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Abstract

Given a n × n positive semidefinite matrix A and a subspace S of Cn, Σ(S, A)
denotes the shorted matrix of A to S. We consider the notion of spectral shorted
matrix

ρ(S, A) = lim
m→∞

Σ(S, Am)1/m.

We completely characterize this martix in terms of S and the spectrum and the
eigenspaces of A. We show the relation of this notion with the spectral order of
matrices and the Kolmogorov’s complexity of A to a vector ξ ∈ Cn.
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1 Introduction

Consider a fixed n× n (Hermitian semidefinite) positive matrix A and a subspace S of Cn.
In this paper we define and study the properties of a positive matrix ρ (S, A) associated to
the pair (A,S) which is related to the shorted matrix Σ (S, A) of Anderson [1] by means of
a spectral radius-type formula.

Denote by Mn(C)+ the set of all positive semidefinite matrices. Given a matrix C denote
by R(C) the subspace spanned by the columns of C (i.e. the range of C).

The shorting Σ (S, A) can be defined as follows. Suppose, for simplicity, that S is
the subspace spanned by the first s canonical vectors and consider the partitioned ma-

trix A =

(
a b
b∗ c

)
where a ∈ Ms(C)+, b ∈ M(n−s)×s(C) and c ∈ Mn−s(C)+. Then,

Σ (S, A) =

(
a− bc†b∗ 0

0 0

)
is the biggest element D of Mn(C)+ such that D ≤ A (i.e.

A − D is a positive matrix) and R(D) ⊆ S (where c† is the Moore-Penrose pseudoinverse
of c). This result and many others were proved by W. N. Anderson in [1] and applied to
electrical circuit theory. Observe that Σ(S, A) can also be seen as an s×s-matrix (or, which
is the same, as a linear transformation on S) Observe also that there is no canonical notation
for Σ(S, A). W. N. Anderson [1] denotes S(A), T. Ando [3] denotes A/S and E. L. Pekarev
[17] uses AS .

Later on, W. N. Anderson and G. E. Trapp [2] extended the concept to a Hilbert space
context; indeed, it was M. G. Krein [11] in 1946 who first defined and used this construction
in his study of extensions of selfadjoint operators, see also J. L. Smul’jan [19]. Many gen-
eralizations and applications came later. The reader is referred to the papers by T. Ando
[3], R. Cottle [7], D. Carlson [6], S. K. Mitra [15], C. A. Butler and T. D. Morley [5], E. L.
Pekarev [17] and C. K. Li and R. Mathias [13], [14] to have a complete panorama on these
matters.

For a positive number t, consider the power matrix At and its shorted matrix Σ (S, At).
It turns out that the map t→ Σ (S, At)1/t

is decreasing for t ≥ 1. Its limit

ρ (S, A) = lim
m→∞

Σ (S, Am)1/m ,

which we call the spectral shorted matrix of A to S, is the main subject of the present paper.
The limit should be understood respect to any matrix norm, for instance, the operator norm
induced by the Euclidean norm of Cn.

Suppose that S = {ξ ∈ Cn : ξ1 = . . . = ξn−1 = 0}. Denote by P = PS , the orthogonal
projection onto S. Then, for every non negative definite matrix A, we can identify Σ(S, A)
and ρ(S, A) with non negative numbers, because dimS = 1. With this convention, if A is
invertible, then

Σ(S, A) =
detA

detAnn
,

where Ann = (1 − P )A(1 − P ) acts on S⊥ (i.e. it is identified with the (n − 1) × (n − 1)
principal submatrix of A obtained by deleting the last column and the last row of A). Indeed,
it follows from the well known formula detA = detAnn det Σ(S, A), which is in the origin of
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the study of Schur complements (see [10], [7], [3], [6]). Therefore

Σ(S, At)1/t =
detA

[det(At)nn]1/t
,

so that

ρ(S, A) =
detA

limt→∞[det(At)nn]1/t
.

This relation can be used in the following way: if µ1(B) ≥ · · · ≥ µn(B) are the eigenvalues
of the selfadjoint n × n matrix B, then, by interlacing, µi(A)t ≥ µi((A

t)nn) ≥ µi+1(A)t, for
i = 1, . . . , n− 1. Therefore, for every t ∈ [1,∞),

[det(At)nn]1/t ≤ detA

µn(A)
, so that ρ(S, A) ≥ µn(A).

Conversely, in this paper we completely characterize the matrix ρ(S, A) in terms of the
subspace S and the eigenspaces of A. Then the lim

t→∞
[det(At)nn]1/t, and the corresponding

limit for every one dimensional subspace S, can be described as in formulae (6), (7) and

(12). For instance, from these formulae we can deduce that lim
t→∞

[det(At)nn]1/t =
detA

µn(A)
if

and only if ker(A− µn(A)I) 6⊆ S⊥.
In [9], J. I. Fujii and M. Fujii consider the Kolmogorov’s complexity

K (A, ξ) = lim
n→∞

log(〈Anξ, ξ〉)
n

for an invertible positive matrix A and a unit vector ξ and show several properties of K. In
section 6 we show that, if S is the subspace generated by ξ, then

K (A, ξ) = log ρ
(
S, A−1/2

)−2
= log ρ

(
S, A−1

)−1
,

where we are identifying the rank one spectral shorted matrices with the positive number
which characterizes it. With this identification, several results of [9] can be deduced from
the properties of the spectral shorted operator, see Remark 6.2. Moreover, it shows that
ρ (S, A) can be seen as a higher dimensional version of K.

Section 2 contains preliminaries and a brief account of the main properties of the shorting
operation. In section 3 the properties of ρ are compared to those of Σ. On one side, several
properties of both operations are analogous. For instance, we prove that for every positive
number t it holds that

ρ
(
S, At

)
= ρ (S, A)t . (1)

A key property of the spectral shorted operator, similar to a property satisfied by the usual
shorted operator is the following (see Corollary 3.9): given A ∈Mn(C)+ and two subspaces
S and T of Cn, it holds

ρ (S ∩ T , A) = ρ (T , ρ (S, A)) .

On the other side, to get the monotonicity (0 ≤ A ≤ B implies Σ (S, A) ≤ Σ (S, B))
for ρ we are forced to change the order relation, because in general it is not true that

3



ρ (S, A) ≤ ρ (S, B) (see Example 7.2). Recall the definition of the spectral order 4 in
Mn(C)+: given A,B ∈ Mn(C)+, we write A 4 B if Am ≤ Bm for all m ≥ 1. This order
provides the following link with Krein’s definition of the shorted operator: ρ (S, A) is the
biggest (in both orders ≤ and 4) element D of Mn(C)+ such that D 4 A and R(D) ⊆ S
(see Proposition 5.5).

The spectral order was studied by M. P. Olson in [16], where the following characterization
is proved: given A,B ∈ Mn(C)+, then A 4 B ⇐⇒ f(A) ≤ f(B) for every monotone
non-decreasing map f : [0,+∞) → R. In section 5 the properties of the spectral shorted
operator are used to prove a new characterization of the spectral order. For A,B ∈Mn(C)+,
the following statements are equivalent:

1. A 4 B

2. For every subspace S, it holds ρ (S, A) ≤ ρ (S, B).

3. For every one dimensional subspace S, it holds ρ (S, A) ≤ ρ (S, B).

4. If λ ∈ σ (A), µ ∈ σ (B) and λ > µ, then ker (A− λ) ⊆ (ker (B − µ))⊥.

5. There is a positive integer k ≤ n and a sequence of positive matrices {Di}0≤i≤k such
that, D0 = A, Dk = B, Di ≤ Di+1 and DiDi+1 = Di+1Di (i = 0, · · · , k − 1).

Using this result, formula (1) can be generalized as follows: for every non-decreasing function
f defined on [0, +∞) it holds

f(ρ (S, A)) = ρ (S, f(A)) (2)

if both ρ (S, A) and ρ (S, f(A)) are considered as acting on S. Moreover, a complete char-
acterization of the spectrum of ρ(S, A) (which is contained in the spectrum of A) and the
eigenspaces of ρ(S, A) are given in terms of S and the eigenspaces of A. For example:

1. minσ (ρ (S, A)) = min{λ ∈ σ (A) : ker(A− λI) 6⊆ S⊥}, where ρ (S, A) is considered as
acting on S. In particular, if A is invertible, then ρ(S, A) : S → S is invertible too.

2. ‖ρ(S, A)‖ = maxσ (ρ (S, A)) = min{λ ∈ σ (A) : ⊕µ>λ ker(A − µI) ∩ S = {0} }. In
particular, ‖ρ(S, A)‖ = ‖A‖ ⇐⇒ ker(A− ‖A‖I) ∩ S 6= {0}.

3. For λ ∈ R, ⊕
µ≥λ

ker(ρ(S, A)− µI) = S ∩
⊕
µ≥λ

ker(A− µI)

In section 6. we study the particular case of one-dimensional subspaces and show that
several results by J. I. Fujii and M. Fujii [9] on what they call Kolmogorov’s complexity,
become corollaries of our results. We should mention, however, that Fujii and Fujii have
proven a one dimensional version of Theorem 4.3. The last section contains several examples.

Several results of this paper remain valid, with almost the same proofs, for operators on a
separable Hilbert space H and a closed subspace S of H; in particular, the spectral shorted
operator ρ (S, A) can be defined in this setting. However, a complete characterization of
ρ (S, A) in this case is still an open problem. These matters will be discussed elsewhere.

We wish to acknowledge Professor T. Ando for several useful comments about the prop-
erties of the spectral order.
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2 Preliminaries

For a matrix A ∈ Mn(C), we denote by R(A) the range of A, kerA the kernel of A, σ(A)
the spectrum (i.e. the set of eigenvalues) of A, A∗ the adjoint matrix of A, ρ(A) the spectral
radius of A, ‖A‖ the spectral norm (i.e. the operator norm induced by the Euclidean norm
of Cn) of A and A† the Moore-Penrose pseudoinverse of A. If A = A∗, we denote by
λmin(A) = min σ(A) = min‖ξ‖=1〈Aξ, ξ〉.

Given a subspace S of Cn, we denote by PS the orthogonal (i.e. selfadjoint) projection
onto S. If B ∈Mn(C) satisfies PSBPS = B, we consider the compression of B to S, (i.e. the
restriction of B to S as a linear transformation form S to S), and we say that we think B as
acting on S. Several times this is done in order to consider σ(B) just in terms of the action
of B on S. For example, if B ≥ λPS for some λ > 0, then we can deduce that 0 /∈ σ(B), if
we think B as acting on S.

Along this note we use the fact that every subspace S of Cn induces a representation of
elements of Mn(C) by 2× 2 block matrices, that is, we shall identify each A ∈ Mn(C) with

a 2× 2-matrix, let us say

(
A11 A12

A21 A22

)
S
S⊥ . Observe that

(
A∗11 A∗21

A∗12 A∗22

)
is the matrix which

represents A∗.

Shorted operator

W. N. Anderson [1] showed that if A =

(
B C
C∗ D

)
is a n × n positive matrix and B is a

square k × k submatrix, then the matrix

Σ(S, A) =

(
B − CD†C∗ 0

0 0

)
,

where D† is the Moore-Penrose pseudoinverse of D and S the subspace of Cn generated by
the first k canonical vectors, has the following interpretation in electrical network theory:
if A is the impedance matrix of a resistive n-port network, then Σ(S, A) is the impedance
matrix of the network obtained by shorting the last n − k ports. In his paper, Anderson
proved that

Σ(S, A) = max{X ∈Mn(C)+ : X ≤ A and R(X) ⊆ S}. (3)

Although the existence of this maximum has already been observed by M.G. Krein [11] in
an infinite demensional context, this result has been widely used only after it was rediscovered
by Anderson and Trapp [1], [2]. In this note, we use equation (3) as the definition of shorted
matrices.

Definition 2.1. Let A ∈Mn(C)+ and S a subspace of Cn. Then, the shorted matrix of A
to S is defined by

Σ(S, A) = max{X ∈Mn(C)+ : X ≤ A and R(X) ⊆ S}

where the maximum is taken for the natural order relation in Mn(C)+ (see [2]).
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In the next theorem we state some results on shorted operators proved by Anderson and
Trapp [2], M.G. Krein [11] and E. L. Pekarev [17] which are relevant in this paper.

Theorem 2.2. Let S and T be subspaces of Cn and let A,B ∈Mn(C)+. Then

1. For every c ∈ R+ we have that Σ (S, c A) = cΣ (S, A).

2. If S ⊆ T , then, Σ (S, A) ≤ Σ (T , A).

3. Σ (S ∩ T , A) = Σ (S,Σ (T , A)).

4. If A ≤ B, then, Σ (S, A) ≤ Σ (S, B).

5. Σ (S, A2) ≤ Σ (S, A)2

6. Σ (S, A) = inf{QAQ∗ : Q2 = Q, R(Q) = S } �

There is also a result about the continuity of the shorting operation (see [2], Corollary 2).

Theorem 2.3. Let An (n ∈ N) be a sequence of positive matrices such that An ↘
n→∞

A. Then,

for every subspace S it holds
Σ (S, An) ↘

n→∞
Σ (S, A) .

�

3 Definition of ρ (S, A) and basic properties

Proposition 3.1. Let A ∈ Mn(C)+ and let S be a subspace of Cn. Then, for every t ≥ 1,
it holds

Σ(S, At)1/t ≤ Σ(S, A).

Moreover, if 1 ≤ s ≤ t then Σ(S, As)1/s ≥ Σ(S, At)1/t.

Proof. Note that Σ(S, At) ≤ At. Since 0 ≤ 1/t ≤ 1, by Löwner’s theorem [12], it follows
that Σ(S, At)1/t ≤ A. On the other hand R(Σ(S, At)1/t) ⊆ S. So the statement follows from
the definition of shorted matrix. If t ≥ s ≥ 1, let us denote u = t/s ≥ 1 and B = As. Note
that Bu = At. Then

Σ
(
S, At

)s/t
= Σ (S, Bu)1/u ≤ Σ (S, B) = Σ (S, As) .

Therefore, because 1/s ≤ 1, we get Σ(S, At)1/t ≤ Σ(S, As)1/s.
�

Corollary 3.2. Let A ∈ Mn(C)+ and S ⊆ Cn. Then, for every 0 ≤ r ≤ 1, it holds that
Σ(S, A)r ≤ Σ(S, Ar).

Proof. Apply Proposition 3.1 to Ar with t = 1/r �

Consider the map [1,∞)→Mn(C)+ given by t 7→ Σ(S, At)1/t. By Proposition 3.1, this map
is nonincreasing. This fact motivates the following definition:
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Definition 3.3. Given A ∈Mn(C)+, the spectral shorted matrix of A by S is

ρ(S, A) = inf
t≥1

Σ(S, At)1/t = lim
t→+∞

Σ(S, At)1/t.

In the next proposition we sum up some simple properties of spectral shorted matrices.

Proposition 3.4. Let A ∈Mn(C)+ and let S and T be subspaces of Cn. Then:

a. R(ρ (S, A)) ⊆ R(A) ∩ S.

b. ρ (S, cA) = c ρ (S, A) for every c ∈ [0,+∞).

c. If S ⊆ T , then, ρ (S, A) ≤ ρ (T , A).

d. Σ (S, ρ (S, A)) = ρ (S, A) and ρ (S,Σ (S, A)) = Σ (S, A).

e. ρ (S, ρ (S, A)) = ρ (S, A).

f. ρ (S ∩ T , A) ≤ ρ (T ,Σ (S, A)).

Proof.

a, b and c. These properties follow from the definition of ρ (S, A) and Proposition 2.2.

d. Since R
(

Σ
(
S, At

)1/t) ⊆ S for each t ≥ 1, it holds R (ρ (S, A)) ⊆ S, so Σ (S, ρ (S, A)) =

ρ (S, A).

e. It is a consequence of the previous equality.

f. It can be deduced from inequalities

Σ
(
S ∩ T , A2m) ≤ Σ

(
T ,Σ

(
S, A2m)) ≤ Σ

(
T ,Σ (S, A)2m

)
∀m ∈ N.

�

Examples 3.5.

1. If A is the projection with range T , then ρ(S, A) = Σ(S, At)1/t = PS∩T for every
t ∈ [1,∞).

2. If A commutes with the orthogonal projection P = PS , then ρ(S, A) = Σ(S, At)1/t =
PA for every t ∈ [1,∞). N

The next result exhibites one of the main advantages of the spectral shorting over the classical
shorting.
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Theorem 3.6. Let A ∈ Mn(C)+ and S a subspace of Cn. Then, for every t ∈ (0,∞) it
holds

ρ (S, A)t = ρ
(
S, At

)
.

In particular, ρ (S, A)t ≤ At for every t ∈ (0,∞).

Proof. Given t ∈ (0,∞), since st→∞ as s→∞ and the map x→ x1/t is continuous, we
have that

ρ
(
S, At

)1/t
=
(

lim
s→∞

Σ
(
S, (At)s

)1/s)1/t

= lim
s→∞

Σ
(
S, Ast

)1/st
= ρ (S, A) .

�
Before going on, let us recall the definition of spectral order (see [16]).

Definition 3.7. Let A,B ∈ Mn(C)+. We write A 4 B if for every m ∈ N it holds that
Am ≤ Bm. The relation 4 defined on Mn(C)+ is a partial order and it is called spectral
order.

The next result replaces the monotony property (4 of Theorem 2.2) of the classical
shorting operation with respect to the usual order ≤.

Proposition 3.8. Given A,B ∈ Mn(C)+ such that A 4 B. Then, for every subspace S of
Cn, it holds

ρ (S, A) 4 ρ (S, B) .

Proof. Let S be subspace. Given m > 1, since Am ≤ Bm, by Theorem 2.2 (4) it holds
Σ (S, Am) ≤ Σ (S, Bm). Moreover, as the function f(x) = x1/m is operator monotone (see
[4]), we get

(Σ (S, Am))1/m ≤ (Σ (S, Bm))1/m

and taking limit we obtain
ρ (S, A) ≤ ρ (S, B) .

On the other hand, note that A 4 B implies that Ak 4 Bk for every k ≥ 1. Thus, by what
we have already proved, it holds

ρ
(
S, Ak

)
≤ ρ

(
S, Bk

)
(∀ k ≥ 1).

Using Theorem 3.6, these inequalities can be rewritten as

ρ (S, A)k ≤ ρ (S, B)k (∀ k ≥ 1)

which is equivalent to ρ (S, A) 4 ρ (S, B). �

In section 5 there is a deeper study about the relationship between the operator ρ (S, A)
and the spectral order.

Theorem 3.9. Let A ∈Mn(C)+ and let S and T be subspaces. Then

ρ (S ∩ T , A) = ρ (T , ρ (S, A))
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Proof. Given t ≥ 1, we get

Σ
(
T , ρ (S, A)t

)1/t
= Σ

(
T , ρ

(
S, At

))1/t
= Σ

(
S ∩ T , ρ

(
S, At

))1/t
≥ Σ

(
S ∩ T , ρ

(
S ∩ T , At

))1/t
= ρ

(
S ∩ T , At

)1/t
= ρ (S ∩ T , A)

and taking limit we obtain the following inequality

ρ (T , ρ (S, A)) ≥ ρ (S ∩ T , A) .

On the other hand, by Proposition 3.6, for every t ≥ 1, ρ (S, A)t = ρ (S, At) ≤ At; then

Σ
(
T , ρ (S, A)t

)1/t
= Σ

(
S ∩ T , ρ (S, A)t

)1/t ≤ (Σ
(
S ∩ T , At

)
)1/t

and taking limit again we get ρ (T , ρ (S, A)) ≤ ρ (S ∩ T , A) . �

Proposition 3.10. Let S be a subspace of Cn and let {Am} be a sequence in Mn(C)+ such
that Am −−−→

m→∞
A and Am+1 4 Am for every m ∈ N. Then

ρ (S, Am) ↘
n→∞

ρ (S, A)

Proof. Since ρ (S, Am+1) ≤ ρ (S, Am) (by Corollary 3.8), there is a positive operator L such
that
ρ (S, Am) −−−→

m→∞
L. Clearly ρ (S, A) ≤ L.

On the other hand, for every m, k ≥ 1

L ≤ ρ (S, Am) ≤ Σ
(
S, Akm

)1/k
(4)

Now fix k ≥ 1. As Akn ↘
m→∞

Ak, by proposition 2.3 it follows

Σ
(
S, Akm

)1/k −−−→
m→∞

Σ
(
S, Ak

)1/k
(5)

hence, joining (4) and (5) we obtain L ≤ Σ
(
S, Ak

)1/k
, which implies L ≤ ρ (S, A) �

Remark 3.11. In section 7 we show an example for which the statements of Propositions
3.8 and 3.10 fail if the spectral order is replaced by the usual one.

4 Spectrum of ρ (S, A)

In this section S is a subspace of Cn and P = PS is the orthogonal projection onto S.

Proposition 4.1. For A ∈Mn(C)+ let µ = minσ (A). Then

µP ≤ ρ(S, A).

In particular, if A is invertible then ρ(S, A) : S → S is invertible.

9



Proof. Note that µm = minσ (Am) for all m ∈ N. Then µmP ≤ µmI ≤ Am for all m ∈ N,
so that µP ≤ Σ(S, Am)1/m and the result follows �

Proposition 4.2. Let A ∈Mn(C)+. Then, if ρ (S, A) is considered as acting on S, it holds

minσ (ρ(S, A)) = max{λ ≥ 0 : Am − λmP ≥ 0, ∀ m ∈ N}. (6)

Proof. Recall that P is the identity on S, which is the space where ρ(S, A) and Σ(S, Am)1/m

act. Then, for λ ≥ 0,

λP ≤ ρ (S, A)⇔ λ P ≤ Σ (S, Am)1/m ∀ m ∈ N
⇔ λmP ≤ Σ (S, Am) ∀ m ∈ N
⇔ λm P ≤ Am ∀ m ∈ N

and the result is proved. �

Theorem 4.3. Let A ∈Mn(C)+. Then

minσ (ρ (S, A)) = min{λ ∈ σ (A) : ker(A− λI) 6⊆ S⊥}, (7)

if ρ (S, A) is considered as acting on S.

Proof. Let µ = min{λ ∈ σ (A) : ker(A − λI) 6⊆ S⊥}. Fix m ∈ N. It is clear that
µm = min{λ ∈ σ (Am) : ker(Am − λI) 6⊆ S⊥}. Then⊕

λ < µm

ker(Am − λI) ⊆ S⊥ ⇒ S ⊆
⊕

λ ≥ µm

ker(Am − λI),

so that µm P ≤ Am for all m ∈ N. Therefore µP ≤ ρ (S, A) and minσ (ρ (S, A)) ≥ µ.
On the other hand, if L = ker(A−µI), let ρ be a unit vector in L such that 〈P ρ, ρ〉 6= 0,

and let λ ≥ 0 such that Am − λmP ≥ 0, for every m ∈ N. Then

0 ≤ 〈(Am − λmP )ρ, ρ〉 = µm − λm 〈P ρ, ρ〉 .

This implies that λm〈P ρ, ρ〉 ≤ µm, for every m ∈ N. Since 〈P ρ, ρ〉 > 0, it must be µ ≥ λ.
Then, by the above Proposition, we get minσ (ρ (S, A)) ≤ µ. �

Corollary 4.4. Let A ∈M2(C) and suppose that dimS = 1. If AP 6= PA, then

ρ(S, A) = min σ (A) P

Proof. If min σ (A) = µ and A is not diagonal, then ker(A− µI) 6⊆ S⊥. �

Proposition 4.5. If A ∈Mn(C)+, then σ (ρ (S, A)) ⊆ σ (A).
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Proof. Given λ ∈ σ (ρ (S, A)), let T =
⊕
µ≥λ

ker(ρ (S, A)− µ). As T reduce ρ (S, A) we have

that
ρ (T , ρ (S, A)) = PT ρ (S, A)

On the other hand, according to Proposition 3.9

ρ (T , ρ (S, A)) = ρ (T ∩ S, A)

Now, the minimum eigenvalue of ρ (T ∩ S, A) belongs to σ (A), as we have shown in Theorem
4.3. But, by construction, λ = minσ (ρ (T ∩ S, A)). Thus λ ∈ σ (A). �

Remark 4.6. Given a matrix A, the condition number of A is defined by means of

cond(A) = ‖A‖ ‖A†‖,

where A† denotes the Moore-Penrose pseudoinverse of A. In particular, when A ∈Mn(C)+,
then cond(A) = λmax (A)λ, where λ is the inverse of the smallest eigenvalue of A different
from zero. Taking this into account, by the previous Proposition we obtain

cond(A) ≥ cond(ρ (S, A)).

N

At the end of the next section we shall give a more detailed description of σ (ρ (S, A)).

5 Spectral order and the spectral shorted matrix

In this section we profundize the study of the relationship between the spectral order (recall
Definition 3.7) and the properties of the spectral shorting operation. We begin with the
following examples, whose verifications are easy to see.

Examples 5.1. Given A,B ∈Mn(C)+ such that A ≤ B, it holds

1. If AB = BA then A 4 B.

2. If λmax (A) ≤ λmin (B) then A 4 B.

3. In M2(C)+, A 4 B if and only if either λmax (A) ≤ λmin (B) or AB = BA. Indeed, it is
an easy consequence of Corollary 4.4.

4. If there is a matrix C such that A ≤ C ≤ B, AC = CA, and BC = CB, then A 4 B.
N

One of the main results of the paper is the following theorem, which provides some useful
characterizations of the spectral order. Observe that the equivalence a ⇐⇒ b is related to
a similar result of J. I. Fujii and M. Fujii [9].
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Theorem 5.2. Let A,B ∈Mn(C)+. Then, the following statements are equivalent:

a. A 4 B

b. For every one dimensional subspace S, it holds ρ (S, A) ≤ ρ (S, B).

c. If λ ∈ σ (A), µ ∈ σ (B) and λ > µ, then ker (A− λ) ⊆ (ker (B − µ))⊥.

d. There is a positive integer k ≤ n and an sequence of positive matrices {Di}0≤i≤k such
that, D0 = A, Dk = B, Di ≤ Di+1 and DiDi+1 = Di+1Di (i = 0, · · · , k − 1).

Proof.

a ⇒ b Use Proposition 3.8

b ⇒ c Let λ ∈ σ (A) and µ ∈ σ (B) such that λ > µ, and suppose that there exists
ξ ∈ ker (A− λ)\ (ker (B − µ))⊥. Let S be the subspace generated by ξ. Then ker(B−
µI) 6⊆ S⊥ and, by the Theorem 4.3,

ρ (S, A) = λ > µ ≥ ρ (S, B)

which contradicts b.

c ⇒ d Let us proceed by induction over the dimension of the space Cn. If n = 1, it is
clearly true.

Now, let n > 1 and suppose that (c.⇒d.) for n− 1. Let define

N = {λ ∈ σ (A) : λ > λmin(B)} .

If N = ∅, then, A ≤ λmin (B) I ≤ B. On the other hand, if N 6= ∅, let P be the

projection onto the subspace
⊕
λ∈N

ker (A− λ) and D1 the operator defined by

D1 = λmin (B) (I − P ) + PA.

Since PA = AP , it is clear that AD1 = D1A and A ≤ D1. On the other hand, the pair
(D1, B) also satisfy (c). D1 and B have a common eigenvector ξ, which corresponds to
λmin (B) (because ker (B − λmin (B)) j R(I − P )). Let L be the subspace generated
by ξ. Then D1 and B can be represented

D1 =

(
λmin (B) 0

0 D̂1

)
L
L⊥ and B =

(
λmin (B) 0

0 B̂

)
L
L⊥ .

As (D̂1, B̂) satisfy (c), applying the inductive hypothesis we find an increasing sequence

{D̂j}j=2,··· ,k (k ≤ n), such that D̂k = B̂ and D̂jD̂j+1 = D̂j+1D̂j (j = 1, · · · , k − 1).
Finally, the sequence that we are looking for is

D0 = A

Dj =

(
λmin (B) 0

0 D̂j

)
(j = 1, · · · , k).

12



d ⇒ a Since DiDi+1 = Di+1Di (i = 0, · · · , k− 1), it holds that A 4 D1 4 · · · 4 Dk 4 B. �

Remark 5.3. Another proof of the equivalence between (a) and (c) can be found in [16]. In
the following Corollary we give a short proof, using Theorem 5.2, of Olson’s characterization
of spectral order in the finite dimensional case.

Corollary 5.4. Let A,B ∈Mn(C)+, S a subspace of Cn, and f a non-decreasing function.
If A 4 B then f(A) 4 f(B).

Proof. According to Theorem 5.2, there exist an increasing sequence {Di}i=1,··· ,k such that
D0 = A, Dk = B, Di ≤ Di+1 and DiDi+1 = Di+1Di (i = 0, · · · , k). Therefore the sequence
{f(Di)}i=1,··· ,k is non-decreasing. On the other hand, f(D0) = f(A), f(Dk) = f(B) and
f(Di)f(Di+1) = f(Di+1)f(Di). Thus, again by Theorem 5.2, f(A) 4 f(B). �

Proposition 5.5. Let A ∈Mn(C)+ and S a subspace of Cn. If

Mρ(S, A) = {D ∈Mn(C)+ : D 4 A, R(D) ⊆ S}

then

ρ (S, A) = maxMρ(S, A),

where the ”maximum” is taken for any of the orders ≤ and 4.

Proof. Firstly, note that ρ (S, A) ∈Mρ(S, A). In fact, ρ (S, A)m ≤ Am for every m ∈ N by
Proposition 3.6, and clearly R(ρ (S, A)) ⊆ S by definition.

Next, suppose that D ∈Mρ(S, A). As Dm ≤ Am, it holds that

Σ (S, Dm)1/m ≤ Σ (S, Am)1/m

and, since Σ (S, Dm)1/m = D for every m ∈ N, taking limit we have

D ≤ ρ (S, A) .

Note also that, if D ∈ Mρ(S, A), then for every k ∈ N, Dk 4 Ak and, with the same proof
as before one gets that

Dk ≤ ρ
(
S, Ak

)
= ρ (S, A)k .

Hence D 4 ρ (S, A). �

Corollary 5.6. Let A ∈Mn(C)+, and S a subspace of Cn. Then R(ρ (S, A)) = R(A) ∩ S.

Proof. Since 0 ≤ ρ (S, A) 4 A, then ρ (S, A)2 ≤ A2 and, by Douglas’ majorization theorem
[8], R(ρ (S, A)) ⊆ R(A) ∩ S. On the other hand, let P be the orthogonal projection onto
R(A). Then, there is a constant λ > 0 such that P ≤ λA. Since AP = PA, we have that
P 4 λA, and by Proposition 3.8, ρ (S, P )2 ≤ λ2ρ (S, A)2. But ρ (S, P ) is the projection on
R(A) ∩ S, so that, again by Douglas’ theorem, R(A) ∩ S ⊆ R(ρ (S, A)). �
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Proposition 5.7. Let A ∈Mn(C)+ and S a subspace of Cn. Then, for every non-decreasing
function f : [0, +∞)→ [0, +∞), it holds that

f(ρ (S, A)) = ρ (S, f(A)) (8)

where ρ (S, A) and ρ (S, f(A)) are considered as acting on S.

Proof. Let A be the 2× 2-matrix

(
A11 A12

A21 A22

)
, according to the decomposition induced by

S. Since (
A11 A12

A21 A22

)
<

(
ρ (S, A) 0

0 0

)
,

using Corollary 5.4 we get

f

((
A11 A12

A21 A22

))
<

(
f(ρ (S, A)) 0

0 f(0)

)
<

(
f(ρ (S, A)) 0

0 0

)
.

So, by Proposition 5.5 (
ρ (S, f(A)) 0

0 0

)
<

(
f(ρ (S, A)) 0

0 0

)
and we have that ρ (S, f(A)) < f(ρ (S, A)).

In order to prove the other inequality we first suppose that f strictly increasing. In this
case there exist a positive, non-decreasing function g on [0, +∞) such that

g|[f(0),+∞) = f−1.

Since σ (f(A)) ⊆ [f(0),+∞), we can use the part already proved and obtain

g(ρ (S, f(A))) 4 ρ (S, g ◦ f(A))) = ρ (S, A) .

But, applying f to both sides and taking into account Corollary 5.4 we get

ρ (S, f(A)) 4 f(ρ (S, A))

Now, consider a general non-decreasing function f defined on [0, +∞). Let {gm} the

sequence of function defined by gm(x) = f(x) +
x

m
. Since gm is strictly increasing and

gm ↘
m→∞

f , using what we have already done and Proposition 3.10 we get

f(ρ (S, A)) = lim
m→∞

gm(ρ (S, A)) = lim
m→∞

ρ (S, gm(A)) = ρ (S, f(A)) .

�

Proposition 5.8. Let A ∈Mn(C)+ and S a subspace of Cn. Then,⊕
µ≥λ

ker(ρ (S, A)− µ) =
⊕
µ≥λ

ker(A− µ) ∩ S, and⊕
µ>λ

ker(ρ (S, A)− µ) =
⊕
µ>λ

ker(A− µ) ∩ S. (9)
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Proof. Let us consider the function f = ℵ[λ,+∞). By Proposition 5.7 we know that

f(ρ (S, A)) = ρ (S, f(A)) .

Therefore, by comparing the ranges of these matrices we obtain⊕
µ≥λ

ker(ρ (S, A)− µ) = R(f(ρ (S, A))) = R(ρ (S, f(A))) =
⊕
µ≥λ

ker(A− µ) ∩ S.

The other equality can be proved in a similar way by using the function f = ℵ(λ,+∞) �

5.9. Now, after proving Proposition 5.8, we have all the technical tools in order to find the
spectrum and the eigenspaces of ρ (S, A) in terms of the spectral decomposition of A and
the subspace S.

Let A ∈ Mn(C)+, let S be a subspace of Cn and suppose that σ (A) = {λ1, · · · , λm}
(λ1 < · · · < λm). Since by Proposition 4.5 σ (ρ (S, A)) ⊆ σ (A), we have that σ (ρ (S, A)) =
{λi1 , . . . , λip}. The smallest eigenvalue of ρ (S, A) was characterized by Proposition 4.3 in
the following way

λi1 = min{λ ∈ σ (A) : ker(A− λI) 6⊆ S⊥}.

The other ones can be identified in this way

λi2 = min
{
λ ∈ σ (A) : λ > λi1 and

⊕
µ≥λ

ker(ρ (S, A)− µ) 6=
⊕
µ>λ

ker(ρ (S, A)− µ)
}
,

...

λik+1
= min

{
λ ∈ σ (A) : λ > λik and

⊕
µ≥λ

ker(ρ (S, A)− µ) 6=
⊕
µ>λ

ker(ρ (S, A)− µ)
}
,

and finally

λip = min
{
λ ∈ σ (A) :

⊕
µ>λ

ker(ρ (S, A)− µ) = {0}
}
.

These formulae can be rewritten using Proposition 5.8 in the following way

λi2 = min
{
λ ∈ σ (A) : λ > λi1 and

⊕
µ≥λ

ker(A− µ) ∩ S 6=
⊕
µ>λ

ker(A− µ) ∩ S
}
,

...

λik+1
= min

{
λ ∈ σ (A) : λ > λik and

⊕
µ≥λ

ker(A− µ) ∩ S 6=
⊕
µ>λ

ker(A− µ) ∩ S
}
,

...

λip = min
{
λ ∈ σ (A) :

⊕
µ>λ

ker(A− µ) ∩ S = {0}
}
.
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On the other hand, having characterized the eigenvalues of ρ (S, A) and using Proposition
5.8, the spaces of eigenvectors of ρ (S, A) can be writing in the following way

ker(ρ (S, A)− λip) =
⊕
µ≥λip

ker(A− µ) ∩ S, and

ker(ρ (S, A)− λik) =
( ⊕
µ≥λik

ker(A− µ) ∩ S
)
∩
( ⊕
µ≥λik+1

ker(A− µ) ∩ S
)⊥
k = 1, . . . , p− 1.

We summarized the previous discussion in the next Theorem:

Theorem 5.10. Let A ∈ Mn(C)+ and let S be a subspace of Cn. Suppose that σ (A) =
{λ1, · · · , λm} (λ1 < · · · < λm) and let i1, · · · , ip be the subindexes defined by

i. λi1 = min{λ ∈ σ (A) : ker(A− λI) 6⊆ S⊥}

ii. For k = 2, . . . , p − 1 we define λik as the smallest eigenvalue of A such that λik > λik−1

and ⊕
µ≥λik

ker(A− µ) ∩ S '
⊕
µ>λik

ker(A− µ) ∩ S 6= 0.

iii. λip = min
{
λ ∈ σ (A) :

⊕
µ>λ

ker(A− µI) ∩ S = {0}
}
.

Then,

a. σ (ρ (S, A)) = {λi1 , . . . , λip}

b. ‖ρ (S, A) ‖ = λip = min
{
λ ∈ σ (A) :

⊕
µ>λ

ker(A− µI) ∩ S = {0}
}
}

c. If Pp is the (orthogonal) projection onto the subspace⊕
µ≥λip

ker(A− µ) ∩ S,

and Pk (k = 1, . . . , p− 1) is the (orthogonal) projection onto the subspace( ⊕
µ≥λik

ker(A− µ) ∩ S
)
∩
( ⊕
µ≥λik+1

ker(A− µ) ∩ S
)⊥
,

it holds that

ρ (S, A) =

p∑
k=1

λik Pk (10)
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6 The case dimS = 1

Suppose that dimS = 1 and let P = PS . For every A ≥ 0 there exist λ ≥ 0 such that
ρ(S, A) = λP . In this section we shall study the one dimensional case, and, for simplicity of
the notations, we shall identify ρ(S, A) with this number λ, instead of λP .

Recall that, using Theorem 4.3, it holds

ρ(S, A) = λmin(ρ(S, A)) = min{λ ∈ σ (A) : ker(A− λI) 6⊆ S⊥}. (11)

Proposition 6.1. Let A ∈ Mn(C)+ and let S be the subspace of Cn generated by the unit
vector ξ. If A is invertible, then

ρ(S, A) = lim
m→∞

‖A−mξ‖−1/m = inf
m∈N
‖A−mξ‖−1/m (12)

If A is not invertible, then

1. ρ(S, A) = 0 if kerA 6⊆ S⊥,

2. ρ(S, A) = limm→∞ ‖Bmξ‖−1/m = infm∈N ‖Bmξ‖−1/m if kerA ⊆ S⊥ and B = A†.

Proof. The general case easily reduces to the invertible case by Theorem 4.3, by taking the
restriction of A to R(A). Note that kerA ⊆ S⊥ implies that S ⊆ R(A).

Suppose that A is invertible and write ξ =
∑n

k=1 aiξi, where {ξi} is a orthonormal basis
of eigenvectors of A such that Aξi = λiξ and λi ≤ λi+1, 1 ≤ i ≤ n− 1. Let j the first index
such that aj 6= 0. By Theorem 4.3, it holds ρ(S, A) = λj. Therefore

A−mξ

λ−mj
=
∑
i≥j

ai
λmj
λmi

ξi −−−→
m→∞

∑
λi=λj

aiξi.

and limm→∞
‖A−mξ‖−1/m

λj
= 1, since ‖

∑
λi=λj

aiξi‖−1/m −−−→
m→∞

1.

Finally, let us show that the sequence {‖A−mξ‖−1/m} is decreasing. Given k ≥ h, as∑
i≥j

a2
i = ‖ξ‖ = 1, by Jensen’s inequality, we have

‖A−kξ‖2h/k =

(∑
i≥j

1

λ2k
i

a2
i

)h/k

≥
∑
i≥j

(
1

λ2k
i

)h/k
a2
i =

∑
i≥j

1

λ2h
i

a2
i = ‖A−hξ‖2

and applying the function f(x) = x−1/2h to both sides of the inequality we get ‖A−kξ‖−1/k ≤
‖A−hξ‖−1/h. �

Remark 6.2. Given an invertible matrix A ∈ Mn(C)+ and ξ a unit vector, J. I. Fujii and
M. Fujii [9] define the Kolmogorov’s complexity:

K (A, ξ) = lim
n→∞

log(〈Anξ, ξ〉)
n

= log lim
n→∞

〈Anξ, ξ〉1/n .

Among several results, they prove
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1. σ(A) = {exp(K (A, ξ)) : ‖ξ‖ = 1}

2. K (A, ξ) = min{log λ : λ ∈ σ(A), ξ ∈
⊕

µ≤λ ker(A− µ)}

3. A 4 B ⇔ K (A, ξ) ≤ K (B, ξ) for every ξ

Let us show that their results can be deduced from the knowledge of the spectral shorted
matrix ρ (S, A−1). Using Propositions 6.1 and 5.7, if S is the subspace generated by ξ, it is
easy to see that

K (A, ξ) = log ρ
(
S, A−1/2

)−2
= log ρ

(
S, A−1

)−1
.

With this identification, the above mentioned results of [9] can be deduced from Proposition
4.5, formula (11) and Theorem 5.2, respectively.

7 Some examples

Let us show first an example of a pair (A,S) such that ρ (S, A) is explicitely computed.

Example 7.1. Consider the matrix

A =

 6 −2 2
−2 10 −2
2 −2 6

 ,

and the subspace S generated by the vectors (1, 0, 0) and (0, 1, 0). The eigenvalues of A are
4, 6 and 12, and their eigenvectors are (−1, 0, 1), (1, 1, 1) and (1,−2, 1) respectively.

Let us begin calculating the eigenvalues of ρ (S, A). According to Theorem 4.3 the
smallest eigenvalue of ρ (S, A) is the minimum element of the spectrum of A such that

ker(A− λI) 6⊆ S⊥.

As it can be checked easily, this value is 4. Now, as it was explained before Theorem 5.10
the second eigenvalue of ρ (S, A) will be the smallest eigenvalue µ of A such that

S ∩
⊕
λ≥µ

ker(A− λ)  S ∩
⊕
λ≥4

ker(A− λ) = S.

This number is 6. So, by a dimension argument, the spectrum of ρ (S, A) is {4, 6}.
We shall use part (d) of Theorem 5.10 to calculate the eigenvectors associated to each

eigenvalue. An eigenvector for the eigenvalue 6 is any non zero vector in

S ∩ Span{(1, 1, 1), (1,−2, 1)},

for instance, (0, 1, 0). On the other hand, an eigenvector for the eigenvalue 4 can be found
by looking for a vector in S orthogonal to (0, 1, 0), for instance (1, 0, 0). In this way we get

ρ (S, A) =

4 0 0
0 6 0
0 0 0

 .

According to Propositions 5.5, it follows that ρ (S, A) 4 A. Therefore, by Theorem 5.2 there
must be intermediate matrices D1 and D2, such that
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a. ρ (S, A) ≤ D1 ≤ D2 ≤ A and

b. ρ (S, A)D1 = D1 ρ (S, A), D1D2 = D2D1 and D2A = AD2.

Following the algorithm suggested by the induction used to prove (c⇒ d) in Proposition 5.2
we get

D1 =

4 0 0
0 6 0
0 0 4

 and D2 =

5 0 1
0 6 0
1 0 5

 .

N

Now we are going to exhibit some examples which show that some hypothesis can not
be relaxed. For example, let us begin with Proposition 3.8 where we have proved that given
a subspace S of Cn and A,B in Mn(C)+ such that A 4 B, then ρ (S, A) ≤ ρ (S, B). This
Proposition may fail if we put A ≤ B instead of A 4 B as the following example shows:

Example 7.2. Let us consider the following matrices:

A =

(
1 0
0 0

)
and B =

(
2 1
1 1

)
and the one dimensional subspace S generated by the vector (1, 0). Clearly, A ≤ B; on the

other hand, ρ (S, A) = PS and ρ (S, B) =
3−
√

5

2
PS < PS by Corollary 4.4. N

In the statement of Proposition 3.10, the hypothesis of being non-increasing respect to
the spectral order seems very strong. Nevertheless, the result may fail if the sequence is only
non-increasing respect to the usual order, as the following example shows:

Example 7.3. Consider the following sequence of matrices:

Am =

(
1 + 1/m 1/m

1/m 1/m

)
∈M2(C) , m ∈ N.

It is clear that, for every m ∈ N, 0 ≤ Am+1 ≤ Am, and λmin(Am) ≤ 〈Ame2, e2〉 = 1/m. On
the other hand, Am −−−→

m→∞
P , the orthogonal projector onto the subspace generated by e1.

Let S = R(P ). Then, by Corollary 4.4, ρ (S, Am) = λmin(Am)P ≤ 1

m
P , so that

ρ (S, Am) −−−→
m→∞

0, and ρ (S, P ) = P . N
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