor can quali-
tatively modify the properties of Shiba systems and the
above-mentioned phase diagram. For instance, scatter-
ing processes which are crucial in the one-dimensional
(1D) geometry can be profoundly affected by interactions
[26, 27]. In a 1D system (such as a proximitized 1DNW),
the enhanced effect of correlations might indeed change
the properties of a superconductor, thus modifying the
features of the induced quantum phases.

In this work we implement the Abelian bosonization
formalism to study the zero-temperature phase diagram
of a Shiba impurity, both in a 1D and in a three di-
mensional (3D) superconductor. Interestingly, within
the bosonic representation the ground-state properties
in both geometries can be studied in an unified way. In
particular for the 1D case, we propose a novel experimen-
tal device based on proximitized semiconducting 1DNWs
with a ferromagnetic (FM) nanocontact grown ontop to
induce a controllable Shiba state. We predict that this
device could host a novel parity-conserving,spin-changing
“0-0” transition. Our results might have impact in recent
theoretical and experimental developments where Shiba
states have been observed, and in recent works where su-
perconductivity is induced in semiconducting nanowires
by the means of proximity effect.

Theoretical model.— We begin by analyzing the 1D ge-
ometry. We describe a proximitized single-channel super-
conducting 1DNW of length 2LW with the Hamiltonian
H = H0 +H∆ +H1D

M , where

H0 =

∫ LW

−LW

dx

[∑
σ

Ψ†σ

(
− ∂2

x

2m

)
Ψσ + UΨ†↑Ψ↑Ψ

†
↓Ψ↓

]
(1)

describes the (interacting) semiconductor wire. Here, Ψσ

anhilates a fermion with spin σ =↑, ↓, and U > 0 is a
repulsive Hubbard-type interaction parameter (here we
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have used ~ = 1). Linearization of the 1DNW spectrum
in a region of width 2Λ around the Fermi energy allows
to write the Fermi fields as Ψσ (x) = eikF xψLσ (x) +
e−ikF xψRσ (x), where kF is the Fermi wavevector, and
ψrσ (r = L,R) are left/right moving chiral fields slowly-
varying on the scale k−1

F . We now introduce the bosoniza-
tion formalism [28, 29], and represent the chiral fermion
fields as ψrσ = Frσe

−irφrσ/
√

2πa where φrσ are chi-
ral bosonic fields obeying the Kac-Moody commutation
relations [φrσ(x), φr′σ′(x′)] = iπrδr,r′,δσ,σ′sgn (x− x′),
a ∼ k−1

F is the short-distance cutoff of the continuum
theory, and Frσ are standard Klein factors which ensure
the proper anticommutation relations of the Fermi fields.

It is customary to introduce the new fields
φrσ = 1

2 [φc + rθc + σ(φs + rθs)], where c(s) refers
to charge- (spin-) type operators, and where the con-
vention r = +(−) on the r.h.s has been used for the
R(L) branch, and similarly, σ = +(−) for ↑ (↓). The
new fields satisfy canonical commutation relations
[φµ(x), ∂yθν(y)] = −2iπδµνδ(x − y), and physically,
the field φs is related to the spin density operator

ρs(x) = 1
2

[
Ψ†↑ (x) Ψ↑ (x)−Ψ†↓ (x) Ψ↓ (x)

]
= − 1

2π∂xφs +

1
4πa

[
ei2kF xeiφc

(
eiφsF †R↑FL↑ − e−iφsF

†
R↓FL↓

)
+ H.c.

]
,

while θc is related to the Josephson phase field
of the superconductor and to the current density
j (x) = −2evcKc∂xθc (x) /π. In terms of these fields,
the Hamiltonian H0 takes a Luttinger liquid form
with decoupled charge and spin bosonic sectors, i.e.,
H0 = Hc +Hs, where

Hν =
vν
4π

∫ LW

−LW

dx

[
1

Kν
(∂xφν)2 +Kν(∂xθν)2

]
(2)

for ν = c, s. The parameter Kν encodes the in-
teractions in each sector, and physically controls the
decay of the correlation function 〈Ψrσ (x) Ψ†rσ (x′)〉 ∼
|x− x′|−(Kc+Ks). In our particular case, Kc =
1/
√

1 + Ua/ (πvF ), and due to the SU(2) symmetry of
the model, the value of Ks is constrained to Ks = 1. On
the other hand, vc = vF

√
1 + Ua/ (πvF ) is the velocity

of the 1D charge plasmons, and vs = vF is the velocity
of the 1D spinons.

Next, the proximity-induced superconducting pairing

in the 1DNW is described by H1D
∆ = ∆

∫ LW

−LW
dxΨ†↑Ψ

†
↓ +

H.c. = ∆
∫ LW

−LW
dx
[
ψ†L↑ψ

†
R↓ + ψ†R↑ψ

†
L↓ + H.c.

]
, where

we have neglected the rapidly oscillating terms propor-
tional to e±i2kF x since they average to zero. Physi-
cally, the induced pairing potential ∆ emerges from the
integration of the bulk superconductor, and strongly
depends on the transparency and disorder of the
superconductor/nanowire contact [30]. In terms of
the bosonic fields, the pairing term writes H∆ =
2∆
πa

∫ LW

−LW
dx cos θc (x) cosφs (x). A simple scaling anal-

ysis where we change the cutoff a→ a (1 + d`) indicates

that H∆ is a relevant perturbation in the RG sense, i.e.,
d∆ (`) /d` = (2− 1/Kc) ∆ (`), and flows to strong cou-
pling as `→∞ when Kc > 1/2.

Finally, Shiba states emerge due to the presence of
a localized magnetic field or impurity in the supercon-
ductor. In an ultrathin mesoscopic 1DNW, atomic-sized
impurities are hard to control and manipulate experi-
mentally. Therefore, in order to induce a controllable
Shiba state, we assume the presence of a FM insulating
contact of width d grown ontop of the 1DNW. This

Hamiltonian writes H1D
M = V

∫ LW

−LW
dx mz (x) ρs (x),

where V is the exchange field induced by the FM
contact, and mz (x) is its dimensionless magnetiza-
tion profile, assumed to be oriented along the z-axis
[31]. For concreteness, we assume a Gaussian profile
mz (x) = m0exp

(
−x2/d2

)
, where the magnetization in

the bulk can take values −1 < m0 < 1 depending on
the temperature, size, material details, etc. Under the
reasonable assumption that k−1

F � d � ξ1D, with ξ1D

the coherence length in the 1DNW, the FM contact be-
comes a “point-like” perturbation from the perspective
of the chiral fields ψνσ, i.e., mz (x) ∼ m0d

√
πδ (x).

Therefore, the Hamiltonian writes H1D
M '

Vm0d
√
π

2

∑
r=L,R

[
ψ†r↑ (0)ψr↑ (0)− ψ†r↓ (0)ψr↓ (0)

]
,

where we have neglected oscillatory terms ∼ e±i2kF x).
In fermion language, this effective delta-like poten-
tial can be eliminated with a gauge transformation
ψrσ → ψ̃rσ = ei2rσδ0Θ(x)ψrσ, where we have defined the

phase shift δ0 = arctan
(
Vm0d

√
π

4vF

)
, and where Θ (x)

is the unit step function. The bosonized Hamiltonian

of the FM contact then writes H1D
M = −2vF δ0

∂xφs(0)
π .

Experimental values k−1
F ∼ 20 nm [32] and ξ1D ≈ 260

nm [33] are encouraging for the realization of this device.
Note that in the absence of pairing the Hamiltonian is
akin to the X-ray edge problem [28, 29].

An interesting feature of the bosonic representation is
that it allows to obtain the total spin and parity of the
ground state from simple expressions

sz = −
∫ LW

−LW

dx
∂xφs (x)

2π
= −∆φs

2π
, (3)

J =

∫ LW

−LW

dx
∂xθc (x)

π
=

∆θc
π
. (4)

The physical significance of J can be clarified impos-
ing periodic boundary conditions in the problem, i.e.,
ψrσ(−LW) = ψrσ(LW). In this case, J can only take in-
teger values which are related to the total number of par-
ticles N through the relation J + N mod 2 = 0. Then,
since P = (−1)

N
= (−1)

J
, we conclude that J deter-

mines the fermion-parity of the ground state [34].
Note that in the terms H∆ and H1D

M , only the com-
muting fields φs and θc appear. This indicates that the
Hamiltonian has a well-defined “classical” limit when ∆
flows to strong coupling, i.e., when it becomes of the
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order of the ultraviolet cutoff ∆ (`∗) ' Λ. This clas-
sical limit is more conventiently captured defining the
fields φ± = (φs ± θc) /2, and their canonical conjugates
∂xθ± = (∂xθs ± ∂xφc) /2, in terms of which we have

H0 =

∫ LW

−LW
dx

{
Kθvθ

4π

[∑
µ=±

(∂xθµ)
2

+ 2ζθ∂xθ+∂xθ−

]

+
Kφvφ

4π

[∑
µ=±

(∂xφµ)
2

+ 2ζφ∂xφ+∂xφ−

]}
, (5)

H∆ =
∆

πa

∫ LW

−LW
dx [cos 2φ+ + cos 2φ−] , (6)

H1D
M =− 2vF δ0

π
[∂xφ+ (0) + ∂xφ− (0)] , (7)

where we have defined Kθvθ = (vc/Kc + vF ),
Kφvφ = (vF +Kcvc), and the helicity parame-
ters ζθ ≡ (vc/Kc − vF ) / (vc/Kc + vF ) and ζφ ≡
(vF −Kcvc) / (vF +Kcvc). Even though the classical
limit of H can be studied in the generic case, here we con-
centrate on the simpler but more insightful point ζφ = 0
(i.e., Kcvc = vF ), where the classical static configura-
tions of φ± decouple. The generic case will be discussed
elsewhere [35]. At the point ζφ = 0, we obtain the de-
coupled equations

∂2
xφµ = −g sin 2φµ + 2δ0δ

′(x). (µ = ±) (8)

Here g = 2∆/avF = ξ−2
1D , and δ′(x) is the derivative

of the Dirac delta-function, which has to be interpreted
in terms of the approximant δ (x) = lima→0 f (x, a) as
δ′(x) = lima→0 ∂xf (x, a).

3D Case.—It is illuminating to briefly turn to the well-
known case of a magnetic impurity in a 3D superconduc-
tor [1–3]. For a spherically-symmetric problem, only the
s-wave component of the 3D Fermi field Ψs

σ (r) couples to
a point-like impurity placed at the origin. Then, lineariz-
ing the spectrum around the Fermi energy, we can write
Ψs
σ (r) = 1

i2
√
πr

[
eikF rψLσ (r)− e−ikF rψRσ (r)

]
, where

0 ≤ r ≤ ∞ is the radial coordinate. Equivalently, the
half-line can be unfolded to the whole line by defining

ψr,σ (−x) ≡ ψ−r,σ (x) , (r = L,R) (9)

and keeping a single chirality for each fermion. This defi-
nition includes the boundary condition ψRσ(0) = ψLσ(0)
at x = 0, which guarantees that Ψs

σ (x) is finite at the ori-
gin. This procedure is standard and we refer the reader
to Refs. 28 and 29 for details. In what follows, when
treating the 3D case, we will keep only the branches ψL↑
and ψR↓. Imposing a hard-wall boundary condition in
an sphere of radius R (i.e., Ψs

σ(R) = 0), induces periodic
boundary conditions on the effective 1D chiral fermions,
ψrσ(−R) = ψrσ(R). Therefore, we can write

H3D
0 = −ivF

∫ R

−R
dx
[
ψ†R↓∂xψR↓ − ψ

†
L↑∂xψL↑

]
, (10)

which upon bosonization results H3D
0 =

vF
2π

∫ R
−R dx

[
(∂xφ−)2 + (∂xθ−)2

]
, where only the field φ−

appears. Interestingly, Eq. (10) is the same Hamiltonian
that describes the edge states of a spin-Hall insulator
[36]. In addition, since the (repulsive) interactions
are efficiently screened in a 3D superconductor, we
have Kc = Ks = 1 and vs = vc = vF , and the
system is automatically at the point ζφ = ζθ = 0.
On the other hand, it is easy to see that due to
the elimination of the chiral fields ψR↑, ψL↓, the
pairing Hamiltonian in the s-wave channel writes

H3D
∆ = ∆

∫ R
−R dx

[
ψ†L↑ψ

†
R↓ + H.c.

]
= ∆

πa

∫ R
−R dx cos 2φ−,

where here ∆ is an intrinsic interaction. Finally,
the presence of a classical magnetic impurity is
usually modelled using the s-d Hamiltonian [1–3]:

H3D
M = JSz

2

[
Ψs†
↑ (0) Ψs

↑ (0)−Ψs†
↓ (0) Ψs

↓ (0)
]
, where J is

the exchange coupling and Sz = ±S is the z-component
of the magnetic impurity S, assumed as an Ising
spin. In terms of the chiral fields, this term writes

H3D
M =

Jk2FS
z

2π

[
ψ†L↑ (0)ψL↑ (0)− ψ†R↓ (0)ψR↓ (0)

]
,

where we have used Eq. (9) and the result
limr→0 Ψs

σ (r) = kF
2
√
π

[ψLσ (0) + ψRσ (0)]. Again,

H3D
M can be absorbed via the gauge transforma-

tion ψL↑(R↓) → ψ̃L↑(R↓) = e∓i2δ0Θ(x)ψL↑(R↓), where
δ0 = arctan [JSzρ0π/2] is the s-wave phase shift
(note that we have used the definition of the den-
sity of states at the Fermi level ρ0 = k2

F /4πvF )[4].
Then, in bosonic language we obtain the expression
H3D
M = −2vF δ0∂xφ− (0) /π. In this way, the connection

between H1D and H3D can be clearly seen: the 3D
Hamiltonian is identical to the 1D Hamiltonian at the
point ζφ = 0 with half the degrees of freedom (i.e., the
field φ+ is absent, and the system becomes a helical
liquid [36]. Consequently, the classical configuration of
the field φ− is also given by Eq. (8).

Results—We now turn to the resolution of Eq. (8). To
that end, we write the fields φ± as

φµ(x) = ηµ
π

2
+ 2δ0Θ(x) + ϕµ(x) (µ = ±) , (11)

which allows to eliminate the term δ′ (x). Here ϕµ(x) is a
continuous and smooth function at x = 0. We have found
that the soliton/antisoliton-like functions (ηµ = ±1)

ϕµ =

{
2 arctan eηµ

√
2g(x−x0) for x < 0,

2 arctan eηµ
√

2g(x+x0) + πηµlµ − 2δ0 for x > 0.

(12)
are exact solutions of Eq. (8). Here, lµ is an integer which
determine the different minima of the cos 2φµ potential,
and x0 is a parameter which must be chosen so that the
continuity condition at the origin ϕµ(0−) = ϕµ(0+) is
verified. From this condition we obtain the equation

arctan
[
sinh

(
ηµ
√

2gx0

)]
= δ0 − ηµlµ

π

2
, (13)
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from where x0 ≡ x0 (δ0, ηµ, lµ) is obtained. Once the
value of δ0 and the nature of the solution (i.e., soliton or
anti-soliton ηµ = ±1) are fixed, the integer lµ becomes
restricted to only two possibilities since the left hand side
of Eq. (13) can only vary between −π/2 and π/2.

Of special importance here is the physical meaning
associated to the topological charge of the solitonic
solutions (11) and (12). Replacing them into Eqs.
(3) and (4), we obtain sz = − 1

2

∑
µ=± ηµ (lµ + 1)

and J =
∑
µ=± (µ) ηµ (lµ + 1). In addition, replac-

ing them into the classical part of the Hamiltonian
(5)-(7) allows to obtain their associated energy, i.e.,

E (δ0) =
∑
µ=±E

(ηµ,lµ)
µ (δ0), where E

(ηµ,lµ)
µ (δ0) =

vF
2π

∫ LW
−LW dx

[
(∂xφµ − 2δ0δ (x))

2
+ g (cos 2φµ + 1)

]
,

where we have substracted a constant background
term so that the ground-state energy for δ0 = 0 (i.e.,
decoupled impurity) is zero. The numbers ηµ and lµ

determine a particular “energy branch” E
(ηµ,lµ)
µ (δ0)

associated to that solution (see Fig. 1). In the limit
LW →∞ (or R→∞) we obtain the analytical result

E
(ηµ,lµ)
µ (δ0)

2∆sc
= 1− sign (x0)

∣∣∣∣sin(δ0 − πηµlµ
2

)∣∣∣∣ , (14)

where we have defined ∆sc ≡ vF
√

2g
π = 1

π

√
2∆vF
a .

It is instructive to analyze first the results for a Shiba
impurity in a 3D host. For a decoupled impurity (i.e.,
when δ0 = 0), the ground-state configuration of the su-
perconductor is described by a constant φ− = π

2 , which
trivially minimizes the pairing term cos 2φ−. This situa-
tion physically corresponds to the “classical” BCS ground
state. Our solutions (11) and (12) precisely recover this
behavior for (η−, l−)=(−1,−1), for which Eq. (13) yields

x0 →∞, and Eq. (14) yields the energy E
(−1,−1)
− (0) = 0

(see continous blue line in Fig. 1(a)). This ground
state has topological numbers sz = 0 and J = 0 (i.e.,
even-parity singlet), as expected physically for a BCS
superconductor. On the other hand, the solution with
η− = +1 (η− = −1) and l− = 0 corresponds to a topo-
logical kink (anti-kink) connecting the minima φ− = π

2
at x = −∞ and φ− = 3π

2 (φ− = −π2 ) at x =∞, and cor-
responds to an excited state with sz = −1/2 (sz = 1/2)
and J = −1 (J = 1) (odd-parity doublet). We inter-
pret this state as having an extra (one less) fermion
with respect to the BCS ground state and has energy

E
(±1,0)
− (0) = 2∆sc (dashed purple line in Fig. 1(a)).

Other excited branches are shown in that figure. As

the value of δ0 is increased, the branches E
(±−1,−1)
− and

E
(±1,0)
− approach to each other and eventually cross at

the value δc
0 = π/4, signalling a quantum phase tran-

sition (i.e., the 0 − π transition) at which the ground
state abruptly changes spin and parity. Interestingly, our
formalism allows to exactly recover the critical value of
the transition obtained from the crossing of Shiba levels

sz=0, even sz=-1/2, odd

E-
(-1,-1)

E-
(+1,0)

E-
(-1,0)

E-
(+1,+1) (a)

0

0.5

1

1.5

2.

E
cl
/2
Δ
sc

sz=0, even sz=-1, even

2E-
(-1,-1)

E-
(-1,-1)+E-

(+1,0)

2E-
(+1,0)

(b)

0 π

8

π

4

3π

8

π

2

0

0.5

1

1.5

2

δ0
E
cl
/2
Δ
sc

FIG. 1. Phase diagram of the Shiba impurity at ζφ = 0 where
vcKc = vF . a) 3D Case: Energy of the different branches as
a function of the phase shift δ0 (see Eq. (14)). At the critical
value δ0 = π/4 the system exhibits a phase transition from
an even-parity singlet state to an odd-parity spin-1/2 doublet.
b) 1D Case: Idem for the case of a 1DNW, where both fields
φ± are present. At δ0 = π/4, a 0-0 transition occurs from an
even-parity singlet state to an even-parity sz = −1 state.

EShiba = ± 1−α2

1+α2 (where α = Jρ0πS
z/2) [2, 4] (note that

precisely when EShiba = 0, we obtain δc
0 = π/4).

In the case of the 1DNW, one can immediately de-
termine the quantum phase diagram exploiting the de-
generacy of the solutions φ± at ζφ = 0. The ground-
state energy is given by the sum of the lowest degenerate
branches at a particular value of δ0. For δ0 < π/4, the

ground-state energy is given by
∑
µE

(−1,−1)
µ (δ0) and cor-

responds to an even-parity singlet phase with topological
numbers sz = 0 and J = 0 (see blue line in Fig. 1(b)).
On the other hand, for δ0 > π/4 the ground state is mag-
netic (topological number sz = −1) and has even parity
(J = 2). Therefore, in this case the value δc

0 = π/4 indi-
cates a “0-0 transition” that preserves parity but not the
spin, in stark contrast to the 3D case. This result can
be understood due to the presence of two independent
bosonic modes φ± in a 1D geometry. Physically, each
one of these modes are related to the fermionic bilinears
cos 2φ+ ∼ ψ†R↑ψ

†
L↓ and cos 2φ− ∼ ψ†L↑ψ

†
R↓, each one ca-

pable of binding one Shiba state with sz = −1/2 at the
critical point. Therefore, in the 1D geometry the tran-
sition occurs when these two independent Shiba states
simultaneously cross the Fermi energy and become oc-
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cupied. Thus, the spin quantum number of the ground
state jumps from sz = 0 to sz = −1, whereas the par-
ity remains unchanged. Experimentally, this effect would
imply the absence of sign-reversal of a supercurrent flow-
ing through the 1DNW.

Note that for this effect to occur it is crucial to avoid
the mixing of the fields φ±. To that end, backwards
scattering terms ∼ ei2kFxeiφc(x) in the Hamiltonian (7)
should be absent. Although in principle backscattering
terms are present in the expression of the spin density
ρs (x), due the assumption of a mesoscopic FM contact
of width d � k−1

F this mechanism can be strongly sup-
pressed. Note that this would not be the case in the
more usual superconductor-quantum dot-superconductor
geometry. Another requirement for the observation of the
0-0 transition is that the system obeys Kcvc = vF . Away
from this point the fields φ± become mixed, enabling the
study of potentially interesting phenomena within the
theoretical framework of bosonization.
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MinCyT, Argentina.
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